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Abstract. In this paper, most of classical and modern convergence theorems
of iterative schemes for nonexpansive mappings are presented and the main
results in the paper generalize and improve the corresponding results given
by many authors.
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1. Introduction and Preliminaries

In this paper, we will present several strong and weak convergence results
of successive approximations to fixed points of nonexpansive mappings in uni-
formly convex Banach spaces. The results presented in this paper generalize
and improve various ones concerned with constructive techniques for approxi-
mations of fixed points of nonexpansive mappings (cf. [1]–[18]).

Let X be a real normed linear space and C be a nonempty subset of X. A
mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. Furthermore, T is said to be quasi-nonexpansive if the set F (T )
of fixed points of T is not empty, for all x ∈ D(T ) and, for y ∈ F (T ),

‖Tx− y‖ ≤ ‖x− y‖. (1.1)

Remark 1.1. Nonexpansive mappings with the nonempty fixed point set F (T )
are quasi-nonexpansive, and linear quasi-nonxpansive mappings are nonexpan-
sive, but it is easily seen that there exist nonlinear continuous quasi-nonexpansive
mappings which are not nonexpansive, for example, consider a mapping T de-
fined by Tx = (x

2
) sin( 1

x
) with T (0) = 0 on R.

There are two important connections between the classes of nonexpansive
mappings and accretive mappings which give rise to a strong connection between
the fixed point theory of nonexpansive mappings and the theory of accretive
mappings.

Note that
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(1) If T is a nonexpansive mapping of D(T ) into X and if we set U = I − T
D(U) = D(T ), then U is an accretive mapping of D(U) into X.

(2) If {U(t) : t ≥ 0} is a semigroup of (nonlinear) mappings of X into itself
with infinitesimal generator T , then all the mappings U(t) are nonexpansive if
and only if (−T ) is accretive.

Let X be a normed linear space, C be a nonempty convex subset of X and
T : C → C be a given mapping. Then, for arbitrary x1 ∈ C, the Ishikawa
iterative scheme {xn} is defined by





yn = (1− sn)xn + snTxn, n ≥ 1,

xn+1 = (1− tn)xn + tnTyn, n ≥ 1,
(IS)

where {sn} and {tn} are some suitable sequences in [0, 1]. With X, C, {tn}
and x1 as above, the Mann iterative scheme {xn} is defined by





x1 ∈ C,

xn+1 = (1− tn)xn + tnTxn, n ≥ 1.
(M)

We now begin with a serial of lemmas which will be needed in the sequel for
the proof of our main theorems:

Lemma 1.1. Let X be a real normed linear space, C be a nonempty convex
subset of X and T : C → C be a nonexpansive mapping. If {xn} is the iterative
scheme defined by (IS), then the following holds:

‖xn+1 − Txn+1‖ ≤ (1 + 2τn)‖xn − Txn‖
for all n ≥ 1, where τn = min{tn, 1 − tn}sn. In particular, ‖xn+1 − Txn+1‖ ≤
‖xn − Txn‖ if sn ≡ 0 and limn→∞ ‖xn − Txn‖ exists.

Proof. By Tan and Xu [15, Lemma 3], we have the following estimation:

‖xn+1 − Txn+1‖ ≤ [1 + 2sn(1− tn)]‖xn − Txn‖. (1.2)

Observe that

‖xn − Tyn‖ ≤ ‖xn − Txn‖+ ‖xn − yn‖ ≤ ‖xn − Txn‖+ sn‖xn − Txn‖
= (1 + sn)‖xn − Txn‖. (1.3)

It follows that

‖xn+1 − Txn+1‖ ≤ (1− tn)‖xn − Txn+1‖+ tn‖Tyn − Txn+1‖
≤ (1− tn)(‖xn − Txn‖+ ‖xn − xn+1‖) + tn‖yn − xn+1‖
≤ (1− tn)‖xn − Txn‖+ ‖xn − xn+1‖+ tnsn‖xn − Txn‖
≤ (1 + 2tnsn)‖xn − Txn‖. (1.4)

Combining (1.2) with (1.4), we reach the desired conclusion. This completes
the proof.
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Lemma 1.2. Let {an} and {bn} be two sequences of nonnegative numbers
such that

an+1 ≤ (1 + bn)an (1.5)

for all n ≥ 1. If
∑∞

n=1 bn converges, then limn→∞ an exists. In particular,
an → 0 as n →∞ whenever {an} admits a subsequence which converges to 0.

Proof. For n, m ≥ 1, we have

an+m+1 ≤ (1 + bn+m)an+m ≤ · · · ≤
n+m∏

j=n

(1 + bj)an, (1.6)

which infers that {an} is bounded since
∑

n bn converges. Set M = sup{an :
n ≥ 1}. Then (1.5) reduces to

an+1 ≤ an + Mbn

for all n ≥ 1. Now the conclusion follows from Lemma 1 of Tan and Xu [15].
This completes the proof.

The modulus of convexity of a real Banach space X is defined by

δX(ε) = inf
{
1−

∥∥∥∥
1

2
(x + y)

∥∥∥∥ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}

for all ε ∈ [0, 2]. X is said to be uniformly convex if δX(0) = 0 and δX(ε) > 0
for all 0 < ε ≤ 2.

Lemma 1.3. Let X be a uniformly convex Banach space with the modulus of
uniform convexity δX . Then δX : [0, 2] → [0, 1] is a continuous and increasing
function with δX(0) = 0 and δX(t) > 0 for t > 0 and, further,

‖cu + (1− c)v‖ ≤ 1− 2 min{c, 1− c}δX(‖u− v‖) (1.7)

whenever 0 ≤ c ≤ 1 and ‖u‖, ‖v‖ ≤ 1.

Proof. See Bruck [3].

Let X be a real Banach space with a norm ‖ · ‖ and S = {x ∈ X : ‖x‖ = 1}
be its unit sphere. The norm of X is said to be Fréchet differentiable if, for each
x ∈ S, the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists and is attained uniformly in y ∈ S. For x 6= 0 and y ∈ X, we denote
this limit by (x, y). It is known that X has a Fréchet differentiable norm if
and only if X is strongly smooth. In this case, the normalized duality mapping
J : X → X∗ is single-valued and continuous from the strong topology of X to
the strong topology of X∗. As a matter of facts above mentioned, it is clear
that

(x, c1y1 + c2y2) = c1(x, y1) + c2(x, y2)

for all c1, c2 ∈ R, x ∈ X with x 6= 0 and y1, y2 ∈ X.
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Lemma 1.4 ([11]). Let C be a nonempty closed convex subset of a uniformly
convex Banach space X with a Frechet differentiable norm and {Tn : n ≥ 1} be
a family of nonexpansive self-mappings of C with the nonempty common fixed
point set F . If x1 ∈ C and define a sequence {xn} in C by xn+1 = Tnxn for all
n ≥ 1, then limn→∞(f1 − f2, xn) exists for all f1, f2 ∈ F with f1 6= f2.

2. The Main Results

Now we prove the following convergence theorems:

Theorem 2.1. Let X be a real uniformly convex Banach space, C be a
nonempty closed convex (not necessarily bounded) subset of X and T : C → C
be a nonexpansive mapping. Let {xn} be the iterative scheme defined by (IS)
with the restrictions that

∑∞
n=1 tn(1− tn) = ∞ and

∑∞
n=1 τn < ∞, where τn is as

in Lemma 1.1. Then, for arbitrary initial value x1 ∈ C, {‖xn−Txn‖} converges
to same constant rC(T ), which is independent of the choice of the initial value
x1 ∈ C. In particular, if τn ≡ 0, then

rC(T ) = inf{‖x− Tx‖ : x ∈ C}.
Proof. It follows from Lemmas 1.1 and 1.2 that limn→∞ ‖xn − Txn‖ exists.
We denote this limit by r(x1). Let {x∗n} be another Ishikawa iterative scheme
defined by (IS) with the same restrictions on parameters {tn} and {sn} as the
sequence {xn} but with the initial value x∗1 ∈ C. Then r(x∗1) = limn→∞ ‖x∗n −
Tx∗n‖.

It suffices to prove that r(x1) = r(x∗1). Since ‖xn+1 − x∗n+1‖ ≤ ‖xn − x∗n‖, we
have limn→∞ ‖xn − x∗n‖ exists, which denoted this limit by d. Without loss of
generality, we assume that d > 0. Observe that

xn+1 − x∗n+1 = tn(Tyn − Ty∗n) + (1− tn)(xn − x∗n)

and

‖Tyn − Ty∗n‖ ≤ ‖xn − x∗n‖.
By using Lemma 1.3, we have

‖xn+1 − x∗n+1‖ ≤
[
1− 2tn(1− tn)δX

(‖xn − x∗n − (Tyn − Ty∗n)‖
‖xn − x∗n‖

)]
‖xn − x∗n‖,

which implies that

∞∑

n=1

tn(1− tn)δX

(‖xn − x∗n − (Tyn − Ty∗n)‖
‖xn − x∗n‖

)
< ∞.

Since tn(1− tn)sn ≤ τn and
∑∞

n=1 τn < ∞, we have
∑∞

n=1 tn(1− tn)sn < ∞ and
hence

∞∑

n=1

tn(1− tn)

[
δX

(‖xn − x∗n − (Tyn − Ty∗n)‖
‖xn − x∗n‖

)
+ sn

]
< ∞.
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Since
∑∞

n=1 tn(1− tn) = ∞, we conclude

lim inf
n→∞

[
δX

(‖xn − x∗n − (Tyn − Ty∗n)‖
‖xn − x∗n‖

)
+ sn

]
= 0.

Since δX is strictly increasing and continuous and limn→∞ ‖xn − x∗n‖ = d > 0,
we have

lim
k→∞

‖xnk
− x∗nk

− (Tynk
− Ty∗nk

)‖ = 0

and limk→∞ snk
= 0. On the other hand, we have

|‖xnk
− Txnk

‖ − ‖x∗nk
− Tx∗nk

‖| ≤ ‖(xnk
− Txnk

)− (x∗nk
− Tx∗nk

)‖
≤ ‖xnk

− x∗nk
− (Tynk

− Ty∗nk
)‖+ ‖Txnk

− Tynk
‖+ ‖Tx∗nk

− Ty∗nk
‖

≤ ‖xnk
− x∗nk

− (Tynk
− Ty∗nk

)‖
+ snk

(‖xnk
− Txnk

‖+ ‖x∗nk
− Tx∗nk

‖), (2.1)

which converges to 0 as k →∞. This leads to

lim
n→∞ |‖xn − Txn‖ − ‖x∗n − Tx∗n‖| = 0.

Therefore, we have r(x1) = r(x∗1).
If τn ≡ 0, then ‖xn+1 − Txn+1‖ ≤ ‖xn − Txn‖ for all n ≥ 1 and so r(x1) ≤

‖x1 − Tx1‖ for every x1 ∈ C, which implies that

rC(T ) = inf{‖x− Tx‖ : x ∈ C}.
This completes the proof.

Theorem 2.2. Let X, C and T be as in Theorem 2.1. Then the following
statements are equivalent:

(i) F (T ) 6= ∅.
(ii) For any specific x1 ∈ C, the sequence {xn} of Picard iterates defined by

xn = T nx1 starting at x1 is bounded in C.
(iii) For every x1 ∈ C, the Ishikawa iterative scheme {xn} defined by (IS)

with the restrictions that tn → t > 0 and sn → s < 1 as n → ∞ is
bounded.

(iv) There is a bounded sequence {yn} ⊂ C such that yn−Tyn → 0 as n →∞.
(v) For every x1 ∈ C, the Ishikawa iterative scheme {xn} defined by (IS) with

the restrictions that 0 ≤ tn ≤ t < 1,
∑∞

n=1 tn = ∞ and
∑∞

n=1 sn < ∞ is
bounded.

Moreover, let {xn} be the sequence as in Theorem 2.1. Then ‖xn−Txn‖ → 0
as n →∞ provided that one of the above conditions (i)∼(v) holds.

Proof. For (i)⇐⇒(ii), we may see Browder and Petryshyn [1, Theorem 1, p.
571]. For (i)⇐⇒(v) and (i)⇐⇒(iv), we may consult with the result of Deng [6]
and references there.
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Now, we will prove the equivalence of (i) and (iii) only. It is sufficient to prove
that {Tmz} is bounded for all z ∈ C. Now we choose z ∈ C. For arbitrary but
fixed m ≥ 1, using (IS), we have

‖yn − Tm−1z‖ ≤ (1− sn)‖xn − Tm−1z‖+ sn‖xn − Tm−2z‖ (2.2)

and

‖xn+1 − Tmz‖ ≤ (1− tn)‖xn − Tmz‖+ tn‖yn − Tm−1z‖
≤ (1− tn)‖xn − Tmz‖+ tn(1− sn)‖xn − Tm−1z‖

+ tnsn‖xn − Tm−2z‖. (2.3)

Since {xn} is bounded, by taking lim sup on the both sides of (2.3), we have

lim sup
n→∞

‖xn − Tmz‖ ≤ (1− s) lim sup
n→∞

‖xn − Tm−1z‖+ s lim sup
n→∞

‖xn − Tm−2z‖.

Set am = lim supn→∞ ‖xn − Tmz‖. Then it follows that

am ≤ (1− s)am−1 + sam−2. (2.4)

By induction, we can prove that

am ≤
[

m−1∑

j=0

(−1)jsj

]
a1 +

[
s

m−2∑

j=0

(−1)jsj

]
a0 (2.5)

for all m ≥ 2. Indeed, it is true for m = 2. Now we assume that it is true for
the integers that are less than m and we have to prove that it is also true for
m. By induction assumption, we have

am−1 ≤
[

m−2∑

j=0

(−1)jsj

]
a1 +

[
s

m−3∑

j=0

(−1)jsj

]
a0 (2.6)

and

am−2 ≤
[

m−3∑

j=0

(−1)jsj

]
a1 +

[
s

m−4∑

j=0

(−1)jsj

]
a0. (2.7)

Substituting (2.6) and (2.7) in (2.4) yields that

am ≤ (1− s)

{[
m−2∑

j=0

(−1)jsj

]
a1 +

[
s

m−3∑

j=0

(−1)jsj

]
a0

}
+ s

{[
m−3∑

j=0

(−1)jsj

]
a1

+

[
s

m−4∑

j=0

(−1)jsj

]
a0

}
≤

[
m−1∑

j=0

(−1)jsj

]
a1 +

[
s

m−2∑

j=0

(−1)jsj

]
a0, (2.8)

which proves our claim. It follows from (2.8) that

am ≤ 1

1 + s
a1 +

s

1 + s
a0 ≤ max{a0, a1}

for all m ≥ 1, which proves the boundedness of {Tmz}. This completes the
proof.
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Recall that a Banach space X is said to satisfy Opial’s condition [10] if, for
each sequence {xn} in X, the condition xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X with y 6= x. It is well known from [10] that all lp spaces for
1 < p < ∞ have this property. However, the Lp space do not have unless p = 2.

We say also that a mapping T : C → C is said to satisfy the Condition (A) if
F (T ) 6= ∅ and there is a non-decreasing function f : R+ → R+ with f(0) = 0
and f(r) > 0 for all r > 0 such that

‖x− Tx‖ ≥ f(d(x, F (T )))

for all x ∈ C, where d(x, F (T )) = inf{‖x− z‖ : z ∈ F (T )}.
Theorem 2.3. Let X be a real uniformly convex Banach space with a Fréchet

differentiable norm or which satisfies Opial’s condition, C be a closed convex
subset of X and T : C → C be a nonexpansive mapping with a nonempty
fixed point set F (T ). Then, for any initial value x1 ∈ C, the Ishikawa iterative
scheme {xn} defined by (IS) with the restrictions that

∑∞
n=1 tn(1− tn) = ∞ and∑∞

n=1 τn < ∞, where τn = min{tn, 1 − tn}sn, converges weakly to a fixed point
of T .

Proof. Set Tnx = tnT (snTx + (1 − sn)x) + (1 − tn)x for all x ∈ C and n ≥ 1.
Then the mapping Tn : C → C is also nonexpansive and the Ishikawa iterative
scheme {xn} defined by (IS) can be written as

xn+1 = Tnxn

for all n ≥ 1. Furthermore, we have F (T ) ⊂ F (Tn) for all n ≥ 1. Let ωw(xn)
denote the weak ω-lim set of the sequence {xn}. Since F (T ) 6= ∅, by Theorem
2.2, we see that

xn − Txn → 0

as n → ∞. Without loss of generality, assume that xn ⇀ p as n → ∞. By
Browder’s demi-closedness principle, we assert that Tp = p, which gives that
ωw(xn) ⊂ F (T ).

To show that {xn} converges weakly to a fixed point of T , it suffices to show
that ωw(xn) consists of exactly one point. To this end, we first assume that X
satisfies Opial’s condition and suppose that p 6= q are in ωw(xn). Then xnk

→ p
and xmk

→ q respectively. Since limn→∞ ‖xn − z‖ exists for any z ∈ F (T ), by
Opial’s condition, we conclude

lim
n→∞ ‖xn − p‖ = lim

k→∞
‖xnk

− p‖ < lim
k→∞

‖xnk
− q‖

= lim
j→∞

‖xmj
− q‖ < lim

j→∞
‖xmj

− p‖ = lim
n→∞ ‖xn − p‖,

which is a contradiction.
We now assume that X has a Fréchet differentiable norm and suppose that

f1, f2 ∈ ωw(xn) with f1 6= f2. It follows from Lemma 1.4 that (f1 − f2, f1) =



598 H. Y. ZHOU, R. P. AGARWAL, Y. J. CHO, AND Y. S. KIM

(f1 − f2, f2), which means that f1 = f2, which is a contradiction again. This
completes the proof.

Theorem 2.4. Let X, C, T and {xn} be as in Theorem 2.1. Suppose, in
addition, that F (T ) 6= ∅ and T satisfies the Condition (A). Then the iterative
scheme {xn} converges strongly to a fixed point of T .

Proof. It follows from Theorem 2.2 that xn − Txn → 0 as n → ∞. In view of
the Condition (A), we have

‖xn − Txn‖ ≥ f(d(xn, F (T )))

for all n ≥ 1, which implies that d(xn, F (T )) → 0 as n → ∞. This leads to
xn → p ∈ F (T ) as n →∞. This completes the proof.

Corollary 2.1. Let X, C, T and {xn} be as in Theorem 2.1. Suppose,
in addition, that T (C) is relatively compact. Then the iterative scheme {xn}
converges strongly to a fixed point of T .

Proof. It follows from Schauder’s Fixed Point Theorem that T has at least a
fixed point in C. Thus F (T ) 6= ∅. Also it is easily seen that T is demicompact,
i.e., whenever {xn} ⊂ C is bounded and {xn − Txn} converges strongly then
there is a subsequence {xnj

} of {xn} which converges strongly. Since T is
continuous as well as demicompact, according to Opial [10], the mapping (I−T )
maps closed bounded subsets of C onto closed subsets of X. In view of Senter
and Dotson [14, Lemma 1], we see that T must satisfy the Condition (A) with
respect to the sequence {xn}. Now Theorem 2.4 can be used to deduce the
conclusion of the corollary. This completes the proof.

Remark 2.1. Theorem 2.4 shows that the Condition (A) is a sufficient con-
dition which guarantees convergence of the iterates {xn} defined by (IS). This
condition is also necessary. Indeed, suppose that xn → p ∈ F (T ). Let A = I−T .
By Xu and Roach [16, Theorem 2], the mapping A satisfies the Condition (I)
(cf. [16]). Thus, from Xu and Roach [16, Theorem 1], there must be a strictly
increasing function f : R+ → R+ with f(0) = 0 and j(xn− p) ∈ J(xn− p) such
that

〈xn − Txn, j(xn − p)〉 ≥ f(‖xn − p‖)‖xn − p‖,
which implies that

‖xn − Txn‖ ≥ f(‖xn − p‖) ≥ f(d(xn, F (T ))).

This establishes the necessity.
For quasi-nonexpansive mappings, we have the following:

Theorem 2.5. Let X be a real uniformly convex Banach space, C be a
nonempty closed convex subset of X and T : C → C be a quasi-nonexpansive
mapping. Let {xn} be the Ishikawa iterative scheme defined by (IS) with the
restriction that

∑∞
n=1 tn(1− tn) = ∞ and Txn − Tyn → 0 as n →∞. Then the

iterative scheme {xn} converges strongly to a fixed point of T if and only if T
satisfies the Condition (A) with respect to the sequence {xn}.
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Proof. (⇒) As shown in Remark 2.1, A = I − T satisfies the Condition (I)
and T satisfies the Condition (A) with respect to the sequence {xn} and so the
necessity follows.

(⇐) By Tan and Xu [15, Lemma 3], we have

lim inf
n→∞ ‖xn − Tyn‖ = 0.

By virtue of assumption that Txn − Tyn → 0, we conclude

lim inf
n→∞ ‖xn − Txn‖ = 0.

It follows from the Condition (A) that there is a subsequence {xnj
} of {xn}

such that d(xnj
, F (T )) → 0 as j →∞. Therefore, we have d(xn, F (T )) → 0 as

n → ∞ since limn→∞ d(xn, F (T )) exists. This leads to the desired conclusion.
This completes the proof.

Corollary 2.2. Let X, C, T and {xn} be as in Theorem 2.5. Suppose in
addition that T is uniformly continuous and sn → 0 as n → ∞. Then the
conclusion of Theorem 2.5 holds.

Proof. Observe that

xn − yn = sn(xn − Txn),

while {‖xn−Txn‖} is bounded and so xn− yn → 0 as n →∞. By the uniform
continuity of T , we conclude that Txn−Tyn → 0 as n →∞. Now the conclusion
of the corollary follows from Theorem 2.5.

Remark 2.2. Theorem 2.5 improves and generalizes the corresponding results
by Tan and Xu [15, Theorems 2, 3], Xu and Roach [16, Theorem 2], Zhou and
Jia [18, Theorem 2] and others.

Remark 2.3. All the results in this paper can be extended to the case in which
the Ishikawa iterative scheme defined by (IS) admits errors in the senses of Liu
[7] and Xu [17].
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