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Abstract. We propose a new point of view of the Spencer cohomology ap-
pearing in the formal theory of differential equations based on a dual ap-
proach via comodules. It allows us to relate the Spencer cohomology with
standard constructions in homological algebra and, in particular, to express
it as a Cotor. We discuss concrete methods for its construction based on
homological perturbation theory.
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1. Introduction

This paper ties three fairly different areas of research, viz. differential equa-
tions, (co)homological algebra, and symbolic computation, together. While
many people working in these individual areas will find the sections concern-
ing their particular area quite familiar (and perhaps a bit too elementary), we
expect that they will find the other sections much less familiar (and perhaps a
bit too dense). We have made an attempt to provide a basic background for all
areas upon which we touch and hope that this will encourage more multidisci-
plinary research in these areas.

The definition of involutivity for a system of partial differential equations has
had a very long and convoluted history. First works on overdetermined systems
go back at least to Clebsch and Jacobi. In the middle of the 19th century the
analysis of homogeneous linear first order systems in one unknown function was
a very popular subject (nowadays this has been superseded by the geometric
view of the Frobenius theorem). Most older textbooks like [13, 26] contain a
chapter on this theory (with references to the original works).

The late 19th and early 20th century saw a flurry of activities in this field ex-
tending the theory to more and more general systems. One line of research lead
to the Janet-Riquier theory [46, 70, 86, 87] with its central notion of a passive
system. We will later meet some ideas from this theory in the combinatorial ap-
proach to involution. Another line of research culminated in the Cartan-Kähler
theory of exterior differential systems [11, 14, 50] (a dual version based on vec-
tor fields instead of differential forms was developed by Vessiot [88]). In this
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approach one usually speaks of involutive systems, although Weber attributed
this terminology to Lie in his encyclopedia article [89].

Roughly between 1950 and 1970 a more sophisticated point of view emerged
combining many elements of the old approaches with new and more abstract
techniques. Ehresmann’s theory of jet spaces [20, 21, 22] allows for an intrinsic
geometric treatment of differential equations without resorting to differential
forms. Formal integrability, i. e. the existence of formal power series solutions,
may then be interpreted as a straightforward geometric concept.

Somewhat surprisingly, it has turned out that for many purposes such a purely
geometric approach does not suffice. This begins with the simple fact that the
geometric definition of formal integrability is not effectively verifiable, as it con-
sists of infinitely many conditions. Thus geometry had to be complemented by
some algebraic (mainly homological) tools, in particular with Spencer cohomol-
ogy which is one of the topics of this article. In the Cartan-Kähler theory the
famous Cartan test for involution requires checking a relation between certain
integers (encoding dimensions) as will be explained in more detail below. Serre,
Guillemin and Sternberg [39] showed that this test represents in fact a homo-
logical condition, namely the vanishing of certain Tor groups, and is related to a
complex introduced earlier by Spencer [82] (a dual approach to an algebraic def-
inition of involution was already earlier given by Matsushima [64]). Later, the
theory was thoroughly studied by Spencer [83], Quillen [66] and Goldschmidt
[31, 32].

The arising theory is often called the formal theory of differential equations.
Textbook presentations may be found e. g. in [11, 17, 52, 65]. One interpretation
of the name is that it concerns itself with formal power series solutions for
arbitrary systems, i. e. also for under- and overdetermined ones, and indeed we
will use this approach for the brief introduction to the theory given in Section
3. However, restricting the formal theory to this one aspect would give a much
too narrow picture.

It is probably fair to say that the full meaning and importance of the ideas
surrounding involution are still not properly understood. While many facets
have emerged, the complete picture has remained elusive. Recently, it has been
shown that in an algebraic context it is related to the Castelnuovo-Mumford
regularity [79] and that in numerical analysis obstruction to involution may
become integrability conditions in a semi-discretization [80].

In more detail, we associate with every system of differential equations of
order q in m unknown functions of n variables a homogeneous degree q subspace
Nq ⊆ Cm

q where C is the set of all polynomials in x1, . . . , xn with coefficients in

k. The space Nq is called the geometric symbol1 of the differential system (see
Sects. 3.3 and 3.4).

We set N
(s)
q = {f ∈ Nq | ∂f

∂xi
= 0 for i = 1, . . . , s} where f = (f1, . . . , fm)

and the derivatives are taken coordinate-wise. One further defines the first
prolongation of the symbol Nq+1 = {f ∈ Cm

q+1 | ∂f
∂xi

∈ Nq for i = 1, . . . , n}
1In [11, p. 116] the space Nq is called a tableau and its annihilator N⊥

q a symbol.



DIFF. EQUATIONS, SPENCER COHOMOLOGY, COMPUTING RESOLUTIONS 725

consisting of all integrals of degree q + 1 of elements in Nq. It is well-known
[11, 39] that

dim Nq+1 ≤ dim Nq + dim N (1)
q + · · ·+ dim N (n−1)

q . (1.1)

The symbol Nq is said to be involutive, if coordinates x1, . . . , xn exist such that
(1.1) is actually an equality.

The theory proceeds by recursively defining higher prolongations Nq+k+1 =

{f ∈ Cm
q+k+1 | ∂f

∂xi
∈ Nq+k, for i = 1, . . . , n}. The vector space N =

⋃∞
k=1 Nq+k

is called the infinite prolongation; we will see in Section 3.4 that it has the
structure of a polynomial comodule. Since each Nq+k is again a symbol (of a
prolonged differential system), what we have said above about the involutivity
of N also applies to each Nq+k and a classic theorem gives that Nq+r becomes
involutive for some r ≥ 0 (see the remark after Theorem 5.2).

It was noted in [39] that N is dual to a graded A-module M where A =
k[x1, . . . , xn] is the polynomial algebra over k. It was also noted in [39] that
the involutivity condition above is equivalent to the maps

Mq+r+1/(x1, . . . , xk)Mq+r
- Mq+r+2/(x1, . . . , xk)Mq+r+1 (1.2)

given by multiplication by xk+1 being one-one for all k = 0, . . . , n − 1 and all
r ≥ 0. It is, of course, now common to say that if the above condition holds, the
sequence x1, . . . , xn is quasiregular for M . In an appendix to [39], Serre showed
that the quasiregular condition for a module M is generically equivalent to
the vanishing of TorA(M,k) (see Section 5.1) in positive degrees. The authors
observe that the Koszul complex for computing Tor is dual to the Spencer
complex referred to above. Thus, by duality, Serre’s result can be translated to
a statement about the vanishing of Spencer cohomology.

Various authors have discussed the duality between the Spencer complex and
the Koszul complex [11, 31, 63, 72]. First we will show that this duality is
not as ad hoc as it seems to be from the literature. In fact, by introducing
coalgebras and comodules, we show that the duality is a special case of one
that exists between comodules over a coalgebra C and modules over the dual
algebra A = C∗ (Section 2.12). This leads to the identification of Spencer
cohomology as a Cotor (Section 6.7).

Thus, the knowledge of the vanishing of a certain Tor (or Cotor) gives some
computational insight in the completion of general systems of partial differential
equations and is also useful for the concrete determination of formal power
series solutions. The actual values of the ranks of the Tor groups provide us
with a coordinate independent criterion for involutive symbols. Beyond the
order at which the system becomes involutive, the unique determination of the
coefficients of power series solutions is straightforward.

For this and other reasons, we are interested in computing TorA(M,k) effec-
tively for a module M over the polynomial algebra A. Fortunately, there are
many ways to do this explicitly. Perhaps the most familiar to those readers who
are acquainted with computer algebra is the program Macaulay 2 [25]. That
program uses what we call Schreyer methods (Section 4.1). We will look at
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some novel methods for deriving other classes of “small” resolutions that can
be used for computing Tor as well.

In this article, we restrict to the case where the module M is generated by
elements of homogeneous degree q. But we note that there are generalizations to
cases where M contains elements of mixed degrees but still homogeneous. These
generalizations are also useful in the context of formal theory, as they appear
in more efficient versions of the basic completion algorithm [40]. However, as
this is a very technical subject, we will study it elsewhere.

We finally introduce an interesting algorithm for computing minimal reso-
lutions of monomial modules (Section 7) over the polynomial ring, and give
examples in Section 8.

2. (Co)Algebra

Throughout this paper, k will denote a field of characteristic zero.
It is assumed that the reader is familiar with basic notions such as the tensor

product of vector spaces, algebras over a field, modules over an algebra, etc.
When tensor products are taken over k, we will omit the subscript in ⊗k. We
will quickly review coalgebras and comodules. More details can be found in
[59].

2.1. Coalgebras and Comodules. Recall that a coalgebra over k is a vector

space equipped with a linear map C
∆- C⊗C (called the comultiplication) and

ε : C - k (called the counit) such that the coassociativity and counit axioms
hold (see below). It has become customary to write the result of comultiplication
in the following form which is called the Heyneman-Sweedler (H-S) notation:
∆(c) = c(1)⊗ c(2) (summation over the indices which run in parallel is assumed.
See [59, Sec. A.3.2]).

Using H-S notation, coassociativity is expressed as

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2)

and the counit axioms are

c(1)ε(c(2)) = c = ε(c(1))c(2)

A vector space N over k is said to be a (right) comodule over the coalgebra
C if there is a k-linear map ρ : M - M ⊗ C such that

(1M ⊗ ε)ρ = 1M

and

(ρ⊗ 1C)ρ = (1M ⊗∆)ρ.

We use an extended H-S notation ([59]) for the action of the structure map
ρ in a right comodule:

ρ(m) = m〈1〉 ⊗m(2) ∈ M ⊗ C.

Similar remarks apply to left comodules.
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2.1.1. The Dual Algebra. Recall that the algebra dual to C is given by A = C∗

where C∗ is the linear dual, C∗ = homk(C,k) and the product is given by

〈αβ, c〉 = α(c(1))β(c(2)) (2.1)

for α, β ∈ A and c ∈ C and where 〈·, ·〉 denotes the bilinear pairing 〈γ, c〉 = γ(c)
[59].

2.2. Graded Modules. Let A be an algebra over k. A left A-module M is said
to be a (non-negatively) graded module over A if M = ⊕∞n=0Mn as an Abelian
group. The subgroup Mn is called the set of elements of homogeneous degree
n. If x ∈ Mn, we write |x| = n for its degree. It is convenient, at times, to
think of a graded module as the sequence (M0,M1, . . . , Mn, . . . ) and work in M
degree-wise.

If M and N are two graded modules over A, a module map f : M - N is
said to be graded of degree r if f |Mn : Mn

- Nn+r for some fixed integer r.
If r = 0, we simply say that f is a (graded) module map.

A submodule N of a graded module M is said to be a graded submodule if
N is a graded module and for all n ≥ 0, Nn ⊆ Mn. It is clear that the kernel
and image of a graded module map are both graded modules.

A graded module is said to be of finite type if for all n, Mn is finitely generated
over A.

2.2.1. Graded Dual. If M is a graded module over k, its graded dual is the
module M∗ where M∗

n = homk(Mn,k). Note that if M is of finite type, then
so is M∗.

2.2.2. Sign Convention. We adopt the usual sign convention which states that if
one element x “passes by” another y, the result must be multiplied by (−1)|x||y|.
Thus, for example, if f and g are two maps, their tensor product is given by

(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y).

2.3. Graded Algebras. A graded algebra A over k is a graded module over
k such that the multiplication m : A⊗k A - A satisfies

Ai ⊗ Aj
m- Ai+j.

When we talk about a graded module over a graded algebra, it is assumed that
the structure map µ : A⊗M - M satisfies µ|Ai⊗Mj

: Ai ⊗Mj
- Mi+j.

2.4. Graded Coalgebras. A graded coalgebra C over k is a graded module
over k such that the comultiplication ∆ : C - C ⊗ C satisfies

Ci
∆-

∑
r+s=i

Cr ⊗ Cs.

When we talk about a graded comodule over a graded coalgebra, it is assumed
that the structure map ρ : M - M⊗C satisfies ρ|Mi

: Mi
-

∑
r+s=i Mr⊗

Cs.
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2.5. Bialgebras. If a given algebra B is also a coalgebra, we say that it is a
bialgebra if ∆ : B - B ⊗ B is a homomorphism of algebras where B ⊗ B
has the tensor product structure (a ⊗ b)(a′ ⊗ b′) = (−1)|a

′||b|aa′ ⊗ bb′. See [59,
Section 1.5] for more details.

2.6. Chain/Cochain Complexes. A chain complex over a k-algebra A is a
module X equipped with a module map d : X - X of degree −1 such that
d2 = 0. We call the map dn the nth differential. The nth homology module of
X, denoted by Hn(X) is, by definition, the quotient module ker(dn)/im (dn+1).
Elements of ker(d) are called cycles and elements in im (d) are called boundries.

A cochain complex over A is a module Y equipped with a module map
δ : Y - Y of degree +1 such that δ2 = 0. The nth cohomology module of
Y , denoted by Hn(Y ) is, by definition, the quotient module ker(dn)/im (dn−1).
Elements of ker(d) are called cocycles and elements in im (d) are called cobound-
ries. Note that if X is a chain complex, then the linear dual X∗ = Hom A(X, A)
is a cochain complex in the obvious way.

2.6.1. Chain Maps and Homotopies. A chain map f : X - Y is a module
map that makes the diagram

Xn

fn - Yn

Xn−1

dn
? fn−1- Yn−1

dn
?

commute. It is easy to see that this condition causes any chain map to induce
an A-linear map on homology H∗(f) : H∗(X) - H∗(Y ) in the obvious way.
Note that the identity map on X is a chain map.

Two chain maps X
f, g- Y are said to be chain homotopic is there is a degree

one map X
φ- Y such that

dφ + φd = f − g. (2.2)

2.7. Differential Graded (Co)Algebras. A differential graded algebra over
k is a graded algebra which is also a chain complex. It is furthermore assumed
that the differential d is a derivation, i.e.

d(ab) = d(a)b + (−1)|a|ad(b).

A differential graded coalgebra over k is a graded coalgebra which is also a
chain complex and for which the differential ∂ is a coderivation. The notion of
coderivation is completely dual to that of derivation, i.e. the differential ∂ must
satisfy

∆∂ = (∂ ⊗ 1 + 1⊗ ∂)∆.

The reader is invited to work this out using H-S notation from Section 2.1.
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2.8. Resolutions. Let M be a (left) A-module. A free resolution [15, 62] of
M over A is a sequence of free A-modules Xi and A-linear maps

· · · - Xn
dn- Xn−1

dn−1- · · · d1- X0
ε- M - 0

such that sequence is exact, i.e. ker(dn−1) = im (dn) for all n ≥ 1 and ker(ε) =
im (d0). We always associate the chain complex X given by

· · · - Xn
dn- Xn−1

dn−1- · · · d1- X0
- 0

to a given free resolution. Note that Hn(X) = 0 for n ≥ 1 and H0(X) =
X0/im (d0) ∼= X0/ ker(ε) ∼= im (ε) = M .

If we give M the trivial differential, we extend ε to all of X by setting it to
be zero on elements of degree greater than zero and we obtain a chain map

X
ε- M - 0 (2.3)

such that ε is an isomorphism in homology.
A contracting homotopy for X is a degree one map ψ linear over k (but not

generally over A) such that dψ + ψd = 1, i.e. a chain homotopy between the
identity map and the zero map.

Note that more generally, one talks about projective resolutions, i.e. resolu-
tions in which each Xi is projective over A. An A-module is projective if and
only if it is a direct summand of a free A-module. All the resolutions in this
paper however will be free. In fact, we will only consider resolutions over the
polynomial algebra and it is well-known [67, 84] that any projective module is
free in that case.

Similar remarks apply to right modules.

2.9. The Polynomial Bialgebra. Let A = k[x1, . . . , xn] be the polynomial
ring in n variables over k. Note that A is naturally graded by setting Ai equal
to the subspace of polynomials of homogeneous degree i for i = 0, 1, . . . . Note

also that it is of finite type. Define a map A
ε- k where ε(p) = p(0) (i.e. the

constant term of p).
We will write monomials as xα where

xα = xα1
1 . . . xαn

n

and the components of α = (α1, . . . , αn) are non negative integers.
The following relation on monomials

xα ¹ xβ iff αi ≤ βi for all i = 1, . . . , n. (2.4)

will be used later.

Remark 2.1. A total order on monomials that satisfies u < v =⇒ mu < mv
and 1 < m, for all monomials m,u, v 6= 1 in A, is called a monomial order on
A.

The algebra A also possesses a coproduct given as follows.

∆(xi) = 1⊗ xi + xi ⊗ 1 (2.5)

∆(fg) = ∆(f)∆(g), for f, g ∈ A. (2.6)
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The counit is given by ε above.
It follows by an easy computation that

∆(xα) =

α1,...,αn∑
r1,...,rn=0

(
α1

r1

)
· · ·

(
αn

rn

)
xr ⊗ xα−r (2.7)

where r = (r1, . . . , rn) and α− r = (α1 − r1, . . . , αn − rn).
Note that combinatorially, the above formula for the coproduct is completely

determined by the binomial expansion of (x + y)α. This means that one can
view the coproduct in the following way. For any polynomial f(x) consider
f(x + y) as an element of k[x1, . . . , xn, y1, . . . , yn] = k[x1, . . . , xn]⊗k[y1, . . . , yn].
If we expand f(x + y) and replace yi by xi for i = 1, . . . , n, we get exactly the
formula determined by (2.7) above. Thus we have the following proposition.

Proposition 2.2. The coproduct in the polynomial bialgebra A may be written
as

∆(f) =
∑ 1

i1! · · · in!

∂i1+···+inf

∂xi1
1 · · · ∂xin

n

⊗ xi1
1 · · ·xin

n . (2.8)

Proof. For any polynomial f , the Taylor series expansion of f(x + y) is given
exactly by the formula above. ¤
2.9.1. The Dual Bialgebra. The following is well-known (see, e.g., [16]), but we
include it for completeness.

Note that k[x1, ..., xn] ∼= ⊗nk[x]. Consider the bialgebra dual to k[x]. Letting
γi(x) be the linear dual to xi, we have

〈∆γi(x), xr ⊗ xs〉 = δr+s
i

so that
∆

(
γi(x)

)
=

∑
r+s=i

γr(x)⊗ γs(x). (2.9)

Also,
〈γi(x)γj(x), xr〉 = 〈γi(x)⊗ γj(x), ∆(xr)〉

But recall from above that

∆(xr) =
∑

n+m=r

(
r

n

)
xn ⊗ xn−r.

Thus,

γi(x)γj(x) =

(
i + j

i

)
γi+j(x). (2.10)

The algebra k[x]∗ is called the divided power algebra and is usually denoted
by Γ[x]. Now recall that k has characteristic zero and so if we write y = γ1(x),
we have

γi(x) =
yi

i!
. (2.11)

This follows immediately from γ1(x)i = i!γi(x). Thus setting zi = yi

i!
we have

zizj = zi+j and this is just the polynomial algebra. The analogous results hold
for the tensor product ⊗nk[x] and therefore for A = k[x1, . . . , xn].
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It is left to the interested reader to see that the graded dual A∗ also has a
coproduct dual to the product in A and that A∗ ∼= A as bialgebras.

2.10. Coordinate Free Versions of the Polynomial (Co)Algebra. Let V
be a finite-dimensional vector space over k. The tensor algebra F (V ) is given
by

F (V ) =
∞∑
i=0

⊗iV

where ⊗0V = k and ⊗1V = V . The product is given by

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗ wl) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wl.

If “coordinates” are chosen, i.e. a basis {v1, . . . , vn} is chosen for V , one identifies
this algebra as the algebra k 〈v1, . . . , vn〉 of non-commuting polynomials in the
variables {v1, . . . , vn}. It is the free non-commutative algebra generated by V .
We assume that the elements of V are all of degree zero (or of even degree).
Let I be the ideal of F (V ) generated by the set {xy − yx | x, y ∈ V }. The
symmetric algebra on V is the quotient algebra

S (V ) = F (V )/I.

If one chooses coordinates as above, it is clear that S (V ) is isomorphic to the
polynomial algebra k[v1, . . . , vn].

The tensor coalgebra on V is given by

C(V ) =
∞∑
i=0

⊗iV

with coproduct given by

∆(v1 ⊗ · · · ⊗ vk) =
k∑

i=0

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vk)

where the terms for i = 0 and i = k are 1⊗ (v1⊗· · ·⊗vk) and (v1⊗· · ·⊗vk)⊗1
respectively. In fact, C(V ) is the cofree coalgebra on V (also see [36] for a more
general construction).

Note that the symmetric group Sn acts on C(V )n = ⊗nV in the obvious
way, i.e. by permuting the tensorands. It is clear that the subspace S(V ) of
symmetric tensors (i.e. those left invariant under the action of the symmetric
group) is invariant under the coproduct ∆. Thus, S(V ) ⊆ C(V ) is a sub-
coalgebra. If coordinates are chosen, it is not difficult to see that S(V ) is
isomorphic to the polynomial coalgebra k[v1, . . . , vn]. The interested reader
should see [7, 8] for more details.

2.11. The Exterior Bialgebra. The exterior algebra E = E[u1, . . . , un] over
k is generated as an algebra by {u1, . . . , un} and is subject to the relations
uiuj = −ujui. As such, it has a basis given by {uI | I = (i1, . . . , ik), 1 ≤ i1 <
· · · < ik ≤ n, k = 0, . . . , n} where if I = (i1, . . . , ik), then uI = ui1 . . . uik .
Generally, we will eliminate the tensor sign in dealing with elements of E. Note



732 LARRY A. LAMBE AND WERNER M. SEILER

that E is a graded algebra over k where |uI | = |I| and |I| denotes the cardinality
of I.

The coproduct in E is determined by

∆(ui) = ui ⊗ 1 + 1⊗ ui, (2.12)

∆(uv) = ∆(u)∆(v), for u, v ∈ E. (2.13)

Thus, for example, note that

∆(uiuj) = (ui ⊗ 1 + 1⊗ ui)(uj ⊗ 1 + 1⊗ uj)

= 1⊗ uiuj − uj ⊗ ui + ui ⊗ uj + uiuj ⊗ 1

and so on.
The counit is given by ε(r) = r when r is a scalar, while ε(uI) = 0 for |I| > 0.

2.11.1. The Dual Bialgebra. Again, it is well-known that E = E[u1, . . . , un] is
self-dual, i.e. the dual E∗ is a bialgebra and E∗ ∼= E as bialgebras.

2.12. More Duality. We need to recall some basic results concerning a cor-
respondence between subcomodules and submodules. All of the background
material can be found in [59, §A.4.2, pp. 273]. If V is a vector space over k and

W ⊆ V is a subspace, the inclusion map W
ι- V gives rise to the onto dual

map V ∗ ι∗- W ∗. The kernel of this map is usually denoted by W⊥. Thus,

W⊥ = {ν ∈ V ∗ | ν(w) = 0 for all w ∈ W} and V ∗/W⊥ ∼= W ∗. (2.14)

If U ⊆ V ∗ is a subspace, we similarly define

U⊥ = {v ∈ V | µ(v) = 0 for all µ ∈ U}. (2.15)

A subspace Z of either V or V ∗ is said to be closed, if and only if Z = Z⊥⊥. By
[59, §A.4], there is a one-one inclusion reversing the correspondence W 7→ W⊥

between subspaces of V and closed subspaces of V ∗.
Now suppose that C is a coalgebra and N

ρ- N ⊗C is a comodule. Recall
that A = C∗ is an algebra (Section 2.1.1). The dual vector space N∗ is a (right)
module over C∗ with action determined by

〈να, c〉 = 〈ν ⊗ α, ρ(c)〉 = 〈νc〈1〉〉〈α, c(2)〉. (2.16)

For the Proposition that follows, we need the following.

Lemma 2.3. If M is locally finite over k, any subspace (including itself) is
closed.

Proof. This follows by applying Proposition A.4.2 in [59] degree-wise. ¤

Recall that if N is a comodule over C and M ⊆ N is a subspace, M is a
subcomodule if and only if ρ(M) ⊆ M ⊗ C. We have

Proposition 2.4. Let C be a coalgebra and N a right comodule over C which
is locally finite over k. If M ⊆ N is a subspace, then M⊥ ⊆ N∗ is a submodule,
if and only if M is a subcomodule.
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Proof. Note that M is a subcomodule, if and only if for all m ∈ M , m〈1〉 ∈ M .
Thus if µ ∈ M⊥ and α ∈ C∗, we have that for all m ∈ M ,

〈µα, m〉 = 〈µ,m〈1〉〉〈α, m(2)〉 = 0

and so µα ∈ M⊥. For the converse, suppose that M⊥ is a submodule. Let
m ∈ M , we need to show that m〈1〉 ∈ N . We know that for all α ∈ C∗ and all
ν ∈ M⊥, 〈ν, m〈1〉〉〈α,m(2)〉 = 0. It follows that for all ν ∈ M⊥, 〈ν, m〈1〉〉 = 0
(take α = (m〈1〉)∗, the element dual to m〈1〉 in the last equation). Thus, m〈1〉 ∈
M⊥⊥ = M since M is closed by the last lemma. ¤

This is analogous to [59, Proposition 1.2.4].

2.13. Polynomial Comodules and Modules. Let C = k[x1, ..., xn] be the
polynomial bialgebra (2.9) with the coproduct given by Proposition 2.2. Note
that N ⊆ C is a subcomodule if and only if ∆(N) ⊆ N ⊗ C, if and only if for
all p ∈ N ,

∂kp

∂xi1
1 · · · ∂xin

n

∈ N (2.17)

for all k ∈ N and all ij ∈ N such that i1 + · · ·+ in = k.
In general, if D is a coalgebra, Dn is a comodule over D with the following

structure map

ρ(d1, . . . , dn) = ((d1)(1), . . . , (dn)(1))⊗ ((d1)(2) + · · ·+ (dn)(2)). (2.18)

We will call any comodule N over D which is isomorphic to Dn a free comodule
over D.

Note that for the polynomial coalgebra C, N ⊆ Cn is a subcomodule, if and
only if (2.17) holds in each coordinate.

Remark 2.5. A module over an algebra A is finitely generated if and only if
it is a quotient of An for some n ∈ N. It is natural to say that a comodule M
over a coalgebra D is finitely cogenerated if it is a submodule of Dn where Dn

has the above comodule structure. In fact, such a definition was given in [68]
where more information can be found.

Using Proposition 2.4 we have the following.

Proposition 2.6. Let C be a coalgebra and N ⊆ Cm a subspace that is
locally finite. Then N is a subcomodule, if and only if N⊥ ⊆ Am is a submodule
where A is the graded dual algebra C∗. Furthermore, we have an isomorphism
Am/N⊥ ∼= N∗.

Proof. The first assertion is a special case of Proposition 2.4. The second part
follows by applying the second equation of (2.14) coordinate-wise. ¤

2.14. Cogeneration. Let Y ⊂ C be a set of homogeneous polynomials of
degree r. We are interested in the subcomodule N ⊂ C cogenerated by Y . Let
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Nr be the k-linear span of Y . For the components of lower and higher degree,
respectively, set

Nr−j =
{ ∂jp

∂xi1
1 · · · ∂xin

n

| p ∈ Nr, i1 + · · ·+ in = j
}

, (2.19)

and

Nr+j =
{

p ∈ C | ∂jp

∂xi1
1 · · · ∂xin

n

∈ Nr, ∀ i1 + · · ·+ in = j
}

(2.20)

(working coordinate-wise in Cm). Clearly, N =
∑∞

i=0 Ni is the comodule cogen-
erated by Y .

Remark 2.7. Since the notation (m1, . . . , mk) is in wide use for the submodule
generated by a subset {m1, . . . , mk} of a module M , we will use the notation

N = )y1, . . . , yk(

for the comodule cogenerated by Y = {y1, . . . , yk} ⊆ Cm.

3. Differential Equations

We will briefly outline some of the basic ideas of the formal theory of differen-
tial equations. For more details and proofs we must refer to the literature (see,
e.g., [17, 18, 52, 65, 77] and references therein); our exposition follows mainly
[77]. It should be noted that a number of alternative approaches to general
systems of differential equations exist. This includes in particular the more al-
gebraic Janet-Riquier theory (some elements of which have been incorporated
into the formal theory) [46, 70], differential ideal theory [51, 71] for equations
with at most polynomial nonlinearities, or the theory of exterior differential sys-
tems [11]. The latter one goes mainly back to Cartan and Kähler and is based
on representing partial differential equations with differential forms. While it is
equivalent to the theory we will describe, it is highly non-trivial to exhibit this
equivalence.

For notational simplicity we will mainly use a global language in the sequel,
although it must be stressed that most constructions are purely local, in fact
often even pointwise.

3.1. Formal Geometry. Geometric approaches to differential equations are
based on jet bundles [73]. The independent and dependent variables are modeled
by a fibered manifold π : E → B (this means that π is a surjective submersion
from the total space E onto the base space B). The simplest example of such
a fibered manifold is a trivial bundle where E = B × U and π is simply the
projection on the first factor. In fact, locally, in the neighborhood of a point
e ∈ E any fibered manifold looks like a trivial bundle. Readers unfamiliar with
manifolds may simply think of the example B = Rn and U = Rm.

A section is a map σ : B → E such that σ ◦ π = 1B. This generalizes the
notion of (the graph of) a function, as in a trivial bundle a section is always
of the form σ(b) =

(
b, s(b)

)
with a function s : B → U . A point in the qth

order jet bundle JqE corresponds to an equivalence class of smooth sections of
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E which have at point b ∈ B a contact of order q, i. e. in local coordinates, their
Taylor expansions at b coincide up to order q.

If (x1, . . . , xn) are local coordinates on B and (u1, . . . , um) are fiber coordi-
nates on E , then we can extend them to coordinates on JqE by the jet variables
pα,µ where the multi index µ = [µ1, . . . , µn] has a length |µ| = µ1 + · · ·+µn ≤ q.
For notational simplicity, we will often identify uα with pα,[0,...,0]. Locally, a

section σ : B → E may be written as σ(x) =
(
x, s(x)

)
. Such a section in-

duces a prolonged section jqσ(x) =
(
x, s(x), ∂xs(x)

)
of the fibered manifold

πq : JqE → B. Here ∂xs represents all derivatives of the function s up to or-
der q, i. e. the variable pα,µ gets assigned the value ∂|µ|sα(x)/∂xµ. This clearly
demonstrates that locally we may interpret the coordinates of a point of JqE
as the coefficients of truncated Taylor series of functions s(x) and thus the jet
variables as derivatives of such functions.

The jet bundles form a natural hierarchy with projections πq
r : JrE → JqE

for r < q. Of particular importance are the projections πq
q−1. Let us denote by

V E ⊂ TE the vertical bundle, i. e. the kernel of the map Tπ. It is not difficult
to prove the following proposition, for example by studying the transformation
law of the jet coordinates under a change of variables in E (see below).

Proposition 3.1. The jet bundle JqE of order q is an affine bundle over the
jet bundle Jq−1E of order q − 1 modeled on the vector bundle Sq(T

∗B)⊗ V E
(see Section 2.10 for notation).

This observation is the key for the introduction of algebraic techniques into
the geometric theory (and sometimes even used for the intrinsic definition of jet
bundles). In local coordinates, this affinity has the following meaning. Assume
that we perform changes of coordinates x → y and u → v. They induce via
the chain rule changes of the jet coordinates uα,µ → vα,µ. For the coordinates
of order q, these are of the form vα,µ =

∑m
β=1

∑
|ν|=q Aβ,νuβ,ν + B where Aβ,ν

and B are (polynomial) functions of the jet coordinates uγ,λ with |λ| < q.

Remark 3.2. In the literature one usually considers instead of Sq(T
∗B)⊗V E

the isomorphic vector bundle Sq(T
∗B) ⊗ V E (where Sq denotes the q-fold

symmetric product). However, in view of Prop. 2.2 our choice appears much
more natural and more consistent with the interpretation of the jet variables as
derivatives of functions. At this point here, there is no real difference between
using Sq(T

∗B) ⊗ V E or Sq(T
∗B) ⊗ V E , as only the vector space structure

matters. This will change in Section 3.4 where the natural comodule structure
of S(T ∗B)⊗ V E is needed.

A differential equation of order q is now defined as a fibered submanifold
Rq ⊆ JqE . Note that this definition does not distinguish between a scalar
equation and a system, as nothing is said about the codimension of Rq. A
solution is a section σ : B → E such that the image of the prolonged section
jqσ : B → JqE is a subset of Rq. Locally, such a submanifold is described by
some equations Φτ (x,u,p) = 0 with τ = 1, . . . , t and a section is a solution,
if Φτ

(
x, s(x), ∂xs(x)

) ≡ 0. Thus we recover the familiar form of a system of
partial differential equations and its solutions.
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Two natural operations with differential equations are projection and prolon-
gation. The first one is easy to describe intrinsically but difficult to perform
effectively. For the second one the local description is much easier than the
intrinsic one. The projection (to order r < q) of the differential equation Rq is

simply defined as R(q−r)
r = πq

r(Rq) ⊆ JrE . In local coordinates, the projection
requires the elimination (by purely algebraic operations) of the jet variables of
order greater than r in as many local equations Φτ = 0 as possible. Those
equations that do not depend on any of these variables “survive” the projec-

tion and define the submanifold R(q−r)
r . Obviously, for nonlinear equations the

elimination might be impossible to do effectively.
As both Rq and JqE are again fibered manifolds over B, we may form jet

bundle over them. Note that Jr(JqE ) is not the same as Jq+rE ; in fact the
latter one may be identified with a submanifold of the former one. Now we
may define the (r-fold) prolongation of Rq as the differential equation Rq+r =
Jr(Rq) ∩ Jq+rE ⊆ Jq+rE where the intersection is understood to take place in
Jr(JqE ). Thus we obtain an equation of order q + r. Note that this simple
formula is only obtained because we make a number of implicit identifications.
A rigorous expression would require a number of inclusion maps.

In local coordinates, prolongation is performed with the help of the formal
derivative. Let Φ : JqE → R be a smooth function. Then its formal derivative
with respect to xk, denoted by DkΦ, is a real-valued function on Jq+1E locally
defined by

DkΦ =
∂Φ

∂xk

+
m∑

α=1

∑

0≤|µ|≤q

∂Φ

∂uα,µ

uα,µ+1k
. (3.1)

Here 1k denotes the multi index where all entries are zero except the kth which
is one and the addition µ+1k is defined componentwise (thus effectively, the kth
entry of µ is increased by one). Note that the formal derivative DkΦ is always
a quasi-linear function, i. e. it is linear in the derivatives of order q + 1. The
prolonged equation Rq+1 is now locally described by all the equations Φτ = 0
describing Rq and in addition all the formal derivatives DkΦτ = 0. More
generally, we need for the local description of the r-fold prolongation Rq+r all
equations DνΦτ = 0 where ν runs over all multi indices with 0 ≤ |ν| ≤ r.

3.2. Formal Integrability. One could be tempted to think that prolongation
and projection are a kind of inverse operations, i. e. if we first prolong and then
project back that we obtain again the original differential equation. However,

this is not true. In general, we only find that R(1)
q = πq+1

q (Rq+1) ⊆ Rq. If
it is a proper submanifold, this signals the appearance of integrability condi-
tions in the classical language. In fact, in many cases the combination of a
prolongation with a projection corresponds to taking cross-derivatives (as the
differential analogue of S-polynomials in the theory of Gröbner bases). Dif-
ferential equations where at no order of prolongation integrability conditions
appear are particularly important and are therefore given a special name.
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Definition 3.3. The differential equation Rq ⊆ JqE is called formally

integrable, if the equality R(1)
q+r = πq+r+1

q+r (Rq+r+1) = Rq+r holds for all integers
r ≥ 0.

In order to explain this terminology, we consider the order by order construc-
tion of formal power series solutions for an equation Rq. For this purpose, we
expand the solution around some point b ∈ B with local coordinates x̄ into a
formal power series, i. e. we make the ansatz

uα(x) =
∑

|µ|≥0

cα,µ

µ!
(x− x̄)µ .

Entering this series ansatz into a local representation Φτ (x,u,p) = 0 with
1 ≤ τ ≤ t of our differential equation Rq and evaluating at the chosen point
b yields for the coefficients cα,µ the algebraic equations Φτ (x̄, c) = 0 where the
vector c represents all coefficients cα,µ with 0 ≤ |µ| ≤ q. Thus we only have to
substitute xi by x̄i and pα,µ by cα,µ. In general, these are nonlinear equations
and the solution space may have a very complicated structure consisting of
several components with differing dimensions etc.

If we apply the same procedure to the prolonged equation Rq+1, we obtain
further algebraic equations for the coefficients cα,µ, namely DkΦτ (x̄, c) = 0
where now the vector c represents all coefficients cα,µ with 0 ≤ |µ| ≤ q + 1.
Note that due to the quasi-linearity of the formal derivative (3.1), we may
consider these additional equations as an inhomogeneous linear system for those
coefficients cα,µ with |µ| = q + 1 where both the matrix and the right hand side
depend on the coefficients of lower order.

We may iterate this construction: entering our ansatz into Rq+r and eval-
uating at b yields the additional algebraic equations DνΦτ (x̄, c) = 0 where ν
runs over all multi indices of length r. These equations contain all coefficients
cα,µ with 0 ≤ |µ| ≤ q + r and may be interpreted as an inhomogeneous linear
system for the coefficients cα,µ with |µ| = q+r depending parametrically on the
coefficients of lower order.

Note that this construction only makes sense for a formally integrable equa-
tion. Obviously, we can do the computation only up to some finite order q̂ ≥ q.
If the differential equation is not formally integrable, we cannot be sure that at
some higher order integrability conditions of order less than or equal to q̂ are
hidden. These conditions would impose further restrictions on the coefficients
cα,µ with |µ| ≤ q̂ which we have not taken into account.

Furthermore, the validity of the interpretation of the equations obtained from
the prolongation Rq+r as a linear system for the coefficients cα,µ with |µ| = q+r
relies on the following observation which only holds for a formally integrable
differential equation. In general, the matrix of this system does not have full
rank. Thus it may be possible to generate zero rows by elementary row oper-
ations. The corresponding right hand side is guaranteed to vanish only for a
formally integrable equation. Otherwise we would obtain an additional equation
for the lower order coefficients. Indeed, this is just the effect of an integrability
condition!
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We may summarize these considerations in form of a local existence theorem
for formal power series solutions which also explains the terminology “formal
integrability”.

Proposition 3.4. Let the differential equation Rq be formally integrable.
Then it possesses formal power series solutions.

It should be mentioned that a serious problem with the concept of formal
integrability is an effective criterion for verifying it. Obviously, the definition
above contains infinitely many conditions. This is one of the reason why pure
geometry does not suffice for the analysis of overdetermined systems; it must
be complemented by algebraic, mainly homological, tools. In the sequel, we
will not bother with deriving a criterion for formal integrability but instead
introduce at once the stronger notion of an involutive system.

3.3. The Geometric Symbol. As πq
q−1 : JqE → Jq−1E is an affine bundle

modeled on the vector bundle Sq(T
∗B)⊗ V E , we may consider for any differ-

ential equation Rq ⊆ JqE the vector bundle Nq = V (q)Rq ⊆ V (q)JqE (where
V (q)JqE denotes the vertical bundle with respect to the projection πq

q−1) as a
subbundle of Sq(T

∗B) ⊗ V E . It is called the (geometric) symbol of the dif-
ferential equation Rq. Note that while the geometric symbol is indeed closely
related to the classical (principal) symbol introduced in many textbooks on
partial differential equations (see, e.g., [69]), it is not the same.

In local coordinates, the symbol may be described as the solution space of a
linear system of equations. Let as usual the equations Φτ = 0 with 1 ≤ τ ≤ t
form a local representation of the differential equation Rq. We denote local
coordinates on the vector space Sq(T

∗B)⊗ V E by vα,µ where 1 ≤ α ≤ m and
|µ| = q (the coefficients with respect to the basis dxµ ⊗ ∂uα). Then the symbol
Nq consists of those points v for which

m∑

α=1

∑

|µ|=q

∂Φτ

∂uα,µ

vα,µ = 0 , 1 ≤ τ ≤ t . (3.2)

Note that this is a pointwise construction. Strictly speaking, we choose a point
ρ ∈ Rq and evaluate the coefficient matrix of the linear system (3.2) at this
point so that we obtain a real matrix. The rank of this matrix could vary with
ρ, but we will always assume that this is not the case, so that Nq indeed forms
a vector bundle over Rq.

The symbol is most easily understood for linear systems. There it is essen-
tially just the principal part of the system (i. e. the terms of maximal order),
however, considered no longer as differential but as algebraic equations. For
a nonlinear system, the local equations (3.2) describing the symbol at a point
ρ ∈ Rq are obtained by first linearizing the local representation Φτ = 0 at ρ
and then taking the principal part.

We may also introduce the prolonged symbols Nq+r = V (q+r)Rq+r ⊆
Sq+r(T

∗B) ⊗ V E . It should be noted that their construction does not re-
quire one to actually compute the prolonged differential equations Rq+r; they
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are already completely determined by Nq. Indeed, we may compute them as
the intersection Nq+r =

(
Sr(T

∗B)⊗Nq

) ∩ (
Sq+r(T

∗B)⊗ V E
)

(which is un-

derstood to take place in
⊗q+r T ∗B⊗V E ). Locally, Nq+r is the solution space

of the following linear system of equations:

m∑

α=1

∑

|µ|=q

∂Φτ

∂uα,µ

vα,µ+ν = 0 , 1 ≤ τ ≤ t , |ν| = r . (3.3)

Again, this is a consequence of the quasi-linearity of the formal derivative (3.1).
We have met these linear systems already in our discussion of formal inte-
grability: (3.3) is the homogeneous part of the linear system determining the
coefficients cα,µ with |µ| = q + r.

3.4. The Symbol Comodule. The symbol Nq and its prolongations Nq+r

are defined as subspaces of Sq+r(T
∗B) ⊗ V E for r ≥ 0. Recall (Section 2.10)

that the graded vector space S(T ∗B) possesses a natural coalgebra structure;
more precisely it is isomorphic to the polynomial coalgebra C = k[x1, . . . , xn]
with the coproduct ∆ defined by (2.7). Note that no canonical isomorphism
between S(T ∗B) and C exists. We must first choose a basis {ω1, . . . , ωn} of
the cotangent bundle T ∗B; then we have the trivial isomorphism defined by
ωi ↔ xi. Given some local coordinates x on B a simple choice is of course
ωi = dxi.

Given such an isomorphism between S(T ∗B) and the polynomial coalgebra
C, we may consider S(T ∗B)⊗V E as a free polynomial comodule of rank m over
C. For the proof of the following proposition, it turns out to be convenient to
use as a vector space basis of C not the usual monomials xν but the multivariate
divided powers γν(x) = xν/ν! (cf. Section 2.9.1).

Proposition 3.5. Let N = )Nq( ⊆ S(T ∗B) ⊗ V E be the polynomial
subcomodule cogenerated by the symbol Nq ⊆ Sq(T

∗B) ⊗ V E . Then Nq+r =
Nq+r for all r ≥ 0.

Proof. This follows immediately from a comparison of (3.3) and (2.20). Recall
that an element of the prolonged symbol Nq+r is of the form

f =
m∑

α=1

∑

|ν|=q+r

vα,ν∂uα ⊗ dxµ

where the coefficients vα,ν form a solution of the linear system (3.3). We identify
this element with the following vector in Cm:

f =
( ∑

|ν|=q+r

v1,νγν(x), . . . ,
∑

|ν|=q+r

vm,νγν(x)
)

.

It is now a straightforward exercise to verify that f corresponds to an element
of Nq+r, if and only if ∂rf/∂xµ corresponds for all multi indices µ with |µ| = r
to an element of Nq. ¤
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Note that this “dual interpretation” of the symbol leads also to a “reversal”
of the direction of differentiation. While in the jet bundles differentiation yields
equations of higher order, here in the comodule N differentiation leads to the
components of lower degree. But, of course, this has to be expected in a dual-
ization and explains why in the proof above we must use the divided powers as
basis: the product xiγν(x) is just the integral

∫
γν(x)dxi.

Dually, we may consider the left hand sides of the equations in (3.2) as ele-
ments of the dual space

(
Sq(T

∗B)⊗V E
)∗ ∼= Sq(TB)⊗V ∗E and similarly for

the prolonged symbols. This leads naturally to considering the graded vector
space S(TB) ⊗ V ∗E as a free module over the polynomial algebra A = C∗.
Again an isomorphism between S(TB) and A can be given only after a basis
{w1, . . . , wn} of TB has been chosen. Local coordinates x on B induce as a
simple choice the basis wi = ∂xi

.
Now we may take the equations defining Nq and consider the submodule

generated by their left hand sides. Again it is trivial to see that the left hand
sides of the equations defining Nq+r, i. e. (3.3), form the component of degree
q + r. In fact, we get by Proposition 2.4 that these higher components are
just (N⊥)q+r. This simple relation does not hold in the lower degrees, as there
our submodule vanishes in contrast to N⊥. As we will see, this is not of any
consequence in terms of the connections with the formal theory.

3.5. Involution. As by definition Nq ⊆ Sq(T
∗B)⊗ V E , we may interpret an

element σ ∈ Nq as a (V E valued) multilinear form. A coordinate system x on
the base manifold B induces a basis {∂x1 , . . . , ∂xn} of the tangent bundle TB.
We introduce for 1 ≤ k ≤ n the subspaces

Nq,k =
{
σ ∈ Nq | σ(∂xi

, v1, . . . , vq−1) = 0, ∀1≤ i≤k, v1, . . . , vq−1∈TB
}

(3.4)

and set Nq,0 = Nq. They define a filtration of Nq:

0 = Nq,n ⊂ Nq,n−1 ⊂ · · · ⊂ Nq,1 ⊂ Nq,0 = Nq . (3.5)

We introduce the Cartan characters of the symbol Nq as the integers

α(k)
q = dim Nq,k−1 − dim Nq,k , 1 ≤ k ≤ n . (3.6)

Although it is not obvious from their definition, one can show that they always

form a descending sequence: α
(1)
q ≥ · · · ≥ α

(n)
q ≥ 0 [11, 77].

Using the identification of Sq(T
∗B)⊗V E with Cm

q introduced in the previous
section we may give an alternative description of these spaces

Nq,k =
{
σ ∈ Nq | ∂σ

∂xi

= 0, ∀1 ≤ i ≤ k
}

(3.7)

where the differentiations are understood coordinate-wise. This identification
also allows us to introduce the maps ∂k : Nq+1,k−1

- Nq,k−1 and we obtain
the following algebraic version of the famous Cartan test [11].
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Proposition 3.6. We have the inequality

dim Nq+1 ≤ dim Nq,0 + dim Nq,1 + · · ·+ dim Nq,n−1 =
n∑

k=1

kα(k)
q . (3.8)

Equality holds, if and only if all the maps ∂k are surjective.

Proof. For each 1 ≤ k ≤ n the exact sequence

0 - Nq+1,k
- Nq+1,k−1

∂k- Nq,k−1

implies the inequality dim Nq+1,k−1 − dim Nq+1,k ≤ dim Nq,k−1. Summing over
k and using the definition (3.6) of the Cartan characters yields (3.8). Equality
in (3.8) requires equality in all these dimension relations, but this is equivalent
to the surjectivity of all the maps ∂k. ¤

Definition 3.7. The symbol Nq is involutive, if there exist local coordinates
x on the base manifold B such that we have equality in (3.8).

Here we encounter for the first time the problem of quasi- or δ-regularity. If
we obtain in a given coordinate system a strict inequality in (3.8), we cannot
conclude that the symbol Nq is not involutive. It could be that we have simply
taken a “bad” coordinate system. However, this problem is less severe than it
might seem at first glance, as one can show that for an involutive symbol one
finds generically equality in (3.8).

3.6. A Computational Criterion for Involution. Computationally, it is
easier to work with equations instead of their solutions. Therefore we present
now an effective realization of Def. 3.7 of an involutive symbol Nq in terms of the
linear system (3.2) describing it locally. This combinatorial approach is based
on ideas from the Janet-Riquier theory,2 in particular the idea of multiplicative
variables, and forms the basis of a computer algebra implementation of the
formal theory [40].

Let us denote the matrix of the linear system (3.2) by Nq. In order to
simplify the analysis we transform it into row echelon form. However, before
we order the columns in a certain manner. We define the class of a multi
index µ = [µ1, . . . , µn] as cls µ = min{i | µi 6= 0}. Then we require that the
column corresponding to the unknown vα,µ is always to the left of the column
corresponding to vβ,ν , if cls µ > cls ν. If the multi indices µ and ν possess the
same class, it does not matter how the two columns are ordered. A simple
way to achieve this ordering is to use the reverse lexicographic order defined by
vα,µ ≺ vβ,ν , if either the first non-vanishing entry of µ − ν is positive or µ = ν
and α < β

After having computed the row echelon form (without column permutations!),

we analyze the location of the pivots and define β
(k)
q as the number of pivots that

2Note however that within the classical Janet-Riquier theory neither the notion of a symbol
nor the concept of involution appears. Using the more modern theory of involutive bases
[29, 30] which may be considered as a combination of (a generalization of) the Janet-Riquier
theory with Gröbner bases one may make the relation to involutive symbols more precise [77].
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lie in a column corresponding to an unknown vα,µ with cls µ = k. The numbers

β
(k)
q with 1 ≤ k ≤ n are sometimes called the indices of Nq. Obviously, their

definition is coordinate dependent: in different coordinate systems x on the base
manifold B different values may be obtained. However, it is not difficult to see
that only a few coordinate systems yield different values. Generic coordinates

lead to such values of the indices that the sum
∑n

k=1 kβ
(k)
q becomes maximal;

such coordinates are called δ-regular. More precisely, any coordinate system
can be transformed into a δ-regular one with a linear transformation defined by
a matrix coming from a Zariski open subset of Rn×n.

Proposition 3.8. The symbol Nq is involutive, if and only if local coordinates
x on the base manifold B exist such that the matrix Nq+1 of the prolonged
symbol Nq+1 satisfies

rankNq+1 =
n∑

k=1

kβ(k)
q . (3.9)

Proof. The Cartan criterion (3.8) is formulated in terms of dimensions of linear
spaces; (3.9) is essentially an equivalent reformulation in terms of the ranks
of the associated linear systems. It is a consequence of the following simple

relation between the indices β
(k)
q and the above introduced Cartan characters

α
(k)
q

α(k)
q = m

(
q + n− k − 1

q − 1

)
− β(k)

q , 1 ≤ k ≤ n . (3.10)

This relation stems from a straightforward combinatorial argument. We con-
sider again the elements of Nq as polynomials ordered according to the TOP
lift of the degree reverse lexicographic term order [2]. Then the Cartan charac-

ter α
(k)
q gives us the dimension of the subspace of elements in Nq which have

a leader of class k, as these elements make the difference between Nq,k and

Nq,k−1. In Cm
q there are m

(
q+n−k−1

q−1

)
monomials of class k and by our above

described preparation of the matrix Nq we have β
(k)
q equations for them. This

yields (3.10). ¤

The criterion (3.9) has a simple interpretation. By (3.3), we obtain the equa-
tions describing the prolonged symbol Nq+1 by formally differentiating each
equation in (3.2) with respect to all independent variables. Now assume that
we have transformed the matrix Nq to row echelon form. We assign to each
row the multiplicative variables x1, . . . , xk, if the pivot of the row corresponds
to an unknown vα,µ with cls µ = k.

It is now easy to see that all rows in Nq+1 that stem from a formal differentia-
tion with respect to a multiplicative variable are linearly independent (each has

its pivot in a different column). As we have β
(k)
q rows of class k, this observa-

tion implies that for any symbol the inequality rankNq+1 ≥
∑n

k=1 kβ
(k)
q holds

(which is just a dual formulation of Prop. 3.6). Involutive symbols are precisely
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those that realize this lower bound so that this important idea of multiplica-
tive variables (which goes back to Janet [46]) provides us with a unique way to
generate all relevant equations in the prolongations of an involutive symbol.

These ideas concerning involutive symbols can be considerably generalized
to a complete theory of so-called involutive bases which are a special kind of
Gröbner bases. These bases contain much structural information. For more
details see [78, 79]. A deeper study of the problem of δ-regularity (and an
algorithmic solution of it) is contained in [40].

3.7. Involutive Differential Equations. Given the above definition of an
involutive symbol, we may now finally introduce the notion of an involutive
differential equation.

Definition 3.9. The differential equation Rq ⊆ JqE is called involutive, if it
is formally integrable and if its symbol Nq is involutive.

Involutive differential equations have many pleasant properties. For exam-
ple, one obtains a much better existence and uniqueness theory than for merely
formally integrable systems. Somewhat surprisingly, involution is also of im-
portance for numerical analysis, as obstructions to involution may become in-
tegrability conditions upon semi-discretization [80].

Recall that our existence result Prop. 3.4 for formally integrable systems does
not speak about unique solutions. In general, the algebraic systems determining
the Taylor coefficients at each order are underdetermined which simply reflects
that differential equations usually have infinitely many solutions. It is the task of
initial and/or boundary conditions to remove this arbitrariness. For involutive
systems one may (algorithmically) derive the right form of initial conditions to
ensure the existence of a unique formal solution with the help of some algebraic
theory [77].

The extension of Prop. 3.4 to a strong existence (and uniqueness) theorem in
some functions space is highly non-trivial. A general result is known only for
analytic systems. Here the so-called Cartan normal form of an involutive sys-
tem allows us via repeated application of the well-known Cauchy-Kovalevskaya
theorem [69] to prove the convergence of our formal power series solutions.

Theorem 3.10 (Cartan-Kähler). Let Rq ⊆ JqE be an involutive differential
equation. Assume that Rq is an analytic submanifold, i. e. it has local repre-
sentations Φτ = 0 with 1 ≤ τ ≤ t where the functions Φτ are real analytic.
Then the Cauchy problem for Rq possesses for real analytic initial conditions a
unique real analytic solution.

It is important to note that the uniqueness is only within the space of real ana-
lytic functions. Thus the Cartan-Kähler theorem does not exclude the existence
of further non-analytic solutions. However, for linear systems it is straightfor-
ward to extend the classical Holmgren theorem on the uniqueness of C1 solutions
[77].

Obviously, Def. 3.3 of a formally integrable system requires to check infinitely
many conditions and thus is not constructive. At first sight, one could think
that involution does not help us here, as the definition of an involutive equation
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includes formal integrability. However, we have the following proposition show-
ing the power of the concept of involution. It requires a simple lemma which
will be an easy consequence of looking at things homologically in Section 5.3.

Lemma 3.11. If the symbol Nq is involutive, then the prolonged symbols
Nq+r are also involutive for all integers r > 0.

Proposition 3.12. Let the symbol Nq of the differential equation Rq be

involutive. Then Rq is involutive, if and only if R(1)
q = Rq.

Proof. Essentially, this is a corollary to Lemma 3.11 and a rather technical
property of differential equations with involutive symbol, namely that for such

equations (R(1)
q )+1 = R(1)

q+1 (if we denote a prolongation by ρ and a projection
by π, this means that if Nq is involutive, then ρ ◦ π ◦ ρ = π ◦ ρ2). This property
is non-trivial, as it states that for such differential equations any integrability
condition arising after two prolongations is also obtainable by differentiating an
integrability condition arising after only one prolongation. For general differen-
tial equations this is surely not the case.

Now, given this result, we may conclude that R(1)
q+1 = (R(1)

q )+1 = Rq+1 by
assumption. As the prolonged symbols Nq+r are again involutive by Lemma

3.11, we may iterate this argument and find R(1)
q+r = Rq+r for all r ≥ 0. Thus

Rq is formally integrable. ¤

Hence for a differential equation Rq with involutive symbol it is no longer
necessary to check an infinite number of prolongations: if no integrability con-
ditions appear in the next prolongation, none will show up at higher order. This
result is one of the two key ingredients for the Cartan-Kuranishi theorem below.
The second one is the following result which will also be an easy consequence of
looking at things homologically (the proof is given after Theorem 6.5 in Section
4).

Proposition 3.13. Every symbol Nq ⊆ Sq(T
∗B)⊗ V E becomes involutive

after a finite number of prolongations.

The question naturally arises what we should do, if we encounter an equation
which is not involutive. The answer is simple: we complete it to an involutive
one. The next theorem ensures that we may always do this without altering the
(formal) solution space. The completion should be considered as a differential
analogue to the construction of a Gröbner basis for a polynomial ideal: the
addition of further generators to the original basis does not change the consid-
ered ideal, but many of its properties become more transparent, if we know a
Gröbner basis.

Theorem 3.14 (Cartan-Kuranishi). For every (sufficiently regular) differ-
ential equation Rq there exist two integers r, s ≥ 0 such that the differential

equation R(s)
q+r is involutive.

Proof. For lack of space we only sketch a constructive proof of this important
theorem. As the name indicates, it stems originally from the theory of exterior
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systems and was first proven in full generality by Kuranishi [53]. Our proof
follows the one presented in [65].

A simple algorithm for completing the differential equation Rq to an invo-
lutive equation consists of two nested loops. In the inner one, the equation is
prolonged until its symbol becomes involutive (i. e. we increase the counter r).
The termination of this loop follows immediately from Proposition 3.13. Once
we have reached an involutive symbol, we check whether in the next prolon-
gation integrability conditions appear. If not, we have reached an involutive
equation by Proposition 3.12. Otherwise, we add these conditions (i. e. increase
the counter s by one) and start anew. The termination of the outer loop can
be shown with the help of a Noetherian argument. ¤

Note that the two equations Rq and R(s)
q+r are in so far equivalent as they

possess the same (formal) solution space. Indeed, neither prolongations nor the
addition of integrability conditions can affect the solution space, as any of these
additional equations is automatically satisfied by any solution of Rq.

While the above sketched proof is surely constructive, it does not immediately
yield an algorithm in the strict sense of computer science. For a number of steps
in the “algorithm” it is not obvious whether they may be performed effectively.

One of the greatest obstacles consists of effectively checking whether R(1)
q = Rq.

In local coordinates, this amounts to checking the functional independence of
equations. Thus we must compute the rank of a Jacobian on the submanifold
Rq. For linear equations this is easily done via Gaussian elimination. For poly-
nomial equations it can be done with Gröbner bases, although it may become
rather expensive. For arbitrary equations no algorithm is known. A rather di-
rect translation of the outlined completion procedure into a computer algebra
package was presented in [75, 76]. A much more efficient version for linear equa-
tions enhancing the procedure with algebraic ideas from the theory of involutive
bases was presented in [40].

Thanks to the Cartan-Kuranishi theorem, we may always assume in the
analysis of a general differential equation (i. e. an equation not in Cauchy-
Kovalevskaya form) that we are actually dealing with an involutive equation.
This is a considerable simplification, as involutive equations possess local repre-
sentations in a normal form (corresponding to the above described row echelon
form of the symbol) making many of its properties much more transparent. The
completion to an equivalent involutive equation is therefore a central algorithm
for general equations.
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4. More (Co)homological Algebra

There is quite a bit of literature on resolutions over the polynomial algebra
A=k[x1, ..., xn] (see, e.g., [24, 49, 77]). In fact, computer programs exist which
can compute such resolutions, e.g. Macaulay 2 [25].

We are specifically interested in algorithms for computing TorA(M,k) where
M is a graded right A-module. Recall [15, 62] that TorA(M,k) may be computed
as follows. Let

X - k - 0

be a free A-module resolution of k. By definition, TorA(M,k) is the homology of
the complex M⊗A X. It is well-known that Tor is independent of the resolution
used to compute it.

In fact, one also has TorA(k, N) for a graded left A-module N . It can be
computed by finding a free A-module resolution

Y - N - 0

of N . One has that TorA(k, N) is the homology of the complex Y ⊗A N . Again,
this is independent of the resolution used. Furthermore, it is also well-known
that as vector spaces over k, one has

TorA(M,k) ∼= TorA(k, M) (4.1)

where if M is a right A-module, it has the left A-module structure given by
am = ma [15, 62]. Similar remarks apply if M is a left A-module. This gives
quite a bit of freedom in finding resolutions for computing Tor. For example
consider the following six resolutions.

4.1. Schreyer Type Resolutions. Using the notion of a Gröbner basis, Schre-
yer [74] essentially proved the following (we follow the exposition in [44, Sec-
tion 2]).

Proposition 4.1. Let M be generated by {m1, . . . , ms} over A and let f :
As - M be the A-linear map given by f(ei) = mi (ei is the standard basis
vector in As). There is an explicit algorithm that computes a finite generating
set for ker(f).

The interested reader should see [24] or [44] (which is given in a more general
context) for details. By iterating this construction, one obtains a resolution

· · · - Si
- Si−1

- · · · - S1
- M - 0

which is well-known to be a finite sequence of finite-dimensional free A-modules
Si. We call this the Schreyer resolution S of M over A. Variations of this con-
struction are implemented in the Macaulay 2 program [25] and other variations
in the context of involutive bases can be found in [79].

The purpose of the following sections is to prepare for a description of a novel
explicit algorithm given in [49] for computing resolutions of M over A.
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4.2. The Koszul Resolution. The Koszul resolution K of k over A is the
complex K = A ⊗k K̄ where K̄ is the exterior algebra E[u1, . . . , un] (cf. Sec-
tion 2.11). We add the relation that uIf = fuI for f ∈ A. The differential in
K is given by extending the map d(ui) = xi A-linearly as a derivation:

d(uIuJ) = d(uI)uJ + (−1)|I|uId(uJ).

Clearly, one has

d(uj1 · · · ujk
) =

k∑
i=1

(−1)k+1xji
uj1 · · · ûji

· · · ujk
(4.2)

where ûji
denotes omission. Thus, for any right A-module M , we have that

TorA(M,k) = H(M ⊗A K) = H(M ⊗ K̄) = H(M ⊗ E[u1, . . . , un]). (4.3)

If M is a graded module, TorA(M,k) inherits a bigrading as follows. Let (M ⊗
K̄)i,j = Mi ⊗ K̄j. From (2.3) and (4.2) above, it follows that

(M ⊗ K̄)i,j
1M⊗d- (M ⊗ K̄)i+1,j−1. (4.4)

and hence TorA(M,k) inherits the bigrading.

Remark 4.2. For simplicity in the exposition, we assume that all modules
over A are of the form M = A/I where I is an ideal in A in the next two
resolutions which are valid only for monomial ideals. The more general case
of finitely presented modules M = Am/N where N is a monomial submodule
follows by using what we present coordinate-wise.

4.3. The Taylor Resolution. For a given set {m1, . . . , mk} of monomials and
for any subset J = {j1, . . . , js} ⊆ {1, . . . , k}, let mJ = lcm(mj1 , . . . ,mjs), and
J i = J \ {ji}.

For a monomial ideal N = (m1, . . . , mk), the Taylor resolution [85] of M =
A/N over A is given by the following A-linear differential d on the free A-module
A⊗ E[u1, . . . , uk]:

d(uJ) =

|J |∑
i=1

(−1)i−1 mJ

mJi

uJi .

This resolution will be denoted by T throughout this paper. An explicit con-
tracting homotopy for T was given in [27]. We recall it here.

For a monomial xα and a basis element uJ of E, let

ι(xαuJ) = min{i | mi ¹ xαmJ} (4.5)

(recall ¹ from 2.4). Note that ι(xαuJ) ≤ j1. Define a k-linear map

ψ(xαuJ) = [ι < j1]
xαmJ

m{ι}∪J

u{ι}∪J (4.6)

where ι = ι(xαuJ), and [p] is the Kronecker-Iverson symbol [33] which is zero if
p is false and one otherwise. It is straightforward to calculate that ψ is indeed a
contracting homotopy, i.e. we have dψ + ψd = 1 on elements of positive degree.
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One can show [81] that the Taylor resolution is a special case of the resolutions
obtainable via Schreyer’s construction. The contracting homotopy ψ is then
related to normal form computations with respect to a Gröbner basis.

Thus one can compute TorA(k,M) as

TorA(k, A/N) = H(k⊗A T ) = H(E[u1, . . . , uk]). (4.7)

4.4. The Lyubeznik Resolution. Suppose again that N = {m1, . . . , mk} is a
monomial ideal in A. A subcomplex L of the Taylor resolution which is itself a
resolution of M = A/N over A was given in [61]. We recall it here. For a given
I ⊆ {1, . . . , k} and positive integer s between 1 and k, let I>s = {i ∈ I | i > s}.
L is generated by those basis elements uI which satisfy the following condition
for all 1 ≤ s < k:

ms 6¹ mI>s . (4.8)

In [81] it was shown that this corresponds to repeated applications of Buch-
berger’s chain criterion [12] for avoiding redundant S-polynomials in the con-
struction of Gröbner bases.

As usual, we denote k⊗A L by L̄. Thus one can also compute TorA(k,M) as

TorA(k,M) = H(k⊗A L) = H(L̄). (4.9)

4.5. The Bar Resolution. The two sided bar construction B(A,A) [15, 62]
is defined as follows.

B̄0(A) = k

B̄k(A) = ⊗kĀ, k > 0,

and Ā = coker(σ) where k
σ - A is the unit. The usual convention is to

abbreviate the product a⊗a1⊗· · · ak⊗a′ as a[a1| · · · |ak]a
′ and we will follow that

convention. The differential in B(A,A) is given by the A-linear map induced
by

∂
(
[a1| · · · |ak]a

′) = a1[a2| · · · |ak]a
′

+
k−1∑
i=1

(−1)i[a1| · · · aiai+1 · · · |ak]a
′

+ (−1)k[a1| · · · |ak−1]aka
′

The k-linear map B(A,A)
s- B(A,A) is defined by

s
(
a[a1| · · · |ak]a

′) = [a|a1| · · · |ak]a
′.

The map A
σ- B(A,A) is given by

σ(a) = [ ]a

and the map B(A,A)
ε- A is given by

ε
(
a[ ]a′

)
= aa′

ε
(
a[a1| · · · |ak]a

′) = 0, k ≥ 1.
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The map s is a contracting homotopy for B(A,A).

4.6. Bar resolution of k. It is not hard to see that B(A,k) = B(A,A)⊗A k
is a resolution of k over A. Here k is given the A-module structure defined by
the augmentation map ε(p) = p(0) (cf. Section 2.9).

Define k σk- B(A,k) by

σk(r) = [ ]r,

B(A,k)
εk- k by

εk
(
a[ ]r

)
= ar

εk
(
a[a1| · · · |ak]x

)
= 0, k ≥ 1,

and B(A,k)
sk- B(A,k) by

s
(
a[a1| · · · |ak]

)
= [a|a1| · · · |ak].

One then has that sk is a contracting homotopy.
Thus one can also compute TorA(M,k) as

TorA(M,k) = H
(
M ⊗A B(A,k)

)
= H

(
M ⊗ B̄(A)

)
. (4.10)

4.7. Bar resolution of M . For any left A-module M , one has a free A-complex
given by B(A,M) = B(A,A)⊗A M . As an A-module, note that

B(A,M) = A⊗k B̄(A)⊗k M.

The differential is given by ∂M = ∂ ⊗ 1M . Thus,

∂M

(
a[a1| · · · |ak]x

)
= aa1[a2| · · · |ak]x

+
k−1∑
i=1

(−1)ia[a1| · · · aiai+1 · · · |ak]x

+ (−1)ka[a1| · · · |ak−1]akx

for a, ai ∈ A and x ∈ M . Define M
σM- B(A,M) by

σM(x) = [ ]x,

B(A,M)
εM- M by

εM

(
a[ ]x

)
= ax

εM

(
a[a1| · · · |ak]x

)
= 0, k ≥ 1,

and B(A,M)
sM- B(A,M) by

s
(
a[a1| · · · |ak]x

)
= [a|a1| · · · |ak]x.

One then has that s is a contracting homotopy.
Thus one can also compute TorA(k,M) as

TorA(k,M) = H
(
k⊗A B(A,M)

)
= H

(
B̄(A)⊗M

)
. (4.11)
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Remark 4.3. The last five resolutions will be involved in the derivation of
a new explicit algorithm for computing resolutions of M over A using homo-
logical perturbation theory (Section 7). This will involve explicit comparisons
between the Lyubeznik complex, the bar complexes and the Koszul complex.
The standard proof that TorA(M,k) and TorA(k,M) are isomorphic does not
produce an explicit map between the resolutions involved. However, it is quite
easy to see that the chain map

ϕ(m[a1| · · · |ak]) = [a1| · · · |ak]m (4.12)

induces an explicit isomorphism of TorA(M,k) and TorA(k,M). We will make
use of this isomorphism in the following sections.

4.8. Strong Deformation Retracts. Let X and Y be chain complexes over
k, ∇ : X - Y , f : Y - X be chain maps and let φ : Y - Y be a degree
one k-linear map such that f∇ = 1X and dφ + φd = 1 − ∇f , i.e. φ is a chain
homotopy between the identity and ∇f (cf. Section 2.2). Such a collection of
data is said to form a strong deformation retraction (SDR). We denote this
situation by the diagram

X
∇-

¾
f

(Y, φ) . (4.13)

The so called side conditions [60] are the equations

φ2 = 0, φ∇ = 0, and, fφ = 0. (4.14)

In fact, we may always assume that the side conditions hold [60].

4.9. Relatively Free Resolutions. We will consider resolutions of N over A
which have form X = A ⊗X where X is a vector space over k [15, 62]. Such
complexes are called relatively free [62]. The elements of X above are called
reduced elements. An even stronger condition is that there exists an explicit
contracting homotopy ψ which forms an SDR

N
σ-

¾
ε

(X, ψ)

where ε is an A-linear map, but generally, σ and ψ are only k-linear. Here
N is given the zero differential. As we will see, each of the five resolutions in
Section 4 are of this form. In fact, using the maps defined in Sects. 4.6 and 4.7,
it is clear that B(A,k) and B(A,M) are relatively free resolutions. We claim
that we also have SDRs

k
σk-

¾
εk

(B(A,k), s) (4.15)

and

M
σM-

¾
εM

(B(A,M), s) (4.16)

where the maps are also from Sects. 4.6 and 4.7.
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Remark 4.4. Recall from Section 4.7 that ε(a[ ]x) = ax. Thus, in order to make
explicit calculations, we need a unique representative b ∈ A for each class in
N = A/M . In other words, we need a normal form for elements of M . This can
be obtained by the standard normal form algorithm from Gröbner basis theory
[6, 28]. The algorithm depends on a given term order (cf. Section 2.1) and a
given set G = {g1, . . . , gr} ⊂ A. Here is a recursive algorithm for computing
the normal form, denoted by remG(p) of a given polynomial p: if there exists a
minimal i such that lt(gi) ¹ lt(p), then

remG(p) = remG

(
p− lt(p)

lt(gi)
gi

)

and

remG(p) = lt(p) + remG(p− lt(p))

otherwise. Here we have used the notation lt(p) for the leading term of a
polynomial p with respect to the given term order. In our case, we have that G
is a (minimal) generating set for M .

Consider again the Koszul resolution K (Section 4.2). We need an explicit
contracting homotopy for K. For this, we exploit once more the fact that
A = k[x1, . . . , xn] = ⊗nk[x]. In the case of one variable, K = k[x] ⊗ E[u] is
just the complex with d(p) = 0, p ∈ A, and d(pu) = px. Given ε(p) = p(0) and
ε(pu) = 0, and σ(r) = r ⊗ 1 for r ∈ k, we need to solve the equation

dψ(y) + ψd(y) = y − σε(y)

for all y ∈ K. Clearly, we can (and must) take ψ(pu) = 0 (the degree of ψ is
+1), and so we only need consider ψ on xi for i ≥ 1 (ψ is k-linear, but not
A-linear). But the equation

dψ(xi) = xi

is easily seen to be satisfied by

ψ(xi) = xi−1u. (4.17)

Now it is clear that the Koszul complex over k[x1, . . . , xn] is just the tensor
product complex ⊗nk[x] ⊗ E[u]. But as is well-known, chain homotopies can
be tensored as well. In this case, we can use

ψn = ψ⊗1⊗· · ·⊗1+σε⊗ψ⊗1⊗· · ·⊗1+ · · ·+σε⊗σε⊗· · ·⊗σε⊗ψ. (4.18)

It is now easy to see that along with the maps σn = ⊗nσ and εn = ⊗nε, we
have an SDR

k
σ-

¾
ε

(K,ψ) . (4.19)
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4.10. Splitting Off Of the Bar Construction. The well-known comparison
theorem [15, 62] in homological algebra states that any two projective resolutions
are chain homotopy equivalent. For the relatively free resolutions of the last
section, we will need some explicit comparisons that actually yield SDRs. For
relatively free resolutions X and Y over A with explicit SDR data

N
σX-

¾
εX

(X, ψX) (4.20)

and

N
σY-

¾
εY

(Y, ψY )

there are inductive procedures for obtaining explicit chain equivalences f :
X - Y and g : Y - X. As was shown in [16], these procedures es-
sentially follow from the requirements that f and g are A-linear and are chain
maps. One uses the explicit contracting homotopies to construct them. This
was used in [49, 55, 56, 57] for example. In addition, there are inductive proce-
dures for obtaining explicit chain homotopies of fg and the identity and with
gf and the identity. Generally, the maps defined in this way do not form an
SDR. However, the following lemma was given in [49].

Lemma 4.5. Suppose that X is a relatively free resolution as above and that
the contracting homotopy ψX satisfies ψX(X) = 0 and d(X̄) ∩ X̄ = 0 and the
homotopy ψY satisfies ψY (Y ) ⊆ Y , then the inductive constructions mentioned
above give an SDR

X
∇-

¾
f

(Y, φ) .

It is well known (e.g. [56]) that X = K (the Koszul resolution) and Y =
B(A,k) satisfy the hypotheses of the lemma and so we have an SDR

K
∇K-

¾
fK

(B(A,k), φK) . (4.21)

We emphasize that these SDRs are explicitly given in terms of the explicit
SDRs of the form (4.20) for the objects involved as given above. In fact, the
first author has implemented these SDRs using computer algebra (specifically
the system described in [47]) and these implementations will be used for all
calculations that follow.

4.11. Twisting Cochains. A twisting cochain is a degree minus one map

C
τ - A where C is a differential graded coalgebra and A is a differential

graded algebra and τ satisfies

dτ + τd = τ ∪ τ (4.22)
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where the map τ ∪ τ is given by

(τ ∪ τ)(c) = τ(c(1))τ(c(2))

in H-S notation. The following fact is a fundamental property of twisting
cochains.

Proposition 4.6. Let C
τ- A be a degree minus one map from a (differential)

algebra to a (differential) coalgebra. Let

A⊗ C
dτ- A⊗ C

be the map defined by the composite

A⊗ C
dτ - A⊗ C

A⊗ C ⊗ C

1⊗∆

?

1⊗ τ ⊗ 1
- A⊗ A⊗ C

m⊗ 1

6

then (A⊗ C, dτ ) is a chain complex, if and only if τ is a twisting cochain.

The complex (A ⊗ C, dτ ) is called a twisted tensor product complex. The
interested reader should see, e.g., [9, 34, 35] for details.

Note that an analogous result holds for degree one maps from C to A in which
case dτ will have degree one. Note also that in H-S notation, dτ is given by

dτ (a⊗ c) = aτ(c(1))⊗ τ(c(2)).

5. A Homological Approach to Involution

5.1. A Theorem by Serre. The key to a homological interpretation of invo-
lution is a theorem by Serre given in an appendix to [39]. It gives a criterion for
the vanishing of TorA(M,k) where M is a finitely generated graded module over
the polynomial algebra A = k[x1, . . . , xn]. As shown in Section 4.2, TorA(M,k)
is bigraded in this case.

Theorem 5.1. Let M be a finitely generated graded module over the poly-
nomial algebra A = k[x1, . . . , xn]. Then TorA

p,q(M,k) = 0 for all p ≥ 1, and all
q ≥ 0, if and only if a basis {y1, . . . , yn} of the component A1 exists such that
for all 0 ≤ i < n and all p ≥ 0 the maps

mi+1 : Mp+1/(y1, . . . , yi)Mp
- Mp+2/(y1, . . . , yi)Mp+1 (5.1)

induced by the multiplication with yi+1 are injective.

Serre’s proof is quite lucent and we encourage the reader to read it.
It is customary to call a sequence (y1, . . . , yn) ⊂ A1 satisfying the condition

of the theorem quasiregular. We will see below that for the polynomial modules
of interest for us this notion coincides with the notion of δ-regularity introduced
in Section 3.6.
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5.2. An Alternative Criterion for Involution. In Section 3.4 we introduced
the symbol comodule N which was a comodule over the polynomial coalgebra
C. By Prop. 2.6 we have an isomorphism M = Am/N⊥ ∼= N∗ where M is now
a module over the polynomial algebra A = C∗. The Cartan test (3.8) yields a
criterion for an involutive symbol directly in terms of the comodule N . Now we
provide a criterion in terms of the module M .

Theorem 5.2. The symbol Nq is involutive, if and only if there exist local
coordinates x of the base manifold B such that for all r ≥ 0 and all 0 ≤ i < n
the maps

mi+1 : Mq+r+1/(x1, . . . , xi)Mq+r
- Mq+r+2/(x1, . . . , xi)Mq+r+1 (5.2)

induced by the multiplication with xi+1 are injective.

For technical reasons, it is easier to consider first the submodule N⊥ ⊆ Am

and move later to the factor module M . Furthermore, the following lemma
shows the direct link between the approach via multiplicative variables used in
Section 3.6 and the new approach presented in this section.

Lemma 5.3. The symbol Nq is involutive, if and only if there exist local
coordinates x of the base manifold B such that for all r ≥ 0 and all 0 ≤ i < n
the maps

m̂i+1 : N⊥
q+r+1/(x1, . . . , xi)N

⊥
q+r

- N⊥
q+r+2/(x1, . . . , xi)N

⊥
q+r+1 (5.3)

induced by the multiplication with xi+1 are injective.

Proof. Let us assume first that Nq was involutive. Following the discussion in
Section 3.6, this implies the existence of local coordinates x of B such that we
may construct a triangular (vector space) basis of N⊥

q of the form

Bq =
{
hk,` | 1 ≤ k ≤ n, cls hk,` = k, 0 ≤ ` ≤ `k

}
, (5.4)

i. e. we sort the elements of the basis according to their classes. The elements
of this basis correspond to the rows of the matrix Nq appearing in Prop. 3.8.
For an involutive symbol, a basis of N⊥

q+r is given by

Bq+r =
{
xi1

1 · · ·xik
k hk,` | 1 ≤ k ≤ n, 0 ≤ ` ≤ `k, i1 + · · ·+ ik = r

}
, (5.5)

i. e. by multiplying each element of Bq by r multiplicative variables. Now
we may straightforwardly construct explicit bases of the quotient spaces
N⊥

q+r+1/(x1, . . . , xi)N
⊥
q+r, as they are isomorphic to the linear spans of the sub-

sets B(i)
q+r consisting of only those generators whose class is greater than i.

The assertion follows trivially from these bases, as xi+1 is multiplicative for all

generators in B(i)
q+r.

For the converse, we use an indirect proof: we show that if Nq is not involu-
tive, then it is not possible that all the maps m̂i are injective. As we consider
the maps m̂i for all r ≥ 0, we may assume without loss of generality that already
Nq+1 is involutive. We will prove now that this implies that at least one of the
maps m̂i is not injective for r = 0.



DIFF. EQUATIONS, SPENCER COHOMOLOGY, COMPUTING RESOLUTIONS 755

We use again the basis Bq for N⊥
q . However, as Nq is not involutive, Bq+1

generates only a subset of N⊥
q+1, even if we use a δ-regular coordinate sys-

tem x on B. Thus there exist values i, k, ` with i ≥ k such that xi+1hk,` ∈
N⊥

q+1 is not contained in the span of Bq+1. The equivalence class [xi+1hk,`] ∈
N⊥

q+1/(x1, . . . , xi)N
⊥
q is by construction nonzero and linearly independent of the

equivalence classes of all elements in Bq+1 with a class greater than i. We
consider now the action of m̂i+1 on this element.

Obviously, cls (xi+1hk,`) = k and thus xi+1 is non-multiplicative for this ele-
ment. By assumption, Nq+1 is involutive and thus the non-multiplicative prod-
uct xi+1 · (xi+1hk,`) can be expressed as a linear combination of other multi-
plicative products. It is obvious that all these multiplicative products can only
be with respect to the variables x1, . . . , xi+1 and this implies immediately that
m̂i+1 cannot be injective. ¤

Example 5.4. In Lemma 5.3 it is important that the injectivity holds for
all r ≥ 0. Even if all maps m̂i are injective for r = 0, we cannot conclude that
Nq is involutive, as the following simple example demonstrates. Consider the
differential system uxxx = uyyy = 0 where for notational simplicity we write
x1 = x and x2 = y. Then the module N⊥ is generated by the two monomials
x3 and y3. It is trivial that m̂x : N⊥

4 → N⊥
5 is injective. For m̂y we note that

N⊥
4 /xN⊥

3
∼= 〈x3y, y4〉 and thus it is again easy to see that m̂y is injective.

Nevertheless, the symbol N3 is not involutive. Indeed, consider the non-
multiplicative prolongation Dyuxxx = uxxxy; it is obviously independent of all
multiplicative prolongations and thus the criterion (3.9) is not satisfied. Sim-
ilarly, the symbol N4 is not involutive, as the non-multiplicative prolongation
Dyuxxxy = uxxxyy is again independent of all multiplicative prolongations. In
contrast, N5 and all higher symbols are trivially involutive, as they vanish.

If we consider the map m̂y : N⊥
5 /xN⊥

4 → M6/xM5, then we find (using the
identification N⊥

5 /xN⊥
4
∼= 〈x3y2, y5〉) that m̂y([x

3y2]) = [x3y3] = 0 so that m̂y

is not injective. This was to be expected by our proof of Lemma 5.3. The
observation that at some lower degree the maps m̂x and m̂y are injective may
be understood by looking at the syzygies of M3. The syzygy module is generated
by the single element (y3,−x3) ∈ k[x, y]2. As it is of degree 3, nothing happens
with the maps m̂i before we encounter M6 and the equation m̂y([x

3y2]) = 0 is
a trivial consequence of this syzygy. More on the relation between involution
and syzygies may be found in [79].

The proof of Thm. 5.2 consists now of a simple homological argument and
two applications of Serre’s Thm. 5.1.

Proof (of Thm. 5.2). It is a classical result in homological algebra that the short
exact sequence 0 → N⊥ → Am → M → 0 where the first map is the inclusion
and the second one the canonical projection induces a long exact sequence
for the torsion modules. As TorA(Am,k) trivially vanishes in positive degree,
TorA(M,k) ∼= TorA(N⊥,k) in positive degree.
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Using Lemma 5.3 and applying Serre’s Theorem 5.1 to the polynomial module
N⊥ yields that involution of Nq is equivalent to the vanishing of TorA(N⊥,k)
in positive degree. By the argument above this implies that TorA(M,k) van-
ishes in positive degree. Applying again Serre’s Theorem 5.1, this time to the
polynomial module M yields the assertion. ¤

5.3. Spencer Cohomology. The Spencer cohomology was originally intro-
duced in a completely different context [82] and only later related to involution.
In this section we present the classical approach to it; in the sequel, we will
give a completely different derivation of the relevant complex. Note that in line
with Remark 3.2 we use again the vector space Sq(T

∗B) instead of the more
common Sq(T

∗B).
Consider the vector space homomorphism δ : Sr+1(T

∗B) → T ∗B⊗Sr(T
∗B)

defined by the composition of the natural inclusion map Sr+1(T
∗B) ↪→ T ∗B⊗⊗r T ∗B with the canonical projection T ∗B ⊗ ⊗r T ∗B → T ∗B ⊗ Sr(T

∗B).
By wedging both sides with Es(T

∗B) (the s-fold exterior product of T ∗B)
and tensoring with the vertical bundle V E we extend δ to a map Es(T

∗B) ⊗
Sr+1(T

∗B)⊗ V E → Es+1(T
∗B)⊗Sr(T

∗B)⊗ V E .
In local coordinates (x,u) of E , we obtain the following picture. Let I =

(i1, . . . , ir+1) be an arbitrary sequence of integers 1 ≤ ik ≤ n and J = (j1, . . . , js)
an ascending sequence with 1 ≤ j1 < j2 < · · · < js ≤ n. Then we denote
by dx(I) the symmetric product dxi1 · · · dxir+1 and by dx〈J〉 the antisymmetric
product dxj1 ∧ · · · ∧ dxjs . A basis of Es(T

∗B)⊗Sr+1(T
∗B)⊗V E consists now

of elements of the form dx〈J〉 ⊗ dx(I) ⊗ ∂uα and we obtain

δ(dx〈J〉 ⊗ dx(I) ⊗ ∂uα) =
r+1∑

k=1

sgn(J, ik)dx
〈sort(J∪ik)〉 ⊗ dx(Ik) ⊗ ∂uα . (5.6)

Here Ik denotes the sequence I without the element ik. The sequence sort(J∪ik)
is empty, if ik already appears in J ; otherwise ik is sorted into place in the
natural order. If t is the number of interchanges needed for this sorting, then
sgn(J, ik) = (−1)t.

Setting Si(T
∗B) = 0 for i < 0, we may consider the δ-sequences

0 −→ Sr(T
∗B)⊗ V E

δ−→ T ∗B ⊗Sr−1(T
∗B)⊗ V E

δ−→ · · ·
· · · δ−→ Es(T

∗B)⊗Sr−s(T
∗B)⊗ V E

δ−→ · · ·
· · · δ−→ En(T ∗B)⊗Sr−n(T ∗B)⊗ V E −→ 0

(5.7)

where again n = dim B. The formal Poincaré lemma states that these se-
quences are exact for all r ≥ 0.

Given the symbol Nq of a differential equation Rq ⊆ JqE , we set Ni = 0 for
i < 0 and Ni = Si(T

∗B) ⊗ V E for 0 ≤ i < q. Then the δ-sequence (5.7) may
be restricted to a sequence

0 −→ Nq+r
δ−→ T ∗B ⊗Nq+r−1

δ−→ · · · δ−→ En(T ∗B)⊗Nq+r−n −→ 0 (5.8)
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which is still a complex but in general no longer exact. Its (bigraded) cohomol-
ogy is called the Spencer cohomology of the symbol Nq. We denote by Hs,r(Nq)
the cohomology group at Es(T

∗B)⊗Nr.
Now we can give another homological characterization of an involutive sym-

bol. As it is the only one of all our criteria for involution that does not require
the choice of regular coordinates, it is often taken as definition of an involutive
symbol (see, e.g., [18, 31, 65]).

Theorem 5.5. The symbol Nq is involutive, if and only if its Spencer
cohomology vanishes beyond degree q, i. e. Hs,r(Nq) = 0 for all r ≥ q.

This will follow from Theorem 6.5 after which the easy proof will be given.

Remark 5.6. In Section 3.4 we introduced the symbol comodule N . Due
to (2.19) it possesses non-trivial components of lower degree, whereas here we
simply set Ni = Si(T

∗B) ⊗ V E for 0 ≤ i < q. However, for the definition of
an involutive symbol only the components of degree greater than or equal to q
matters, so that this difference is of no importance for our purposes.

6. A New View of Spencer Cohomology

6.1. Tor and Cotor. We have seen that the Koszul resolution K = A ⊗
E[u1, . . . , un] is a “small model” of B(A,k) in the sense that there is the SDR
(4.21). There is a dual result which we will now describe. First, we want to
look at the bar construction another way.

For a given algebra A, we have B̄(A) as in Section 4.5. In fact, B̄(A) is a
coalgebra with coproduct given by

∆[a1| · · · |an] =
n∑

i=0

[a1| · · · |ai]⊗ [ai| · · · |an]

where the terms for i = 0 and i = n are respectively, [a1| · · · |an] ⊗ [ ] and
[ ]⊗ [a1| · · · |an]. It is well-known that the differential ∂̄ in B(k,k) ∼= B̄(A) is a
coderivation. In fact, the coalgebra B̄(A) is a cofree coalgebra and as such any
k-linear map B̄(A) - Ā can be coextended as a coderivation. The differential
∂̄ is, in fact, the coextension as a coderivation of the map

Ā⊗ Ā - Ā

given by multiplication. See [36, Section 2.2] for details.

Now define a degree minus one map B̄(A)
π- A by

π([a]) = a, π([a1| · · · |am] = 0, if m 6= 1.

It is immediate that π is a twisting cochain and the twisted tensor product
(A⊗B̄(A), ∂̄τ ) is just the bar construction B(A,k). In fact, the Koszul complex
is also a twisted tensor product complex. Giving the polynomial algebra trivial
degrees (i.e. all elements are of degree zero), and zero differential, and giving
elements of the exterior algebra degrees determined by |ui| = 1 for all i = 1 . . . n
and zero differential, we have that

E[u1, . . . , un]
κ- k[x1, . . . , xn] (6.1)
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given by

κ(ui) = xi, for i = 1, . . . , n (6.2)

κ(uI) = 0, for |I| > 1

is a twisting cochain. This is quite easy to see. First of all, since the differentials
involved are zero, the twisting cochain condition reduces to κ∪κ = 0. It is easy
to see that

∆(uI) =
∑
J⊆I

±uJuI−J

from Section 2.11, so since any non zero term of (κ∪κ)(uI) must be of the form
ui ⊗ uj and for each such term the term −uj ⊗ ui must also occur. Thus since
xixj = xjxi, we must have (κ ∪ κ)(uI) = 0. The following proposition follows
by an easy calculation.

Proposition 6.1. Let A be the polynomial algebra and E be the exterior
coalgebra and let κ : E - A be the Koszul twisting cochain (6.2). Let K =
(A⊗ E, d) be the Koszul resolution and let

M ⊗ A
µ- M

be an A-module. The differential dM in the complex M ⊗ E which is suitable
for computing TorA(M,k) is given by the following composite:

M ⊗ E
dM - M ⊗ E

M ⊗ E ⊗ E

1⊗∆

?

1⊗ κ⊗ 1
- M ⊗ A⊗ E

µ⊗ 1

6

Dually, one has the loop algebra construction [1, 23, 35, 38] for a coalgebra.
Given a coalgebra C, let C̄ be the kernel of the counit ε : C - k and let

Ω̄(C)n = ⊗nC̄. Let Ω̃(C) =
∑∞

i=0 Ω̄(C)n. Elements of Ω̄(C)n will be written as

〈c1| · · · |cn〉. Note that we can think of Ω̃(C) as the free algebra generated by

C̄ with the identity element given by 〈 〉. Define δ̃ : Ω̃(C) - Ω̃(C) to be the
unique derivation extending the map

C̄
∆- C̄ ⊗ C̄

given by the coproduct. The map ι : C - Ω̃(C) given by

ι(c) = 〈c− ε(c)〉
is in fact a twisting cochain as is easily verified. The twisted tensor product

(Ω̃(C)⊗ C, δ̃ι) is called the (one-sided) loop algebra construction.

Remark 6.2. Note that when C is of finite type, B̄(C∗) is the graded dual to

Ω̃(C). Also note that
(
Ω̃(C) ⊗ C, δ̃ι

)
is not in general suitable for computing

Cotor (see, e.g., [38, pp. 15]). For that we would need
∏∞

i=0 Ω̄(C)n (see [35,
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§ 5] for a formal defiition of Cotor). In our case of interest, as will be seen, the
smaller complex will be suitable for Cotor.

Given a left comodule N over C, the following composite map δN is a differ-

ential on Ω̃(C)⊗M :

Ω̃(C)⊗N
δN - Ω̃(C)⊗N

Ω̃(C)⊗ C ⊗N

1⊗ ρ

?

1⊗ ι⊗ 1
- Ω̃(C)⊗ Ω̃(C)⊗N

m⊗ 1

6

As might be expected, (4.21) should have a dual. In fact, consider the dual
of the Koszul twisting cochain κ given by (6.2). By Sects. 2.9.1 and 2.11.1, this
is a map

k[y1, . . . , yn]
κ∗- E[z1, . . . , zn] (6.3)

where the zi are dual to the ui and the yi are dual to the xi for i = 1, . . . , n
and we consider k[y1, . . . , yn] as a coalgebra and E[z1, . . . , zn] as an algebra. It
is easy to see that κ∗ is also a twisting cochain. Thus, we have a twisted tensor
product

S =
(
E[z1, . . . , zn]⊗ k[y1, . . . , yn], dκ∗

)
. (6.4)

It is not difficult to work out the differential dκ∗ explicitly. We have

Proposition 6.3.

dκ∗(uIp) =
n∑

i=1

sgn(I, i)usort(I∪ i)
∂p

∂xi

(6.5)

where I∪i is zero if i ∈ I, sort(I∪i) is I∪i with i sorted into place in the natural
order, and sgn(I, i) = (−1)s where s is the number of interchanges needed to
sort I ∪ i when i is not in I.

The arguments leading up to (4.21) dualize completely to give the

Proposition 6.4. Let S be the above complex, we have an SDR

S
∇S -

¾
fS

((
Ω̃(C), δE

)
, φS

)
.

For a comodule

N
ρ- C ⊗N
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over the polynomial coalgebra, give E ⊗N the composite differential δN given
by:

E ⊗N
δN - E ⊗N

E ⊗ C ⊗N

1⊗ ρ

?

1⊗ κ∗ ⊗ 1
- E ⊗ E ⊗N

m⊗ 1

6

Using Proposition 2.6 along with the observations of this section, and an
observation of Gugenheim [35], we have the following.

Theorem 6.5. Let C be the polynomial coalgebra and N ⊆ Cm be a subco-
module. Let A = C∗ be the dual polynomial algebra and M = Am/N⊥. Let E
denote the exterior bialgebra and κ : E - A be the Koszul twisting cochain
and κ∗ its linear dual. A complex for computing TorA(M,k) is given by the
twisted tensor product

(M ⊗ E, dκ) (6.6)

and a complex for computing CotorC(k, N) is given by

(E ⊗N, δN) (6.7)

Furthermore, there is an isomorphism

CotorC(k, N)∗ ∼= TorA(Am/N⊥,k). (6.8)

Furthermore, CotorC(k, N) is isomorphic to the cohomology of the Spencer com-
plex [83].

Proof. The differential (6.5) is clearly 1-trivial [35, Section 6] and hence by
Theorem 6.2 of that paper, the result on Cotor follows. Using the explicit
formula for the differential, it is also clear that it is nothing more or less than
the Spencer differential. ¤

At this point, we can easily give the proof of Proposition 3.13:

Proof. Theorems 5.1 and 5.2 show that a finitely generated comodule N ⊆ Cm

is involutive if and only if TorA(M,k) vanishes in positive degrees where M =
Am/N⊥ as usual. But it is well known that TorA(M,k) is finite dimensional over
k (a simple argument is given e.g. in [11]). Thus if we define the desuspension
of a module by

s−1(M)n = Mn+1

we see that since Tor is finite dimensional over k, it must be the case that
Tor(s−r(M),k) is zero in positive degrees for some r where inductively, s−r(M)
= s−1(s−r+1(M)), but by Proposition 2.6, we have that N∗ ∼= M so it is clear
that desuspension corresponds exactly to prolongation. ¤

The proof of Theorem 5.5 is also an easy consequence of Theorems 5.1 and
5.2 and the above Theorem 6.5.
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7. Perturbing Resolutions

In [49], it is shown that if I is an ideal of the polynomial algebra A and
there is a given term order (cf. Section 2.1) on A and M is the ideal of leading
terms of I, the Lyubeznik resolution of M over A can be “perturbed” into a
resolution of I over A. An explicit algorithm for doing this was given and is
based on homological perturbation theory (described below) and Gröbner basis
theory. While we do not need the full thrust of [49], we briefly describe the
results in a section below since we will present a corollary and we also want to
elaborate on an algorithm for calculating minimal resolutions which was used
in that paper without discussion.

7.1. The Perturbation Lemma. Given an SDR (4.13)

X
∇-

¾
f

(Y, φ)

and, in addition, a second differential d′Y on Y , let t = d′Y −dY . The perturbation
lemma, [3, 10, 35, 54] states that if we set tn = (tφ)n−1t, n ≥ 1 and if we, for
each n, define new maps on X,

∂n = d + f(t1 + t2 + · · ·+ tn−1)∇
∇n = ∇+ φ(t1 + t2 + · · ·+ tn−1)∇,

and on Y :

fn = f + f(t1 + t2 + · · ·+ tn−1)φ

φn = φ + φ(t1 + t2 + · · ·+ tn−1)φ,

then in the limits, provided they exist, we have new SDR data

(X, ∂∞)
∇∞-
¾
f∞

((Y, d′Y ), φ∞) .

Remark 7.1. The difference t of the differentials above is called the initiator
in [3]. And the situation above is called a transference problem. Examples and
more information can be found in [3, 4, 10, 35, 36, 37, 42, 43, 48, 49, 54, 55, 56,
57, 58, 60].

7.2. Perturbing Resolutions of Monomial Modules. Consider now the
Lyubeznik resolution L (4.4). It was shown in [49] that the contracting homo-
topy ψ defined by (4.6) satisfies ψ(L) ⊆ L, so that ψ is also a homotopy for L.
In order to get an SDR of A/N and L, we need a normal form as above. As
in [49], by defining ε(a ⊗ 1) = a + N and requiring it to vanish otherwise and
defining σ : A/N - L by σ(a + N) = remN(a)⊗ 1 we obtain an SDR

N
σ -

¾
ε

(L, ψ) (7.1)
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It was noted in [49] that X = L (the Lyubeznik resolution) and Y = B(k,M)
satisfy the hypotheses of Lemma 4.5. Thus we have an explicit SDR

L
∇L-

¾
fL

(B(k,M), φL) . (7.2)

All this brings us to the main theorem of [49].

Theorem 7.2. Let A = k[x1, . . . , xn] be the polynomial algebra and I ⊆ A be
an ideal. Let G be a Gröbner basis for I with respect to some term order. Let
N = lt(I) be the ideal of leading terms of elements of I, so that N is generated
by {lt(g) | g ∈ G}. Gröbner basis theory gives that as vector spaces over k,

A/N ∼= A/I.

Thus, B(k, A/N) ∼= B(k, A/I) as vector spaces (i.e. ignoring differentials).
Using this isomorphism and the SDR (7.2), we obtain a transference problem.
The perturbation formulae presented in Section 7.1 converge in this case and we
therefore obtain a relatively free resolution (L, d∞) of A/M over A of the form

d∞ = d + P

where d is the ordinary Lyubeznik differential and P is an explicit perturbation.
There is furthermore an explicit SDR

(L, d∞)
∇∞-
¾
f∞

(B(k, A/N), φ∞) . (7.3)

We now have the following corollary.

Corollary 7.3. Let Φ be the composite chain map

(L̄, d̄∞)
∇∞- B̄(A)⊗ A/N

τ- A/N ⊗ B̄(A)
f̄K- A/N ⊗ K̄

where, as usual, L̄ = k ⊗A L etc. and the second map is determined by (4.1)
while the third map is determined by (4.21). Then Φ induces an isomorphism
in homology.

Remark 7.4. When the Taylor resolution involving the monomial ideal I =
(m1, . . . ,mk) is minimal, it is the same as the Lyubeznik resolution and in that
case, Fröberg [27] defined an explicit map ρ from T̄ to the Koszul complex M⊗K̄
as follows. When T is minimal, the monomial generators mi = x

αi,1

1 . . . x
αi,n
n can

be arranged so that if i 6= j, αj,j > αi,j. With the monomials indexed this way,
the map is given by

ρ(uI) =
mI

xi1 . . . xir

wi1 . . . wir

where I = (i1, . . . , ir) and the wj are the generators of the Koszul complex. The
map Φ generalizes this chain equivalence to all cases.
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7.3. Finitely Presented Modules. Consider modules M that are finitely pre-
sented over the polynomial algebra A. Thus, M = Ar/I for some finitely gen-
erated submodule I ⊆ Ar. The notion of Gröbner bases extends to this case,
i.e. one has the notion of a Gröbner basis for M with respect to a monomial
order and there is a normal form algorithm with respect to a given monomial
order. A good reference for all of this is [44].

A submodule I ⊆ Ar is said to be a monomial submodule, if it has a basis
B such that every element of B is of the form (m1, . . . , mr) where mi ∈ A
is a monomial for all i = 1, . . . , r. Fixing a given monomial order, every ele-
ment of m ∈ I has a leading term lt(m) just as in the case r = 1. We let
lt(I) = {lt(m) |m ∈ I}. It is clear that lt(I) is a monomial submodule for
any submodule I.

Note that for M = Ar/I, the resolution B(A,M) is exactly as defined in
Section 4.5. The resolutions K and B(A,k) are also exactly as defined in Sects.
4.2 and 4.5, so these may be used to compute TorA(k,M) and TorA(M,k) for
any finitely generated module M . The Taylor and Lyubeznik resolutions can
be applied coordinate-wise in this case. With this said, all of the results of this
Section apply verbatim.

7.4. Minimal Resolutions of Monomial Modules. If one is only interested
in computing TorA(M,k), this algorithm may seem a bit tautological, but there
are reasons that one might want actual resolutions in general, of course.

We need the notion of a homology decomposition [41]. An explicit algorithm
for computing a homology decomposition of a chain complex X of finite type
over k was given in [49, Section 7]. A homology decomposition of X is a direct
sum decomposition of the form

X = K ⊕B ⊕H

where H is isomorphic to the homology of X, B = im (d) is the subspace of
boundries and furthermore, there are explicit bases for K, B, and H for which
the differential d is locally diagonal. Using the basis for H, we identify it
with the homology. It is pointed out in [49, Section 7.2] that such a homology
decomposition gives rise to an explicit SDR

H
ι -

¾
f

(X,φ)

where ι is the inclusion and φ is essentially the inverse to d locally (where it is
non-zero).

Note that there are very efficient algorithms for computing homology based
on Smith normal form [19, 45]. Using the system described in [47], the first
author implemented the homology decomposition of a chain complex and these
programs were used for all the computations in Section 8.

If X - M - 0 is a minimal resolution then the complex X ⊗A k
for computing TorA(k,M) has zero differential, i.e. TorA(k,M) ∼= k⊗A X. So
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suppose that the Lyubeznik (or some other) resolution is such that the homology
decomposition of L̄ = k ⊗A L can be efficiently computed. We then consider
the corresponding homology SDR

H
ῑ-

¾
f̄

(
L̄, φ̄

)
.

given by a homology decomposition of L̄. We would like to set up a transference
problem (Remark 7.1) and “transfer” the differential from L = A⊗H to A⊗ L̄.
But it is clear how to obtain an initiator for this and we have the

Algorithm 7.5. Let L be the Lyubeznik resolution and

H
ῑ -

¾
f̄

(
L̄, φ̄

)

the corresponding homology SDR. Consider the tensor product SDR

A⊗H
ι-

¾
f

(
A⊗ L̄, φ

)
(7.4)

where ι = 1A ⊗ ῑ, f = 1A ⊗ f̄ , φ = 1A ⊗ φ̄, and A⊗ L̄ has differential 1a ⊗ d̄.
Let the initiator be t = d − (1 ⊗ d̄). Note that by the definition of the

Lyubeznik differential, d̄(x), for x ∈ L̄, consists of those terms of d(x) which
have constant coefficients. Thus, t(x) will consist of those terms of d(x) having
non-trivial polynomial coefficients. Consider the perturbed differential given by
the perturbation lemma:

d∞ = ft + f(tφt) + · · ·+ f
(
(tφ)nt

)
+ . . . (7.5)

If d∞ converges, we obtain the minimal resolution of M over A given by

(A⊗H, d∞).

Remark 7.6. At this time, we have not been able to show that, in general,
tφ is nilpotent in each degree, but we have examined many examples using
a computer. In each example, the following is true. For each uI , there is a
non-negative integer nI such that (tφ)nI (uI) lands in A ⊗ (K ⊕ H) (see the
second paragraph of Section 7.4). It follows that φ

(
(tφ)nI (uI)

)
= 0 and so tφ

is nilpotent in this degree. Examples will be given in Section 8.

8. Computations

8.1. Example 1. Consider the example A = k[x, y, z], I = (x2z3, x3z2, xyz, y2),
and M = A/I from [5, Example 3.4]. The Lyubeznik resolution L is the same
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as the Taylor resolution in this case and is given by

d(u1) = x2z3

d(u2) = x3z2

d(u3) = xyz

d(u4) = y2

d(u1u2) = −xu1 + zu2

d(u1u3) = −yu1 + xz2u3

d(u1u4) = −y2u1 + x2z3u4

d(u2u3) = −yu2 + x2zu3

d(u2u4) = −y2u2 + x3z2u4

d(u3u4) = −yu3 + xzu4

d(u1u2u3) = yu1u2 − xu1u3 + zu2u3

d(u1u2u4) = y2u1u2 − xu1u4 + zu2u4

d(u1u3u4) = yu1u3 − u1u4 + xz2u3u4

d(u2u3u4) = yu2u3 − u2u4 + x2zu3u4

d(u1u2u3u4) = −yu1u2u3 + u1u2u4 − xu1u3u4 + zu2u3u4

From this it is easy to see that

TorA
1 (M,k) = k 〈u1, u2, u3, u4〉 ,

TorA
2 (M,k) = k 〈u1u2, u1u3, u2u3, u3u4〉 ,

TorA
3 (M,k) = k 〈u1u2u3〉 .

Using the algorithm from the last section, we consider a homology decomposi-
tion of L̄ to obtain an SDR

H
∇̄-

¾
f̄

(
L̄, φ̄

)

where H = TorA(M,k) = H(L̄) and corresponding SDR

A⊗H
∇-

¾
f

(
A⊗ L̄, φ

)

where ∇ = 1A⊗ ∇̄, f = 1A⊗ f̄ , and L = A⊗ Ā has differential 1A⊗ d̄. Taking
the initiator to be t = d = d̄, we have a transference problem.
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In this case, the homology decomposition is so simple that it can be seen by
inspection. We have

L̄1 = H1

L̄2 = B2 ⊕H2

L̄3 = K3 ⊕B3 ⊕H3

L̄4 = K4

where

H1 = k 〈u1, u2, u3, u4〉 , B2 = k 〈−u1u4,−u2u4〉 ,
H2 = k 〈u1u2, u1u3, u2u3, u3u4〉 , K3 = k 〈u1u2u3, u2u3u4〉 ,
B3 = k 〈u1u2u4〉 , H3 = k 〈u1u2u3〉 , K4 = 〈u1u2u3u4〉 .

From this it follows that

φ̄(u1u2u4) = u1u2u3u4

and φ̄ vanishes on all other elements. Thus, the perturbation is zero in this case
and we have the minimal resolution given by

d(u1) = x2z3

d(u2) = x3z2

d(u3) = xyz

d(u4) = y2

d(u1u2) = −xu1 + zu2

d(u1u3) = −yu1 + xz2u3

d(u2u3) = −yu2 + x2zu3

d(u3u4) = −yu3 + xzu4

d(u1u2u3) = yu1u2 − xu1u3 + zu2u3.

Note that this also gives b2,1 = 1, b3,1 = 1, b5,1 = 2, b4,2 = 1, b6,2 = 3, and
b7,3 = 1 where bi,j = dimk(TorA

i,j(M,k) where the bigrading is the one given in
Section 4.2.

8.2. Example 2. Consider the ideal

I = (x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3)

in A = k[x, y, z]. The Taylor resolution has dimension 210 = 1024 and so is not
very good for computations. The Lyubeznik resolution however has dimension
207 and contains “forms” only up to degree 7 (there is only one 7-form, viz.
u1u2u4u7u8u9u10. Using the algorithm given in [49, Section 7] (and a computer),
it is quite easy to compute a homology decomposition of L̄. We find that

K1 = 0, B1 = 0, H1 = k10,

K2 = 0, B2 = k20, H2 = k15,

K3 = k20, B3 = k35, H3 = k6,
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K4 = k35, B4 = k24, H4 = 0,

K5 = k24, B5 = k8, H5 = 0,

K6 = k8, B6 = k, H6 = 0,

K7 = k, B7 = 0, H7 = 0.

Since Hi for i ≥ 4 are all zero, we need only consider the map φ2 : L2
- L3.

We have that

H1 = k 〈u1, . . . , u10〉
and the differential is as in L. We also have that

H1 =

k 〈u1u2,u1u3,u2u3,u2u4,u2u5,u3u6,u4u5,u4u8,u5u6,u5u9,u6u10,u7u8,u8u9,u9u10〉
and the differential is as in L. Finally,

H3 =

k 〈u1u2u3,u2u3u6 − u2u5u6,u2u4u5,u4u5u9,u4u8u9, u4u7u8,u5u6u10,−u5u9u10〉
and while φ2 is generally non-zero, it vanishes on each of t(x) for x ∈ H3. In
fact, each t(x) for x ∈ H3 is a linear combination of elements in H2, so the
perturbation vanishes once more and the differential is as it is in L.

8.3. Example 3. Consider the ideal I = (x4y, x3yz, xy3, xy2z, xyz2, y3z) in
A = k[x, y, z]. The Lyubeznik resolution has dimension 39 in this case. The
non-zero differentials in the reduced complex are

d̄(u1u2u4) = −u1u4

d̄(u1u2u5) = −u1u5

d̄(u1u2u6) = −u1u6

d̄(u1u3u6) = −u1u6

d̄(u2u3u4) = u2u3

d̄(u2u3u6) = u2u3 − u2u6

d̄(u3u4u5) = −u3u5

d̄(u1u2u3u4) = −u1u2u3 − u1u3u4

d̄(u1u2u3u5) = −u1u3u5

d̄(u1u2u3u6) = −u1u2u3 + u1u2u6 − u1u3u6

d̄(u1u2u4u5) = −u1u4u5

d̄(u1u3u4u5) = u1u3u5

d̄(u2u3u4u5) = u2u3u5

d̄(u1u2u3u4u5) =− u1u2u3u5 − u1u3u4u5
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Again, a straightforward calculation gives the homology decomposition

K1 = 0,

B1 = 0,

H1 = k 〈u1,u2,u3,u4,u5,u6〉 ,

K2 = 0,

B2 = k 〈−u1u4,−u1u5,−u1u6,u2u3,u2u3 − u2u6,−u3u5〉 ,
H2 = k 〈u1u2,u1u3,u2u4,u2u5,u3u4,u3u6,u4u5〉 ,

K3 = k 〈u1u2u4,u1u2u5,u1u3u6,u2u3u4,u2u3u6,u3u4u5〉 ,
B3 =k〈−u1u2u3−u1u3u4,−u1u3u5,−u1u2u3+u1u2u6−u1u3u6,−u1u4u5,u2u3u5〉 ,

H3 = k 〈u1u2u3,u2u4u5〉 ,

K4 = k 〈−u1u3u4u5,u1u2u3u6,u1u2u4u5,u2u3u4u5〉 ,
B4 = k 〈−u1u2u3u5 − u1u2u3u4〉 ,

H4 = 0,

K5 = k 〈u1u2u3u4u5〉 ,
B5 = 0,

H5 = 0.

The splitting homotopy is zero in degrees 0 and 1. Thus, the differential in
degrees 1 and 2 are as they are in L. In degree 3, we have

t(u1u2u3) = y2u1u2 − zu1u3 + xu2u3

t(u2u4u5) = zu2u4 − yu2u5 + x2u4u5.

Note that since u2u3 is not in H2, so we expect some non-trivial action using
our method in this case. In fact, our calculations show that φ vanishes on all
terms involved in the right hand sides above except in one case, viz.

φ(u2u3) = u2u3u4.

We thus consider

α = tφ(y2u1u2 − zu1u3 + xu2u3)

= xt(u2u3u4)

= x(−yu2u4 + x2u3u4)

= −xyu2u4 + x3u3u4.

We now note that φ vanishes on both u2u4 and u3u4, so the perturbation con-
verges, i.e. φtφ(y2u1u2 − zu1u3 + xu2u3) = 0. We now note that

(d̄φ + φd̄)(u2u3) = d̄(u2u3u4) = u2u3
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and so f(u2u3) = 0. Thus, we have

d∞(u1u2u3) = f(y2u1u2 − zu1u3 + xu2u3 + xyu2u4 − x3u3u4)

= y2u1u2 − zu1u3 + xyu2u4 − x3u3u4.

Finally, we note that φ vanishes on t(u2u4u5) and so we have derived the minimal
resolution of M over A given by

d∞(u1) = x4y

d∞(u2) = x3yz

d∞(u3) = xy3

d∞(u4) = xy2z

d∞(u5) = xyz2

d∞(u6) = y3z

d∞(u1u2) = −zu1 + xu2

d∞(u1u3) = −y2u1 + x3u3

d∞(u2u4) = −yu2 + x2u4

d∞(u2u5) = −zu2 + x2u5

d∞(u3u4) = −zu3 + yu4

d∞(u3u6) = −zu3 + xu6

d∞(u4u5) = −zu4 + yu5

d∞(u1u2u3) = y2u1u2 − zu1u3 + xyu2u4 − x3u3u4

d∞(u2u4u5) = zu2u4 − yu2u5 + x2u4u5

Acknowledgement

This work has been financially supported by Deutsche Forschungsgemein-
schaft (WMS) and by INTAS grant 99-1222 (LAL and WMS).

References

1. J. F. Adams, On the cobar construction. Colloque de topologie algébrique, Louvain, 1956,
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50. E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen. Teubner,
Leipzig, 1934.

51. E. R. Kolchin, Differential algebra and algebraic groups. Academic Press, New York,
1973.

52. I. S. Krasilshik, V. V. Lychagin, and A. M. Vinogradov, Geometry of jet spaces
and nonlinear partial differential equations. Gordon & Breach, New York, 1986.

53. M. Kuranishi, On E. Cartan’s prolongation theorem of exterior differential systems.
Amer. J. Math. 79(1957), 1–47.

54. L. A. Lambe, Entry on homological perturbation theory in the Encyclopaedia of Math-
ematics. Supplement II, Kluwer, 2000.

55. L. A. Lambe, Resolutions via homological perturbation. J. Pure Appl. Algebra 12(1991),
71–87.

56. L. A. Lambe, Homological perturbation theory, Hochschild homology, and formal groups.
Deformation theory and quantum groups with applications to mathematical physics
(Amherst, MA, 1990), 183–218, Contemp. Math., 134, Amer. Math. Soc., Providence,
RI, 1992.

57. L. A. Lambe, Resolutions which split off of the bar construction. J. Pure Appl. Algebra
84(1993), No. 3, 311–329.

58. L. A. Lambe, Next generation computer algebra systems AXIOM and the scratchpad
concept: applications to research in algebra. Analysis, algebra, and computers in math-
ematical research (Lule̊a, 1992), 156, Lecture Notes in Pure and Appl. Math., 201–222.
Dekker, New York, 1994.

59. L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation
and quantum groups: an algebraic approach. Kluwer, Dordrecht, 1997.

60. L. A. Lambe and J. D. Stasheff, Applications of perturbation theory to iterated
fibrations. Manuscripta Math. 58(1987), No. 3, 363–376.

61. G. Lyubeznik, A new explicit finite free resolution of ideals generated by monomials in
an R-sequence. J. Pure Appl. Algebra 51(1988), No. 1-2, 193–195.

62. S. Mac Lane, Homology. Reprint of the 1975 edition. Classics in Mathematics. Springer-
Verlag, Berlin, 1995.

63. E. L. Mansfield, A simple criterion for involutivity. J. London Math. Soc. 54(1996),
No. 2, 323–345.
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