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Abstract. We develop a general approach to adjunctions satisfying the ad-
missibility condition useful for Boolean Galois Theories, i. e. for Galois The-
ories whose Galois (pre)groupoids are profinite. Various examples and appli-
cations are briefly described.
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Introduction

According to [10], any adjunction

(I, H, η, ε) : C −→ X

between categories with pullbacks determines a Galois Theory in the category
C. The fundamental theorem of Galois Theory is expressed as an equivalence of
categories, which, under an appropriate admissibility condition, can be written
as

Spl(E, p) ' XGalI(E,p) ,

where

• Spl(E, p) is the category of objects (A,α) in (C ↓ B) split over a fixed
effective descent morphism p : E −→ B in C;

• XGalI(E,p) is the category of internal actions of the Galois pregroupoid
GalI(E, p) of (E, p) (see section 4);

This “Galois Theory” contains Grothendieck’s one [5] as a special case. Recall
from [8] that E is admissible whenever the right adjoint

HE : (X ↓ I(E)) −→ (C ↓ E)

of the functor IE : (C ↓ E) −→ (X ↓ I(E)) induced by I is full and faithful.
In order to obtain the classical Galois Theory of finite separable field exten-

sions, the theory of covering spaces over a locally connected topological space
and many other examples, one should take X to be the category Set of sets or
Setfin of finite sets, and then the admissibility condition usually holds for all
objects in C. A general approach to such adjunctions with Set (or with Setfin)
is to start with a category A with a terminal object and then take C to be the
category C = Fam(A) of all families of objects of A, or C = Famfin(A) of finite
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families of objects of A. Then, since Fam and Famfin are 2-functors from CAT
to CAT, we obtain adjoint pairs

C = Fam(A) // Fam(1)oo ,

C = Famfin(A) // Famfin(1)oo

induced by A // 1oo , where 1 is the terminal object in CAT. Since Fam(1) '
Set and Famfin(1) ' Setfin, this gives the desired adjunctions, and the admissi-
bility of every object of C can be easily proved. Recall that this construction
does work for fields and spaces because:

• the dual category of finitely dimensional commutative algebras over a
field is equivalent to Famfin(A), where A is the category of connected
(i. e. with no non-trivial idempotents) algebras of the same type;

• the category of locally connected topological spaces is equivalent to the
category Fam(A), where A is the category of connected locally connected
topological spaces.

However this construction does not work for “infinite” - or, better to say,
“Boolean” - Galois Theories such as A. R. Magid’s Galois Theory of commuta-
tive rings [12], where the adjoint pair should be

(Commutative Rings)op // Stone Spacesoo ,

and the admissibility again holds for every object, but the proof uses Pierce’s
theory, and hence cannot be considered as “trivial” (see [8] for details).

The category of Stone spaces (= profinite spaces = compact totally discon-
nected spaces) is needed even for the classical Galois Theory of infinite separable
field extensions, where the Krull topology on the Galois group makes it a profi-
nite group, i. e. a group in the category of Stone spaces. All this suggests the
following:

Question: Is there a general approach to Boolean Galois Theories, where for
a given category C one constructs an adjunction between C and the category
of Stone spaces, with “enough” admissible objects?

In this paper we develop such an approach, essentially based on the following
two observations:

• in any lextensive category C the complemented subobjects of any object
form a Boolean algebra, and hence there is always the functor I : C −→
(Stone spaces) sending any object of C to the Stone space of the Boolean
algebra of its complemented subobjects. When C is the dual category of
commutative rings, it is the same as the Boolean spectrum functor used
in the adjunction which gives A. R. Magid’s Galois Theory as a special
case of the Galois Theory in categories (see [7]–[10]);

• if C satisfies a stronger condition (“co-locally-indecomposable”), then
the same functor was used by Y. Diers [4], formally for different purposes,
but many of his results are closely related to what is needed in Galois
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Theory, and in fact a certain (different) abstract Galois Theory was
developed there.

Other than the present introduction, the paper has four sections:

1. The functor H;
2. The functor I;
3. Admissible objects;
4. Boolean Galois Theories.

In the first section we describe the minimal conditions on a category C under
which we can construct a full and faithful functor

H : X = (Bool)op −→ C

(later we will identify the dual category of Boolean algebras with the category
of Stone spaces).

In the second section we describe the left adjoint I : C −→ X of the functor
H : X −→ C.

In the third section we recall the admissibility condition and prove it un-
der various additional assumptions. It looks like the most appropriate level of
generality (for “Boolean Galois Theories”) is the level of geometric categories,
which we will introduce there (Definition 3.4).

As we will see in the fourth section, where the main examples and appli-
cations are briefly described, the categories such as the dual of commutative
rings and the one of topological spaces, are geometric, which motivates the
term “geometric”. Since the dual of any locally indecomposable category in the
sense of Diers is also geometric, our results show that in the context of [4], the
categorical Galois Theory applies just as well as in the context of commutative
rings.

1. The Functor H

Let A be a category with small hom-sets and let

YA : A −→ [Aop, Set] (1)

be the Yoneda embedding

YA(A) = homA(−, A) . (2)

For a given glass K of small categories, by a K -colimit we will mean a colimit of
a functor S −→ A with S in K ; the smallest subcategory of the functor category
[Aop, Set] containing all the representables and closed under K -colimits will be
denoted by AK and

YA,K : A −→ AK (3)

will denote the functor induced by YA.
For simplicity, we will assume that the class K is closed, i. e. that for every

object A in AK , there exist a functor F : S −→ A with S in K and an
isomorphism A ' colim(YA,K F ). The following universal property of YA,K is
well known:
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Proposition 1.1. For every category C with K -colimits, composition with
YA,K induces an equivalence between the category of all functors from A to
C and the category of all K -colimit preserving functors from AK to C. In
particular, for every functor T : A −→ C there exist an essentially unique
functor T : AK −→ C with a natural isomorphism

A T //

YA,K &&MMMMMMMMMMMM

∼=
C

AK

T

88qqqqqqqqqqqq
(4)

The next proposition is also well known (see, e.g., [6]), but we recall the proof.

Proposition 1.2. Under the previous assumptions, the functor T is full and
faithful provided T satisfies the following conditions:

1. T is full and faithful;
2. each hom-functor homC(T (A), ) : C −→ Set preserves K -colimits.

Proof. Let R be the functor R : C −→ [Aop, Set]

R(C) = homC(T ( ), C) . (5)

Since colimits in the functor category [Aop, Set] are argument-wise, condition 2
says that R preserves K -colimits. On the other hand, RT ∼= YA since T is full
and faithful, and then by applying the universal property of YA,K to

A T //

YA,K &&LLLLLLLLLLLL

∼=
[Aop, Set]

AK

RT

88rrrrrrrrrr
(6)

we conclude that RT is naturally isomorphic to the inclusion functor AK −→
[Aop, Set], and hence is full and faithful. To deduce that T itself is full and
faithful, consider the composite

homAK
(A,A′) α−→ homC(T (A), T (A′))

β−→ hom[Aop,Set](RT (A), RT (A′)),

where A and A′ are arbitrary objects of AK , and α and β are induced by T
and R, respectively. To prove that α is a bijection, first observe that such
is the composite βα so that it suffices to prove that β is injective, that is if
f, g : T (A) −→ T (A′) are two arrows in C such that fu = gu for every arrow
with domain an object in the image of T and codomain T (A), then f = g.
But this follows from the fact that T preserves K -colimits and that A can be
presented as a colimit of a K -diagram in A. ¤

Example 1.3. Let C be a category with finite coproducts so that K is
the class of all finite discrete categories and K -colimits are just the finite co-
products. An object C of C is said to be connected if the functor homC(C, )
preserves finite coproducts. Since in this case AK is equivalent to the category
Famfin(A) of finite families of objects of A, the above proposition ensures that if
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T : A −→ C is a full and faithful functor with T (A) connected for every object
A in A, then the induced functor

T : Famfin(A) −→ C (7)

is also full and faithful. In particular, if A is a terminal category, then Famfin(A)
is the category Setfin of finite sets, and hence if C has a connected terminal object
(and finite coproducts), then there exists a full and faithful functor

Setfin −→ C (8)

which preserves terminal objects and finite coproducts.

Example 1.4. Let C be a category with filtered colimits so that K is
the class of small filtered categories. An object C in C is said to be finitely
presentable if the functor homC(C, ) : C −→ Set preserves filtered colimits. In
this case AK is equivalent to the category Ind(A) [6], the inductive completion
of A, and the previous proposition ensures that if T : A −→ C is a full and
faithful functor with T (A) finitely presentable for every object A in A, then the
induced functor

T : Ind(A) −→ C (9)

is also full and faithful.

Consider now the functor (8) in the case of C = (Bool)op, where Bool is the
category of Boolean algebras. Clearly, it corresponds to the power set functor

P : (Setfin)
op −→ Bool ; (10)

moreover, since every finite boolean algebra is finitely presentable, it induces a
full and faithful functor

Ind((Setfin)
op) −→ Bool , (11)

which is well known to be in fact an equivalence, since we also know that every
finitely presentable (= finitely generated) Boolean algebra is finite.

Define now an object C of a category C with a terminal object 1 to be finite
if there exist a natural number n, a coproduct n · 1 of the terminal 1 in C n
times and an isomorphism

C ' n · 1 . (12)

More generally, C is said to be profinite if it is a filtered limit of finite objects. We
will denote by Cfin and Cprofin respectively the corresponding full subcategories
of C. What we have in fact proved is the following:

Theorem 1.5. Let C be a category satisfying the following conditions:

1. C has a terminal object 1 and finite coproducts of it preserved by the
functor

homC(1, ) : C −→ Set (13)

(i. e., 1 is connected in Cfin);
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2. C has filtered limits of finite objects preserved by the functor

homC( , C) : Cop −→ Set (14)

for every finite object C (i. e., every finite object is finitely presentable
in (Cprofin)

op).

Then there exists a functor

H : (Bool)op −→ C (15)

which preserves terminal objects, finite coproducts of finite objects and filtered
limits; moreover, such a functor is unique up to a unique natural isomorphism
and full and faithful, and hence induces an equivalence

(Bool)op ∼ Cprofin. (16)

Using simple properties of the construction Ind( ) it is also easy to prove the
following:

Theorem 1.6. If C satisfies all the conditions in the previous theorem, then
the following conditions are equivalent:

1. the functor H preserves limits;
2. the functor H preserves pullbacks of finite objects;
3. Cfin is closed under pullbacks in C.

Definition 1.7. A category C is said to be a “category with profinite objects”
if it satisfies conditions 1 and 2 of Theorem 1.5, and any of the equivalent
conditions of Theorem 1.6.

2. The Functor I

Let C be a category with profinite objects and let

1
e0 // 2 1

e1oo (17)

be a coproduct diagram in C, 1 being a terminal object. The object 2 has
an internal Boolean algebra structure in which e0 and e1 are zero and one
respectively, since 2 can be considered as the image under the functor H of a
two element set, and the functor H preserves finite products. Note that the
internal Boolean algebra structure on 2 is uniquely determined as soon as we
decide how to choose zero and one. This fixed structure on 2 gives a canonical
boolean algebra structure on each hom-set homC(C, 2) so that we have in fact
a functor

I = homC( , 2) : C −→ (Bool)op . (18)

Our purpose in this section is to show that I is a left adjoint to H.

Lemma 2.1. The map

φ : homC(C, 2) −→ homBool(I(2), I(C)) (19)

induced by I is a bijection for each object C in C.
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Proof. Just repeat standard arguments: recalling that φ is none other than
composition, let ψ be the map in the opposite direction defined by ψ(f) = f(12),
i. e. ψ is the evaluation on the identity map on 2. Then:

ψφ(α) = ψ(φ(α)) = φ(α)(12) = 12α = α and

(φψ(f))(β) = φ(ψ(f))(β) = βψ(f) = βf(12) = f(β12) = f(β),

because f commutes with β, since f is a homomorphism of Boolean algebras
and β, being an endofunction on 2, can be expressed as a Boolean term. ¤

Lemma 2.2. The functor I has a right adjoint.

Proof. Let X be the full subcategory of (Bool)op whose objects are those Boolean
algebras B for which there exists a universal arrow from I to B. Since X is closed
under limits, it suffices to prove that X contains 1 + 1 (the coproduct of two
copies of the terminal object - in fact 1+1 is the four element Boolean algebra).
At this point, the previous lemma ensures that it suffices to show that there
exists an object C in C with I(C) ' 1 + 1, which is clear, since I preserves
coproducts and terminal objects. ¤

Theorem 2.3. The functor I is a left adjoint to H.

3. Admissible Objects

Let

(I, H, η, ε) : C −→ X (20)

be an arbitrary adjunction between categories C and X with pullbacks (later
we will consider the case where C and X are as in the previous section). For a
given object C in C, the induced adjunction

(IC , HC , ηC , εC) : (C ↓ C) −→ (X ↓ I(C)) (21)

is constructed as follows (see, e.g., [10, (2.3)]):

• if (C,α) is an object of (C ↓ C), i. e. α : A −→ C is an arrow in C, then

IC(A,α) = (I(A), I(α)) ;

• if (X, φ) is an object of (X ↓ I(C)), then

HC(X, φ) = (C ×HI(C) H(X), π1) .

where π1 is given by the pullback

C ×HI(C) H(X)
π2 //

π1

²²

H(X)

H(φ)

²²

C ηC

// HI(C) ;

(22)
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• ηC = 〈α, ηA〉 : A −→ C ×HI(C) HI(A);
• εC

(X,φ) is the composite

I(C ×HI(C) H(X))
I(π2)−−−−→ IH(X)

εX−−−→ X . (23)

An object C in C is said to be admissible if εC is an isomorphism or, equiv-
alently, if HC is full and faithful. This notion, first used in Galois Theory in
[7], is closely related with semi-left-exactness in the sense of [3], as explained
in [11]: if H is full and faithful, then clearly I is semi-left-exact if and only if
every object C in C is admissible.

Proposition 3.1. Let S be a small category and let F : S −→ C be a
functor for which F (S) is admissible for each object S in S . Then the limit
of F , when exists, is admissible provided I preserves the limits of F and of all
functors G : S −→ C of the form

G(S) = F (S)×HIF (S) H(X) , (24)

where (X, φ) is an object in (X ↓ I(limF )), and the pullback is constructed with
ηF (S) : F (S) −→ HIF (S) and the composite

H(X)
H(φ)

// HI(limF )
HI(πS)

// HIF (S) ,

where πS is the projection limF −→ F (S).

Proof. We must show that the composite

I((limF )×HI(limF ) H(X)) // IH(X) // X

is an isomorphism. However this follows from the fact that so are the composites

I(F (S)×HIF (S) H(X)) // IH(X) // X

(for all S in S ) and from the canonical isomorphisms

I((limF )×HI(limF ) H(X)) ' I((limF )×limHIF H(X)) ' I(limG) '
' limIG = limI(F ( )×HIF ( ) H(X)). ¤

Proposition 3.2. Let C1 and C2 be admissible objects in C. Then the
coproduct C1 + C2, when exists, is admissible provided either conditions 1 and
2, or condition 3 below hold:

1. X has binary coproducts preserved by H;
2. if

Ai

βi //

αi

²²

H(Xi)

H(φi)

²²
Ci ηCi

// HI(Ci)

(25)
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(i = 1, 2) are pullbacks in C, then the coproduct A1 + A2 exists and

A1 + A2

β1 + β2 //

α1 + α2

²²

H(X1) + H(X2)

H(φ1) + H(φ2)

²²
C1 + C2 ηC1 + ηC2

// HI(C1) + HI(C2)

(26)

is a pullback;
3. C and X have binary coproducts and the coproduct functors

(C ↓ C1)× (C ↓ C2) −→ (C ↓ (C1 + C2))

(X ↓ I(C1))× (X ↓ I(C2)) −→ (X ↓ (I(C1) + I(C2)))

are equivalences.

Proof. Obvious since I preserves binary coproducts. ¤
From now on, let us assume that X is the category of Stone Spaces (= profinite

spaces = compact and totally disconnected spaces), which we identify with the
category (Bool)op via the Stone duality; we also assume that C, I and H are as
in the previous section so that C is a category with profinite objects and has
pullbacks.

Theorem 3.3. Let C be an object in C such that the functors

C × ( ) and homC(C, ) (27)

preserve finite coproducts of finite objects. Then (C ↓ C) is a category with
profinite objects and the object C is admissible.

Proof. The terminal object in (C ↓ C) being (C, 1C), where 1C is the identity
morphism of C, we have:

hom(C↓C)((C, 1C), (C, 1C) + · · ·+ (C, 1C))

' hom(C↓C)((C, 1C), (C × (1 + · · ·+ 1), π1)

' homC(C, 1 + · · ·+ 1) ' homC(C, 1) + · · ·+ homC(C, 1)

' hom(C↓C)((C, 1), (C, 1)) + · · ·+ hom(C↓C)((C, 1), (C, 1)),

i. e., (C ↓ C) satisfies condition 1 of Theorem 1.5.
Let S be a (small) filtered category and F : S op −→ (C ↓ C) be a functor;

denoting by U the forgetful functor (C ↓ C) −→ C, we have for any finite object
in (C ↓ C):

hom(C↓C)(limF, (C, 1C) + · · ·+ (C, 1C))

' hom(C↓C)(limF, (C × (1 + · · ·+ 1), π1)

' homC(U(limF ), 1 + · · ·+ 1) ' homC(limUF, 1 + · · ·+ 1)

' colim homC(UF ( ), 1 + · · ·+ 1)
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' colim hom(C↓C)(F ( ), (C × (1 + · · ·+ 1), π1))

' colim hom(C↓C)(F ( ), (C, 1C) + · · ·+ (C, 1C)),

i. e., (C ↓ C) satisfies condition 2 of Theorem 1.5.
Since (C ↓ C) satisfies also condition 1 of Theorem 1.5, the functor

Cfin −→ (C ↓ C) (28)

sending 1 + · · · + 1 to (C × (1 + · · · + 1), π1) ' (C, 1C) + · · · + (C, 1C) is full
and faithful so that we can conclude that (C ↓ C)fin is closed under pullbacks in
(C ↓ C) since Cfin is closed under pullbacks in C and the functor (28) preserves
them. Hence (C ↓ C) is a category with profinite objects.

Since (C ↓ C) is a category with profinite objects, we can construct the
adjunction between (C ↓ C) and X just as we did for C, which we will denote
by

(I(C), H(C), η(C), ε(C)) : (C ↓ C) −→ X . (29)

Since

homX(I(C), 1 + 1) ' homC(C,H(1 + 1))

' homC(C, 1 + 1) ' homC(C, 1) + homC(C, 1)

is a two element set, I(C) must be a terminal object in X. Hence (X ↓ I(C))
can be identified with X and, since (29) obviously agrees with (21) and H(C) is
full and faithful by Theorem 1.5, this completes the proof. ¤

Together with the two previous propositions this theorem shows how to build
up admissible objects. The most appropriate level of generality seems to be the
one described in the following

Definition 3.4. A category C is said to be geometric when it satisfies the
following conditions:

1. C is complete;
2. C is extensive, i. e., it has finite coproducts and the coproduct functor

(C ↓ A)× (C ↓ B) −→ (C ↓ (A + B))

is an equivalence, for each pair of objects A and B in C;
3. all finite objects in C are finitely presentable in (Cprofin)

op;
4. C is connected, i. e. 1 ' A + B in C, implies either A ' 1 or B ' 1.

Remark 3.5.

1. Under condition 1, condition 2 in Definition 3.4 holds if and only if C
has disjoint and universal finite coproducts; in particular the pullbacks
in C are distributive with respect to finite coproducts, and finite coprod-
ucts of pullback squares are again pullback squares. For a discussion of
extensivity one may consult [1].

2. The reason for using (Cprofin)
op instead of Cop in 3 is to require conditions

which hold also in the category Top of topological spaces.
3. Under conditions 1 and 2, condition 4 holds if and only if 1 is connected

in C, and if and only if it is connected in Cfin.
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4. Every geometric category is a category with profinite objects as follows
from conditions 1 and 3.

The following theorem follows now easily.

Theorem 3.6. Let C be a geometric category and X, I, H as above (observe
that I and H are well defined since C is a category with profinite objects). Then:

1. any finite coproduct of connected objects is admissible;
2. if the functor I preserves filtered limits (i. e. if 2 is finitely presentable

in Cop), then any filtered limit of finite coproducts of connected objects
is admissible. ¤

4. Boolean Galois Theories

4.1. Connected Normal Galois Theory. Let k ⊂ K be a (possibly infinite)
Galois field extension, Sub(K/k) the lattice of its subextensions, Autk(K) the
Galois group with the Krull topology, and Sub(Autk(K)) the lattice of closed
subgroups in Autk(K). The fundamental theorem of Galois Theory asserts that
there is a lattice isomorphism

Sub(K/k)op ' Sub(Autk(K)). (30)

This theorem can be deduced from the equivalence of categories

Spl(K/k) ∼= XAutk(K), (31)

where X is the category of Stone Spaces and Spl(K/k) is the dual category of k-
algebras split over K. Recall that A is in Spl(K/k) means that K⊗k A is freely
generated by its idempotents over K – or, equivalently, that A is a directed union
of subalgebras each of which is a finite products of subextensions of k ⊂ K.

The equivalence (31) was generalized from fields to arbitrary commutative
rings by A.R. Magid in [12] (the finite version, even for schemes, was obtained
by A. Grothendieck as mentioned in [12]). Later in [7] (see also [8]–[10]) it
was shown that there is a purely categorical “Fundamental Theorem of Galois
Theory” which includes all these results. However, in order to deduce, say, (31)
from the categorical version, one needs to prove

a) the functor K ⊗k ( ) from k-algebras to K-algebras is monadic;
b) K is admissible in the dual category of commutative rings.

Both of these proofs are easy (one may consult [8]): the first one uses Beck’s
monadicity theorem, and the second one uses Pierce Theory. This suggests that
it should be possible to prove (31) in the more general context studied by Y.
Diers [4], where the Pierce Theory is in fact developed. However, Theorem 3.3
tells us that admissibility holds even for what we call “categories with profinite
objects” (i. e., in an even more general context than in [4]), and from the results
of [7] (or of [8]–[10]), we obtain the following.

Let C be a category with profinite objects, p : E −→ B an effective descent
morphism in C (i. e. a morphism such that the functor

E ×B ( ) : (C ↓ B) −→ (C ↓ E)
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is monadic), and Spl(E, p) the full subcategory of (C ↓ B) whose objects are
the (A,α) for which the diagram

E ×B A
ηE×BA //

π1

²²

HI(E ×B A)

HI(π1)

²²

E ηE

// HI(E)

(32)

is a pullback (where I, H, η are as in the previous section). If (E, p) is I-normal
(i. e. (E, p) is in Spl(E, p)) and the functors (27) with C = E preserve finite
coproducts of connected objects, then there is an equivalence of categories

Spl(E, p) ∼= XAut(E,p), (33)

where Aut(E, p) is the automorphism group of (E, p) in (C ↓ B), equipped with
the topology induced by the canonical bijection Aut(E, p) ' I(E ×B E); more-
over, the topology in Aut(E, p) coincides with the appropriate Krull topology.

This result applies not only to the situation considered in [4], but also to,
say, topological spaces and to any topos with connected terminal object and
filtered limits. Note that in all these examples second of the functors (27) (with
C = E) preserve finite coproducts if and only if E is connected.

4.2. “General” Galois Theory. When there exists the equivalence (33), the
object E is also “connected in the sense of I”, i. e. I(E) is a terminal object in
X. If this is not the case, then Aut(E, p) ' I(E ×B E) must be replaced with
the internal groupoid GalI(E, p) =

I(E ×B E ×B E)
//
//// I(E ×B E)

//
// I(E)oo (34)

in X as it is done in [12] for commutative rings. Furthermore, if (E, p) is not
even I-normal as in [10], then GalI(E, p) becomes an internal pregroupoid and
the category

XGalI(E,p)

of internal GalI(E, p)-actions still can be defined (see [10] for details). Note that
the fundamental theorem of Galois Theory in this case has the simple form

Spl(E, p) ∼= XGalI(E,p) (35)

only under the admissibility of E, E×B E, E×B E×B E (and not only of E as
discussed in [10]). However, if E is a finite coproduct of connected objects in a
geometric category, then so are E×B E and E×B E×B E, and the same is true
for the filtered limits of finite coproducts of connected objects. Hence when C
is a geometric category and p : E −→ B is an effective descent morphism in
C, Theorem 3.6 gives that if E is a finite coproduct of connected objects, then
there is the equivalence (35). The same is true when E is a filtered limit of finite
coproducts of connected objects and I preserves filtered limits. Note that:
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a) If Cop is locally indecomposable in the sense of [4], then C is a geometric
category and I preserves filtered limits; moreover, in this case every
object in C is a filtered limit of finite coproducts of connected objects.
Therefore in this case we have the equivalence (35) for every effective
descent morphism p : E −→ B.

b) The category Top of topological spaces is not so “good” (see Remark
3.5, 2), but we still have the equivalence (35) for every effective descent
morphism p : E −→ B in which E is either a finite coproduct of con-
nected spaces (in the usual sense), or a filtered limit of finite coproducts
of connected spaces, provided that the limit satisfies the condition re-
quired in Proposition 3.1 – which is true, for example, if all spaces are
compact Hausdorff. However, it is easy to see that, for example, the infi-
nite discrete spaces are not admissible (although they are filtered limits
of finite coproducts of codiscrete spaces).

c) If C is the category of compact Hausdorff spaces, then it is easy to show
that C is a geometric category in which every object is admissible, and
since all surjections in C are effective descent morphisms, we have the
equivalence (35) for every surjective continuous map p : E −→ B (see
[2]). In this case Cop is again not a locally indecomposable category in
the sense of [4].
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