

Gen. Math. Notes, Vol. 25, No. 2, December 2014, pp. 125-136 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Common Fixed Point Theorem of Compatible Mappings of Type (K) and Property (E.A.) in Fuzzy 2 - Metric Space

Mala Hakwadiya¹, R.K. Gujetiya² and Dheeraj Kumari Mali³

 ^{1,3}Research Scholar, Pacific Academy of Higher Education and Research University Udaipur, Rajasthan, India
 ¹E-mail: manuvi9the@gmail.com
 ³E-mail: dheerajmali@gmail.com
 ²Associate Professor & Head, Department of Mathematics Govt. P.G. College, Neemuch, M.P., India E-mail: gujetiya71@gmail.com

(Received: 14-8-14 / Accepted: 18-9-14)

Abstract

In this paper we prove a common fixed point theorem in fuzzy 2- metric space on six self-mappings using the concept of compatible of type (K) and Property (E.A.).

Keywords: Compatible of type (K), Fixed point, Fuzzy-2 metric space, Property (E.A.).

1 Introduction

In 1965, L.A. Zadeh [8] introduced the concept of fuzzy sets which became active field of research for many researchers. In 1975, Kramosil and Michalek [5] came in front with the concept of Fuzzy metric space based on fuzzy sets which were

further modified by George and Veermani [2] with the help of t-norms. Many authors did good work and are still doing in proving fixed point theorems in Fuzzy metric space. Singh and Chauhan [4] introduced the concept of compatibility in fuzzy metric space and proved some common fixed point theorems in fuzzy metric spaces. Manandhar al. [6] introduced the concept of compatible maps of type (k) in Fuzzy metric space and proved fixed point theorems. Recently, many authors [1, 7, 9, 3] have also studied the fixed point theory in the fuzzy 2-metric spaces.

2 Preliminaries

Definition 2.1: [7] A binary operation $*: [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if ([0,1],*) is an abelian topological monodies with unit 1 such that $a_1 * b_1 * c_1 \ge a_2 * b_2 * c_2$ whenever $a_1 \ge a_2$, $b_1 \ge b_2$, $c_1 \ge c_2$ for all a_1, b_1, c_1, a_2, b_2 and c_2 are in [0,1]

Definition 2.2: [1] The 3-tuple (X, M, *) is called a fuzzy 2-metric space if X is an arbitrary set, * is a continuous t-norm, and M is a fuzzy set in $X^3 \times [0, \infty)$ satisfying the following conditions.

(1) M(x, y, a, 0) = 0. (2) M(x, y, a, t) = 1, for all t > 0 if and only if at least two of them are equal. (3) M(x, y, a, t) = M (y, a, x, t) = M(a, y, x, t). (Symmetric) (4) M(x, y, a, r+s+t) \geq M (x, y, z, r)*M(x, z, a, s)*M(z, y, a, t) for all x, y, z, a \in X and r, s, t > 0. (5) M (x, y, a, .) : [0, ∞) \rightarrow [0,1] is left continuous for all x, y, z, a \in X and t > 0. (6) $\lim_{n\to\infty} M(x, y, a, t) = 1$ for all x, y, z, a \in X and t > 0.

Definition 2.3: [9] Self- mappings S and T of a fuzzy 2- metric space (X, M, *) are said to be compatible if and only if $M(STx_n, TSx_n, z, t) \rightarrow 1 \forall t > 0$ whenever $\{x_n\}$ is a sequence in X such that $Tx_n, Sx_n \rightarrow p$ for some p in X as $n \rightarrow \infty$.

Definition 2.4: [1] A Fuzzy 2-metric space (X, M, *) is said to be complete if every Cauchy sequence in X converges in X.

Definition 2.5: [7] Let (X, M, *) be a fuzzy 2-metric space. A sequence $\{x_n\}$ in fuzzy 2-metric space X is said to be convergent to a point $x \in X$, $\lim_{n\to\infty} M(x_n, x, a, t) = 1$ for all $a \in X$, and t > 0.

Definition 2.6: [7] A sequence $\{x_n\}$ in fuzzy 2-metric space X is called a Cauchy sequence, if $\lim_{n\to\infty} M(x_{n+p}, x_n, a, t) = 1$ for all $a \in X$, and t, p > 0.

Definition 2.7: [7] A function M is continuous in a Fuzzy 2- metric space, if and only if whenever for all a > X and t > 0. $x_n \to x$, $y_n \to y$, then $\lim_{n\to\infty} M(x_n, y_n, a, t) = M(x, y, a, t)$ for all a > X and t > 0.

Definition 2.8. [6] The self maps A and S of a fuzzy metric space (X, M, *) are said to be compatible of type (K) iff $\lim_{n\to\infty} M(AAx_n, Sx, t) = 1$ and $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = x$ for some x in X and t > 0.

Definition 2.9: [3] Tow pairs of self mappings (A, S) and (B, T) defined on a fuzzy metric space (X, M, *) are said to share the common property (E. A) if there exist a sequence $\{x_n\}$ and $\{y_n\}$ in X such that

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = \lim_{n\to\infty} By_n = \lim_{n\to\infty} Ty_n = z \text{ for some } z > X.$

Definition 2.10: [9] Self- maps S and T of a fuzzy 2- metric space (X, M, *) are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points that is if Sp = Tp for some $p \in X$ then STp = TSp.

Lemma: [9] M(x, y, z, .) is non –decreasing for all $x, y, z \in X$.

Lemma:[9] Let (X, M, *) be a fuzzy 2-metric space. If there exists $k \in (0, 1)$ such that $M(x,y,z,kt) \ge M(x,y,z,t)$ for all $x,y,z \in X$ with $z \ne x, z \ne y$ and t > 0, then x = y.

3 Main Result

Theorem 3.1 : Let (X, M, *) be a complete Fuzzy 2-metric space and A, B, P, Q, S and T be a self mapping of X satisfying the following condition:

(i) P(X) ⊂ BT(X) and Q(X) ⊂ SA(X)
(ii) SA and BT are continuous.
(iii) (P, SA) and(Q, BT) compatible of type of (K)
(iv)[1 + aM(SAx, Px, a kt)] * M(Px, Qy, a, kt) ≥
a[M(Px, SAx, a, kt) * M(BTy, Qy, a, kt) * M(BTy, Px, a, kt)] + M(BTy, SAx, a, t)
* M(Px, SAx, a, ∝ t) * M(Qy, BTy, a, (2-∞)t) * M(Qy, SAx, a, ∝ t)
* M(Px, BTy, a, (2-∞)t)
For all x, y, a ∈ X, ∝∈ (0,2), a ≥ 0 and t>0
(v) (P,SA) and (BT, Q) are commute,

Then A, B, P, Q, S and T have a unique common fixed point.

Proof: Since $P(X) \subset BT(X)$ and $Q(X) \subset SA(X)$, so for any $x_0 \in X$, there exists $x_1 \in X$ such that $Px_0 = BTx_1$ and for this x_1 , there exists $x_2 \in X$ such that $BTx_1 = SAx_2$. Inductively, we define a sequences $\{y_n\}$ in X such that

 $y_{2n+1} = Px_{2n} = BTx_{2n+1}$ and $y_{2n+2} = Qx_{2n+1} = SAx_{2n+2}$ for all n=1,2,3...

Putting $x = x_{2n}$ and $y = x_{2n+1}$ with $\propto =1$ Form (iv), we get

 $[1 + aM(SAx_{2n}, Px_{2n}, a, kt)] * M(Px_{2n}, Qx_{2n+1}, a, kt)$ $\geq a[M(Px_{2n}, SAx_{2n}, a, kt) * M(BTx_{2n+1}, Qx_{2n+1}, a, kt) * M(BTx_{2n+1}, Px_{2n}, a, kt)]$

$$[1 + aM(y_{2n}, y_{2n+1}, a, kt)] * M(y_{2n+1}, y_{2n+2}, a, kt)$$

$$\geq a[M(y_{2n+1}, y_{2n}, a, kt) * M(y_{2n+1}, y_{2n+2}, a, kt) * M(y_{2n+1}, y_{2n+1}, a, kt)]$$

$$+M(y_{2n+1}, y_{2n}, a, t) * M(y_{2n+1}, y_{2n}, a, t) * M(y_{2n+2}, y_{2n+1}, a, t)$$

$$* M(y_{2n+2}, y_{2n}, a, t) * M(y_{2n+1}, y_{2n+1}, a, t)$$

 $M(y_{2n+1}, y_{2n+2}, a, kt) \ge M(y_{2n+1}, y_{2n}, a, t) * M(y_{2n+1}, y_{2n}, a, t) *$

$$M(y_{2n+2}, y_{2n+1}, a, t) * M(y_{2n+2}, y_{2n+1}, a, t) * M(y_{2n+1}, y_{2n}, a, t)$$

$$M(y_{2n+1}, y_{2n+2}, a, kt) \ge M(y_{2n+1}, y_{2n}, a, t) * M(y_{2n+2}, y_{2n+1}, a, t)$$

Similarly, we also have

$$M(y_{2n+2}, y_{2n+3}, a, kt) \ge M(y_{2n+2}, y_{2n+1}, a, t) * M(y_{2n+3}, y_{2n+2}, a, t)$$

In general for m = 1, 2, 3....

$$M(y_{m+1}, y_{m+2}, a, kt) \ge M(y_{m+1}, y_m, a, t) * M(y_{m+2}, y_{m+1}, a, t)$$

Consequently, it follows that for m = 1, 2, 3... and p = 1, 2, 3...

$$M(y_{m+1}, y_{m+2}, a, kt) \ge M(y_{m+1}, y_m, a, t) * M\left(y_{m+2}, y_{m+1}, a, \frac{t}{k^p}\right)$$

We have
$$M(y_{m+1}, y_{m+2}, a, kt) \ge M\left(y_{m+1}, y_m, a, \frac{t}{k}\right)$$

 $\ge M\left(y_m, y_{m-1}, a, \frac{t}{k^2}\right) \ge \dots \ge M\left(y_2, y_1, a, \frac{t}{k^n}\right) \to \infty$

As $n \rightarrow \infty$, so M(y_{m+1}, y_m, a, t) $\rightarrow 1$ for any t>0. For each $\epsilon > 0$ and each t>0,

we can choose $m_0 \in N$ such that $M(y_{m+1}, y_m, a, t) > 1 - \varepsilon$ for all $m > m_0$ for $m_1, m_0 \in N$. Then $M(y_{m+1}, y_{m+2}, a, kt) \ge M(y_m, y_{m+1}, a, t)$

Hence by lemma $\{y_n\}$ is a Cauchy sequence in X. Since X is complete then $\{y_n\}$ converges to some point $z \in X$, and so that $\{Px_{2n}\}$, $\{BTx_{2n+1}\}$, $\{Qx_{2n+1}\}$ and $\{SAx_{2n+2}\}$ also converges to z. Since (P, SA) and (Q, BT) are compatible of type (K), we have

$$\begin{split} & \operatorname{PPx}_{2n} \to \operatorname{SAz}, (\operatorname{SA})\operatorname{SAx}_{2n} \to \operatorname{Pz}, \operatorname{QQx}_{2n+1} \to \operatorname{BTz} \text{ and } (\operatorname{BT})\operatorname{BTx}_{2n+1} \to \operatorname{Qz} \\ & \operatorname{Putting} x = \operatorname{Px}_{2n} \text{ and } y = \operatorname{Qx}_{2n+1} \text{ with } \propto =1 \text{ Form (iv), we get} \\ & [1 + \operatorname{aM}(\operatorname{SA}(\operatorname{Px}_{2n}), \operatorname{P}(\operatorname{Px}_{2n}), \operatorname{a}, \operatorname{kt})] * \operatorname{M}(\operatorname{P}(\operatorname{Px}_{2n}), \operatorname{Q}(\operatorname{Qx}_{2n+1}), \operatorname{a}, \operatorname{kt}) \\ & \geq a[* \operatorname{M}(\operatorname{BT}(\operatorname{Qx}_{2n+1}), \operatorname{Q}(\operatorname{Qx}_{2n+1}), \operatorname{a}, \operatorname{kt}) * \operatorname{M}(\operatorname{BT}(\operatorname{Qx}_{2n+1}), \operatorname{P}(\operatorname{Px}_{2n}), \operatorname{a}, \operatorname{kt})] \\ & + \operatorname{M}(\operatorname{BT}(\operatorname{Qx}_{2n+1}), \operatorname{SA}(\operatorname{Px}_{2n}), \operatorname{a}, \operatorname{t}) * \operatorname{M}(\operatorname{P}(\operatorname{Px}_{2n}), \operatorname{SA}(\operatorname{Px}_{2n}), \operatorname{a}, \operatorname{t}) \\ & * \operatorname{M}(\operatorname{Q}(\operatorname{Qx}_{2n+1}), \operatorname{BT}(\operatorname{Qx}_{2n+1}), \operatorname{a}, \operatorname{t}) * \operatorname{M}(\operatorname{Q}(\operatorname{Qx}_{2n+1}), \operatorname{SA}(\operatorname{Px}_{2n}), \operatorname{a}, \operatorname{t}) \\ & * \operatorname{M}(\operatorname{P}(\operatorname{Px}_{2n}), \operatorname{BT}(\operatorname{Qx}_{2n+1}), \operatorname{a}, \operatorname{t}) \\ & \operatorname{Letting} n \to \infty, \text{ we have} \\ & [1 + \operatorname{aM}(\operatorname{SAz}, \operatorname{SAz}, \operatorname{a}, \operatorname{kt})] * \operatorname{M}(\operatorname{SAz}, \operatorname{BTz}, \operatorname{a}, \operatorname{kt}) \geq \operatorname{a}[\operatorname{M}(\operatorname{SAz}, \operatorname{SAz}, \operatorname{a}, \operatorname{kt}) \\ & * \operatorname{M}(\operatorname{BTz}, \operatorname{BTz}, \operatorname{a}, \operatorname{kt}) * \operatorname{M}(\operatorname{BTz}, \operatorname{SAz}, \operatorname{a}, \operatorname{kt})] + \operatorname{M}(\operatorname{BTz}, \operatorname{SAz}, \operatorname{a}, \operatorname{t}) \end{split}$$

* M(SAz, SAz, a, t) * M(BTz, BTz, a, t) * M(BTz, SAz, a, t) * M(SAz, BTz, a, t)
M(SAz, BTz, a, kt)
$$\geq$$
 M(BTz, SAz, a, t) * M(BTz, SAz, a, t) * M(SAz, BTz, a, t)
Which implies that M(SAz, BTz, a, kt) \geq M(BTz, SAz, a, t)
Therefore by lemma, we have, SAz = BTz. (3.1)
Putting x = z and y = Qx_{2n+1} with \propto =1 Form (iv), we get
[1 + aM(SAz, Pz, a, kt)] * M(Pz, Q(Qx_{2n+1}), a, kt) \geq a[M(Pz, SAz, a, kt) *
M(BT(Qx_{2n+1}), Q(Qx_{2n+1}), a, kt) * M(BT(Qx_{2n+1}), Pz, a, kt)] +
M(BT(Qx_{2n+1}), SAz, a, t) * M(Pz, SAz, a, t) * M(Q(Qx_{2n+1}), BT(Qx_{2n+1}), a, t)

$$M(Q(Qx_{2n+1}), SAz, a, t) M(Pz, BT(Qx_{2n+1}), a, t)$$

Letting $n \rightarrow \infty$, we have

 $[1 + aM(BTz, Pz, a, kt)] * M(Pz, BTz, a, kt) \ge a[M(Pz, BTz, a, kt) *$

$$M(BTz, BTz, a, kt) * M(BTz, Pz, a, kt)] + M(BTz, BTz, a, t)$$

M(Pz, BTz, a, t) M(BTz, BTz, a, t) M(BTz, BTz, a, t) M(Pz, BTz, a, t)

Which implies that $M(Pz, BTz, a, kt) \ge M(Pz, BTz, a, t)$.

Therefore by lemma, we have Pz = BTz

Putting x = z and y = z, using (3.1), (3.2) with $\propto =1$ Form (iv), we get

$$[1 + aM(SAz, Pz, a, kt)] * M(Pz, Qz, a, kt) \ge a[M(Pz, SAz, a, kt) *$$

$$M(BTz, Qz, a, kt) * M(BTz, Pz, a, kt)] + M(BTz, SAz, a, t) * M(Pz, SAz, a, t)$$

$$* M(Qz, BTz, a, t) * M(Qz, SAz, a, t) * M(Pz, BTz, a, t)$$

 $[1 + aM(Pz, Pz, a, kt)] * M(Pz, Qz, a, kt) \ge a[M(Pz, Pz, a, kt) *$

$$M(Pz, Qz, a, kt) * M(Pz, Pz, a, kt)] + M(Pz, Pz, a, t) * M(Pz, Pz, a, t)$$

$$* M(Qz, Pz, a, t) * M(Qz, Pz, a, t) * M(Pz, Pz, a, t)$$

Which implies that $M(Pz, Qz, a, kt) \ge M(Pz, Qz, a, t)$.

Therefore by lemma, we have Pz = Qz (3.3)

Therefore form (3.1), (3.2) and (3.3), we have SAz = BTz = Pz = Qz (3.4)

Now we show that Qz = z. Putting $x = x_{2n}$ and y = z with $\propto =1$ Form (iv), we get

 $[1 + aM(SAx_{2n}, Px_{2n}, a, kt)] * M(Px_{2n}, Qz, a, kt) \ge a[M(Px_{2n}, SAx_{2n}, a, kt)$

$$* M(BTz, Qz, a, kt) * M(BTz, Px_{2n}, a, kt)] + M(BTz, SAx_{2n}, a, t) *$$

$$M(Px_{2n}, SAx_{2n}, a, t) * M(Qz, BTz, a, t) * M(Qz, SAx_{2n}, a, t) * M(Px_{2n}, BTz, a, t)$$

Letting $n \rightarrow \infty$, we have

[1 + aM(z, z, a, kt)] * M(z, Qz, a, kt)

 $\geq a[M(z, z, a, kt) * M(Qz, Qz, a, kt) * M(Qz, z, a, kt)]$

$$+M(Qz, z, a, t) * M(z, z, a, t) * M(Qz, Qz, a, t) * M(Qz, z, a, t) * M(z, Qz, a, t)$$

Which implies that $M(z, Qz, a, kt) \ge M(z, Qz, a, t)$.

Therefore by lemma, we have z = Qz.

Hence by (3.4), we have SAz = BTz = Pz = Qz = z (3.5)

Now to prove Az = z, putting x = Az, y = z with $\propto = 1$ in (iv), we obtain [1 + aM(SA(Az), P(Az), a, kt)] * M(P(Az), Qz, a, kt)

(3.2)

 $\geq a[M(P(Az), SA(Az), a, kt) * M(BTz, Qz, a, kt) * M(BTz, P(Az), a, kt)]$ +M(BTz, SA(Az), a, t) * M(P(Az), SA(Az), a, t) * M(Qz, BTz, a, t) * M(Qz, SA(Az), a, t) * M(P(Az), BTz, a, t) [1 + aM(Az, Az, a, kt)] * M(Az, z, a, kt) $\geq a[M(Az, Az, a, kt) * M(z, z, a, kt) * M(z, Az, a, kt)]$

$$+M(z, Az, a, t) * M(Az, Az, a, t) * M(z, z, a, t) * M(z, Az, a, t) * M(Az, z, a, t)$$

Which implies that $M(Az, z, a, kt) \ge M(Az, z, a, t)$.

Therefore by lemma, we have z = Az. Since SAz = z which implies that Sz = z. Again, Now to prove Tz = z, putting x = z, y = Tz with $\propto = 1$ in (iv), we obtain [1 + aM(SAz, Pz, a, kt)] * M(Pz, Q(Tz), a, kt)

$$\geq a[M(Pz, SAz, a, kt) * M(BT(Tz), Q(Tz), a, kt) * M(BT(Tz), Pz, a, kt)]$$
$$+M(BT(Tz), SAz, a, t) * M(Pz, SAz, a, t) * M(Q(Tz), BT(Tz), a, t) *$$
$$M(Q(Tz), SAz, a, t) * M(Pz, BT(Tz), a, t)$$

[1 + aM(z, z, a, kt)] * M(z, Tz, a, kt)

 \geq a[M(z, z, a, kt) * M(Tz, Tz, a, kt) * M(Tz, z, a, kt)]

$$+M(Tz, z, a, t) * M(z, z, a, t) * M(Tz, Tz, a, t) * M(Tz, z, a, t) * M(z, Tz, a, t)$$

Which implies that $M(z, Tz, a, kt) \ge M(Tz, z, a, t)$.

Therefore by lemma, we have z = Tz. Since BTz = z which implies that Bz = z.

Thus combining all the above result, we have Az = Bz = Pz = z = Qz = Sz = Tz,

Hence z is common fixed point of A, B, P, Q, S and T.

Uniqueness: let u be an another common fixed point of A, B, P, Q, S and T. putting x = z, y = u with $\alpha = 1$ in (iv), we obtain

 $[1 + aM(SAz, Pz, a, kt)] * M(Pz, Qu, a, kt) \ge a[M(Pz, SAz, a, kt) *$

$$M(Pz, SAz, a, t) * M(Qu, BTu, a, t) * M(Qu, SAz, a, t) * M(Pz, BTu, a, t)$$

[1 + aM(z, z, a, kt)] * M(z, u, a, kt)

$$\geq a[M(z, z, a, kt) * M(u, u, a, kt) * M(u, z, a, kt)]$$

+M(u, z, a, t) * M(z, z, a, t) * M(u, u, a, t) * M(u, z, a, t) * M(z, u, a, t)

Which implies that $M(z, u, a, kt) \ge M(u, z, a, t)$.

Therefore by lemma, we have z = u.

Hence z is unique common fixed point of A, B, P, Q, S and T.

Corollary: Let (X, M, *) be a complete Fuzzy 2-metric space and A, B, P and Q be a self mapping of X satisfying the following condition:

(i) P(X) ⊂ B(X) and Q(X) ⊂ A(X)
(ii) A and B are continuous
(iii) (P, A) and(Q, B) compatible of type of (K)
(iv)[1 + aM(Ax, Px, a, kt)] * M(Px, Qy, a, kt) ≥

a[M(Px, Ax, a, kt) * M(By, Qy, a, kt) * M(By, Px, a, kt)] + M(By, Ax, a, t) *
M(Px, Ax, a, ∝ t) * M(Qy, By, a, (2-∞)t) * M(Qy, Ax, a, ∝ t)
* M(Px, By, a, (2-∞)t)

For all x, y ∈ X, ∝ ∈ (0,2), a ≥ 0 and t>0
(v) (P, A) and (B, Q) are commute,
Then A, B, P and Q have a unique common fixed point.

Example: Let X = [4, 20] with the metric d defined by d(x, y) = |x - y| define $M(x, y, t) = \frac{t}{d(x,y)}$ for all x, $y \in X$, t>0 clearly (X, M, *) is a complete fuzzy metric space define A, B, P, Q, S and T : X \rightarrow Y as follows Px = 2 if x≤6, Px = 6 if x>6, Qx = 4 if x≤6 and Qx = 6 if x>10 and Sax, BTx = x for all x \in X. The A, B, P, Q, S and T satisfy all the conditions of the above theorem and have a unique common fixed point x = 4.

Theorem 3.2: Let (X, M, *) be a Fuzzy 2-metric space and A, B, P, Q, S and T be a self mapping of X satisfying the following condition:

(i) $P(X) \subset BT(X)$ and $Q(X) \subset SA(X)$ (ii) (P, SA) and(Q, BT) weakly compatible. (iii)[1 + aM(SAx, Px, a, kt)] * M(Px, Qy, a, kt) \geq a[M(Px, SAx, a, kt) * M(BTy, Qy, a, kt) * M(BTy, Px, a, kt)] $+M(BTy, SAx, a, t) * M(Px, SAx, a, \propto t) * M(Qy, BTy, a, (2-\alpha)t) *$ $M(Qy, SAx, a, \propto t) * M(Px, BTy, a, (2-\alpha)t)$

For all x, y \in X, $\propto \in (0,2)$, a ≥ 0 and t>0

(iv) The pair (P, SA) and (BT, Q) are commute.

(v) The pair (P, SA) and (BT, Q) satisfy E.A. Property.(vi) One of SA(X) or BT(X) is closed subset of X

Then A, B, P, Q, S and T have a unique common fixed point.

Proof: We assume that the pair (Q, BT) satisfy the E.A. property. Then there exists a sequence $\{x_n\}$ in X such thalim_{$n\to\infty$} $Qx_n = \lim_{n\to\infty} BTx_n = zt$. for some $z \in X$. Since $Q(X) \subset SA(X)$, there exists a sequence $\{y_n\}$ in X such that $Qx_n = SAy_n$. Hence $\lim_{n\to\infty} SAy_n = z$. Also $P(X) \subset BT(X)$, there exists a sequence $\{y'_n\}$ in X such that $Py'_n = BTx_n$. Hence $\lim_{n\to\infty} Py'_n = z$. Suppose that SA(X) is a closed subset of X. Then z = SAu for some $u \in X$. Subsequently, we have $\lim_{n\to\infty} Qx_n = \lim_{n\to\infty} BTx_n = \lim_{n\to\infty} Py'_n = \lim_{n\to\infty} SAy_n = z = SAu$. For some $u \in X$. Now, To prove that Pu = SAu. From (3) putting x = u and $y = x_n$ with $\alpha = 1$.

$$\begin{split} & [1 + aM(SAu, Pu, a, kt)] * M(Pu, Qx_n, a, kt) \geq \\ & a[M(Pu, SAu, a, kt) * M(BTx_n, Qx_n, a, kt) * M(BTx_n, Pu, a, kt)] \\ & + M(BTx_n, SAu, a, t) * M(Pu, SAu, a, t) * M(Qx_n, BTx_n, a, t) \\ & * M(Qx_n, SAu, a, t) * M(Pu, BTx_n, a, t) \end{split}$$

Letting $n \rightarrow \infty$, we have

$$\begin{split} [1 + aM(z, Pu, a, kt)] * M(Pu, z, a, kt) \\ &\geq a[M(Pu, z, a, kt) * M(z, z, a, kt) * M(z, Pu, a, kt)] \\ &+ M(z, z, a, t) * M(Pu, z, a, t) * M(z, z, a, t) * M(z, z, a, t) * M(Pu, z, a, t) \end{split}$$

Which implies that $M(Pu, z, a, kt) \ge M(Pu, z, a, t)$.

Therefore by lemma, we have Pu = z and hence Pu = SAu = z.

Since $P(X) \subset BT(X)$, there exists a point $v \in X$ such that Pu = z = BTv.

Now , we claim that BTv = Qv. From (3) putting x = u and y = v with $\alpha = 1$,

we have

 $[1 + aM(SAu, Pu, a, kt)] * M(Pu, Qv, a, kt) \ge$ a[M(Pu, SAu, a, kt) * M(BTv, Qv, a, kt) * M(BTv, Pu, a, kt)] + M(BTv, SAu, a, t)* M(Pu, SAu, a, t) * M(Qv, BTv, a, t) * M(Qv, SAu, a, t) * M(Pu, BTv, a, t)

$$\begin{split} [1 + aM(z, z, a, kt)] * M(z, Qv, a, kt) \\ &\geq a[M(z, z, a, kt) * M(z, Qv, a, kt) * M(z, z, a, kt)] \\ &+ M(z, z, a, t) * M(z, z, a, t) * M(Qv, z, a, t) * M(Qv, z, a, t) * M(z, z, a, t) \end{split}$$

Which implies that $M(z, Qv, a, kt) \ge M(Qv, z, a, t)$.

Therefore by lemma, we have z = Qv. Hence we have BTv = Qv. Thus Pu = SAu = BTv = Qv = z. Since the pairs (P, SA) and (Q, BT) are weakly compatible points, respectively, we obtain Pz = P(SAu) = SA(Pu) = SAz and Qz = Q(BTv) = BT(Qv) = BTz. Now To prove that Pz = z. from (3) putting x = z and y = v with $\alpha = 1$, we have

 $[1 + aM(SAz, Pz, a, kt)] * M(Pz, Qv, a, kt) \ge$ a[M(Pz, SAz, a, kt) * M(BTv, Qv, a, kt) * M(BTv, Pz, a, kt)] + M(BTv, SAz, a, t)* M(Pu, SAz, a, t) * M(Qv, BTv, a, t) * M(Qv, SAz, a, t) * M(Pz, BTv, a, t)

[1 + aM(Pz, Pz, a, kt)] * M(Pz, z, a, kt) $\geq a[M(Pz, Pz, a, kt) * M(z, z, a, kt) * M(z, Pz, a, kt)]$ +M(z, Pz, a, t) * M(Pz, Pz, a, t) * M(z, z, a, t) * M(z, Pz, a, t) * M(Pz, z, a, t)

Which implies that $M(Pz, z, a, kt) \ge M(Pz, z, a, t)$.

Therefore by lemma, we have z = Pz. Since Pz = SAz which implies that SAz = z.

Now to prove Qz = z, from (3) putting x = z and y = z with $\alpha = 1$, we have

 $[1 + aM(SAz, Pz, a, kt)] * M(Pz, Qz, a, kt) \ge$ a[M(Pz, SAz, a, kt) * M(BTz, Qz, a, kt) * M(BTz, Pz, a, kt)] + M(BTz, SAz, a, t)* M(Pz, SAz, a, t) * M(Qz, BTz, a, t) * M(Qz, SAz, a, t) * M(Pz, BTz, a, t)

$$\begin{split} & [1 + aM(z, z, a, kt)] * M(z, Qz, a, kt) \\ & \geq a[M(z, z, a, kt) * M(Qz, Qz, a, kt) * M(Qz, z, a, kt)] \\ & + M(Qz, z, a, t) * M(z, z, a, t) * M(Qz, Qz, a, t) * M(Qz, z, a, t) * M(z, Qz, a, t) \end{split}$$

Which implies that $M(z, Qz, a, kt) \ge M(z, Qz, a, t)$. Therefore by lemma, we have z = Qz. Since Qz = BTz. which implies that BTz = z.

Now to prove Az = z, from (3) putting x = Az and y = z with $\alpha = 1$, we have

$$\begin{split} & [1 + aM(SA(Az), P(Az), a, kt)] * M(P(Az), Qz, a, kt) \geq \\ & a[M(P(Az), SA(Az), a, kt) * M(BTz, Qz, a, kt) * M(BTz, P(Az), a, kt)] \\ & + M(BTz, SA(Az), a, t) * M(P(Az), SA(Az), a, t) * M(Qz, BTz, a, t) \\ & * M(Qz, SA(Az), a, t) * M(P(Az), BTz, a, t) \end{split}$$

$$\begin{split} & [1 + aM(Az, Az, a, kt)] * M(Az, z, a, kt) \\ & \geq a[M(Az, Az, a, kt) * M(z, z, a, kt) * M(z, Az, a, kt)] \\ & + M(z, Az, a, t) * M(Az, Az, a, t) * M(z, z, a, t) * M(z, Az, a, t) * M(Az, z, a, t) \end{split}$$

Which implies that $M(Az, z, a, kt) \ge M(Az, z, a, t)$.

Therefore by lemma, we have Az = z. Since SAz = z which implies that Sz = z.

Now to prove Tz = z, from (3) putting x = z and y = Tz with $\alpha = 1$, we have

$$\begin{split} & [1 + aM(SAz, Pz, a, kt)] * M(Pz, Q(Tz), a, kt) \geq \\ & a[M(Pz, SAz, a, kt) * M(BT(Tz), Q(Tz), a, kt) * M(BT(Tz), Pz, a, kt)] \\ & + M(BT(Tz), SAz, a, t) * M(Pz, SAz, a, t) * M(Q(Tz), BT(Tz), a, t) \\ & * M(Q(Tz), SAz, a, t) * M(Pz, BT(Tz), a, t) \end{split}$$

$$\begin{split} & [1 + aM(z, z, a, kt)] * M(z, Tz, a, kt) \\ & \geq a[M(z, z, a, kt) * M(Tz, Tz, a, kt) * M(Tz, z, a, kt)] \\ & + M(Tz, z, a, t) * M(z, z, a, t) * M(z, Tz, a, t) * M(Tz, z, a, t) * M(z, Tz, a, t) \end{split}$$

Which implies that $M(z, Tz, a, kt) \ge M(z, Tz, a, t)$.

Therefore by lemma, we have z = Tz. Since z = BTz which implies that Bz = z.

Thus combining all the above result, we have Az = Bz = Pz = z = Qz = Sz = Tz

Hence z is common fixed point of A, B, P, Q, S and T.

Uniqueness: Let u be an another common fixed point of A, B, P, Q, S and T.

Putting x = z, y = u with $\alpha = 1$ in (iv), we obtain

 $\begin{bmatrix} 1 + aM(SAz, Pz, a, kt) \end{bmatrix} * M(Pz, Qu, a, kt) \ge a[M(Pz, SAz, a, kt) * \\ M(BTu, Qu, a, kt) * M(BTu, Pz, a, kt)] + M(BTu, SAz, a, t) * \\ M(Pz, SAz, a, t) * M(Qu, BTu, a, t) * M(Qu, SAz, a, t) * M(Pz, BTu, a, t)$

$$\begin{split} [1 + aM(z, z, a, kt)] * M(z, u, a, kt) \\ &\geq a[M(z, z, a, kt) * M(u, u, a, kt) * M(u, z, a, kt)] \\ &+ M(u, z, a, t) * M(z, z, a, t) * M(u, u, a, t) * M(u, z, a, t) * M(z, u, a, t) \end{split}$$

Which implies that $M(z, u, a, kt) \ge M(u, z, a, t)$.

Therefore by lemma, we have z = u.

Hence z is unique common fixed point of A, B, P, Q, S and T.

Corollary: Let (X, M, *) be a Fuzzy 2-metric space and P, Q, S and T be a self mapping of X satisfying the following condition:

(i) $P(X) \subset T(X)$ and $Q(X) \subset S(X)$ (ii) (P, S) and(Q, T) weakly compatible. (iii) $[1 + aM(Sx, Px, a, kt)] * M(Px, Qy, a, kt) \ge a[M(Px, Sx, a, kt) * M(Ty, Qy, a, kt) * M(Ty, Px, a, kt)] + M(Ty, Sx, a, t) * M(Px, Sx, a, \alpha t) * M(Qy, Ty, a, (2-\alpha)t) * M(Qy, Sx, a, \alpha t) * M(Px, Ty, a, (2-\alpha)t)$ For all x, y $\in X$, $\alpha \in (0,2)$, $a \ge 0$ and t>0 (iv) The pair (P, S) and (T, Q) are commute.
(v) The pair (P, S) and (T, Q) satisfy E.A. Property.
(vi) One of S(X) or T(X) is closed subset of X

Then P, Q, S and T have a unique common fixed point.

4 Conclusion

In this paper, we have presented common fixed point theorem for six self mappings in Fuzzy 2-metric spaces through concept of compatible of type (K) and Property (E.A.).

Acknowledgement: The Authors are thankful to the anonymous referees for his valuable suggestions for the improvement of this paper.

References

- [1] A. Ahmed, D. Singh, M. Sharma and N. Singh, Results on fixed point theorems in two fuzzy metric spaces, fuzzy 2-metric spaces using rational inequality, *International Mathematical Forum*, 5(39) (2010), 1937-1949.
- [2] A. George and P. Veeramani, On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64(1994), 395-399.
- [3] A. Jain, N. Gupta and V.K. Gupta, Fixed point theorem in fuzzy metric space with the E.A. property, *IJRRAS*, 14(1) (2013), 166-169.
- [4] B. Singh and M.S. Chouhan, Common fixed points of compatible maps in fuzzy metric spaces, *Fuzzy Sets and Systems*, 115(2000), 471-475.
- [5] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica*, 11(1975), 336-344.
- [6] K.B. Manandhar, K. Jha and G. Porru, Common Fixed point theorem of compatible mappings of type (K) in fuzzy metric spaces, *Electronic Journal of Mathematical Analysis and Applications*, 2(2) (2014), 248-253.
- [7] K. Namdea, S.S. Rajput and R. Shrivastava, Fixed point theorem for fuzzy 2-metric space, *International Journal of Theortical & Appliad Sciences*, 2(2) (2010), 16-18.
- [8] L.A. Zadeh, Fuzzy sets, *Inform and Control*, 89(1965), 338-353.
- [9] S.S. Chauhan (Gonder) and K. Utreja, A common fixed point theorem in fuzzy 2- metric space, *Int. J. Contemp. Math. Sciences*, 8(2) (2013), 85-91.