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SOLUTION OF A LINEAR INTEGRAL EQUATION OF
THIRD KIND

D. SHULAIA

Abstract. The aim of this paper is to study, in the class of Hölder functions,
a nonhomogeneous linear integral equation with coefficient cos x. Necessary
and sufficient conditions for the solvability of this equation are given under
some assumptions on its kernel. The solution is constructed analytically,
using the Fredholm theory and the theory of singular integral equations.
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1. Introduction

In this paper, a method is described for solving an integral equation which
frequently occurs when studying many important problems of mathematical
physics, in particular, in problems of the multidimensional transfer theory. An
equation is written in the form

cos xϕ(x) =

2π∫

0

K(x, y)ϕ(y)dy + f(x), x ∈ (0, 2π). (1)

Such equations are frequently called equation of third kind. After the early
works of Hilbert [1] and Picard [2], in the course of the last century there
appeared a lot of papers on equations of third kind though attention given to
them can hardly be compared with attention given to equations of first and
second kind. Most of standard studies of integral equations touch very briefly
upon equations of third kind. The investigation should certainly begin by the
question what we must mean by a solution of equation (1). Various answers
are suggested in literature. Following the classical definition of a solution which
is natural and typical of some frequently occurring in the applications of third
kind equations, we assume that the kernel K ∈ H (i.e., satisfies the Hölder
condition H), while a free term belongs to the Muskhelishvili class H∗ (see [3]).
Therefore we look for a solution ϕ of equation (1) which belongs to the class
H∗.

Our investigation is based on the ideas of the theory of spectral expansion and
the approach proposed by Hilbert and Schmidt for an integral equation of second
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kind. This paper is the continuation of [4]. The paper is organized as follows.
In Section 2, using the initial equation, we introduce integral operators and
their corresponding integral equations which depend on the parameter. Some
of their properties, which will play an important role in further considerations,
are introduced. In Section 3, singular integral operators, which are closely
connected with the introduced operators and equations, are defined and studied.
The main result states that an arbitrary function from H∗ can be represented
through singular operators and the eigenfunctions of the parameter-dependent
operator. In the last section, a solution of the considered problem is given as
an application of the results obtained in Section 2.

2. Notation and the Background

Let Ωz denote the linear integral operator defined by the formula

Ωz(g(z, ·))(x) := g(z, x) +

2π∫

0

K(x, y)

z − cos y
g(z, y)dy, x ∈ [0, 2π], z /∈ [−1, 1], (2)

where the real-valued function K satisfies the condition H with respect to both
variables.

Recall that a function ϕ(t) is said to satisfy the condition H (Hölder condi-
tion) on a certain smooth line Γ, if for any two points t1, t2 of Γ

|ϕ(t1)− ϕ(t2)| ≤ A|t1 − t2|γ,
where A and γ are some positive constants (see, e.g., [3]).

If a function ϕ(t), given on Γ satisfies the condition H in each closed part of
Γ not containing the ends, and near any ends c, ϕ(t) behaves as

ϕ(t) =
ϕ∗(t)
|t− c|δ , 0 ≤ δ < 1,

where ϕ∗(t) belongs to the class H, then it is said ϕ(t) to belong to the class
H∗ on Γ.

Recall also that [3] if Φ(z) is a function holomorphic in each finite domain not
containing points of a certain smooth line Γ and the function Φ(z) is continuous
both from the left and from the right on Γ, with a possible exception for the
ends, but near the ends satisfies the condition

|Φ(z)| ≤ C

|z − c|α ,

where c is the corresponding end, C and α are certain real constants, α < 1, then
Φ(z) is called piecewise holomorphic function with the line of discontinuity Γ.

The operator Ωz(g(z, ·))(x), operating on any function g(z, x) piecewise holo-
morphic in z with a cut on the real axis [−1, 1] and satisfying the condition H
in x, will gives a piecewise holomorphic function with a cut on the [−1, 1].
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Using the Plemelj–Sokhotskii’s formulas (see, e.g.,[5], p. 86), we can calculate
the boundary values of Ωz(g) as

Ω±
ζ (g±(ζ, ·))(x) := g±(ζ, x) +

2π∫

0

K(x, y)

ζ − cos y
g±(ζ, y)dy

± iπ√
1− ζ2

(K(x, ζa)g
±(ζ, ζa) + K(x, ζ̄a)g

±(ζ, ζ̄a)), ζ ∈ (−1, +1), (3)

where ζa = arccos ζ, ζ̄a = 2π − arccos ζ. Here the integration with respect to y
is understood in the Cauchy principal value sense.

Theorem (Tamarkin). Suppose the kernel K(x, ξ, λ) of the integral equa-
tion

u(x) = f(x) +

b∫

a

K(x, ξ, λ)u(ξ)dξ

is analytic in λ on an open domain A of the λ-plane and for almost all points
(x, ξ) of the square

a ≤ x ≤ b; a ≤ ξ ≤ b.

Suppose that the integrals

b∫

a

|K(x, ξ, λ)|2dξ,

b∫

a

|K(x, ξ, λ)|2dx

exist for almost all values of x and ξ, respectively, and that, on every closed
subdomain A0 of A we have

b∫

a

|K(x, ξ, λ)|2dξ ≤ F0(x),

b∫

a

|K(x, ξ, λ)|2dx ≤ F0(ξ),

where F0(x) is a positive function which depends only on A0 and which is inte-
grable on (a, b). Then the reciprocal Ω(x, ξ, λ) of the kernel K(x, ξ, λ) either is
meromorphic on A for almost all values of x, ξ or does not exist at all.

For a proof, see [6].
Let κ denote the set of all values of z when the homogeneous equation

Ωz(g) = 0 (4)

admits non-zero solutions. Such values of z are called eigenvalues of K(x, y)
or of Ωz. Since the kernel of the operator Ωz is a function piecewise analytic in
z, satisfying the condition H and vanishing as z → ∞, the Tamarkin theorem
tells us κ is at most countable in the plane z with a cut on [−1, 1]. Obviously,
if g is a solution of the latter equation, then the function

ϕzk
(x) =

g(zk, x)

cos x− zk

,
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where zk ∈ κ, is also a solution of the equation

(cos x− z)ϕz(x) =

2π∫

0

K(x, y)ϕz(y)dy, x ∈ [0, 2π],

when z = zk and vice versa. Moreover, sets of the eigenvalues of the operators
Ωz and

Ω∗
z(h(z, ·))(x) := h(z, x) +

2π∫

0

K(y, x)

z − cos y
h(z, y)dy, x ∈ [0, 2π],

are identical. Clearly, if z 6= z′, then

2π∫

0

ϕ∗z(x)ϕz′(x)dx = 0, (5)

where ϕ∗z is a solution of the equation

(cos x− z)ϕ∗z(x) =

2π∫

0

K(y, x)ϕ∗z(y)dy, x ∈ [0, 2π]. (6)

It is not difficult to show that if K(x, y) = K(y, x), then all eigenvalues, if
they exist, are real.

The functions ϕzk
(x) and ϕ∗zk

(x), zk ∈ κ, are called the eigenfunctions of the
kernel K(x, y) and K(y, x), respectively. Moreover, in the sequel the operators
and functions determined by K(y, x) just in the same way as by K(x, y), will
be provided with the superscript ∗.

Define

α(t, y) := (1− σ(t))(1− σ(y)) + σ(t)σ(y), t, y ∈ [0, 2π],

where σ(t) is the characteristic function of the segment [0, π] and consider the
following integral equation of second kind

M0(t, x) =

2π∫

0

K̃(t, x, y)M0(t, y)dy, x ∈ [0, 2π], (7)

where

K̃(t, x, y) =
K(x, y)−K(x, t)

cos y − cos t
α(t, y) +

K(x, y)−K(x, t̄)

cos y − cos t
α(t̄, y)

and t̄ = 2π − t. Here t ∈ [0, π] is a parameter. We see that the kernel K̃ of this
equation does not belong to the type which is usually called regular. In spite
of this to the equation (7) we may apply the basic Fredholm theorems. Indeed,
it is possible to reduce such equations to the Fredholm equation with bounded
kernel (see, e.g., [3], Section 111 and [7], Section 16).

Using this fact we have



SOLUTION OF A LINEAR INTEGRAL EQUATION OF THIRD KIND 183

Theorem 2.1. Let for some value of the parameter t = t′ ∈ [0, π] the homo-
geneous equation (7) have only a trivial solution. Then z′ = cos t′ /∈ κ.

Proof. The proof in a completely analogous to that of Theorem 1 from [4].

In order to eliminate additional arguments, in the sequel we shall assume
that:

R1. κ is a finite set.
R2. The homogeneous equations (7) and

M∗
0 (t, x) =

2π∫

0

K̃∗(t, x, y)M∗
0 (t, y)dy, x ∈ [0, π],

where

K̃∗(t, x, y) =
K(y, x)−K(t, x)

cos y − cos t
α(t, y) +

K(y, x)−K(t̄, x)

cos y − cos t
α(t̄, y),

admit only trivial solutions for any values of the parameter t ∈ [0, π].
Note that these is an important restriction, although it is satisfied for a

sufficiently wide class of kernels K(x, y), in particular, for kernels from the
problems of the transport theory [8]–[11].

In view of Theorem 2.1 the assumption R2 implies:
A1. κ ∩ [−1, +1] = ∅.
A2. The nonhomogeneous integral equations

M(t, x) =

2π∫

0

K̃(t, x, y)M(t, y)dy + | sin t|K(x, t), t, x ∈ [0, 2π], (8)

and

M∗(t, x) =

2π∫

0

K̃∗(t, x, y)M∗(t, y)dy + | sin t|K(t, x), t, x ∈ [0, 2π], (9)

admit only unique solutions satisfying the H condition with respect to t and x.

Remark 2.2. If a kernel K ∈ H admits an expansion into a uniformly con-
vergent series of the form

K(x, y) =
∑
n

(2n + 1)gn| sin x|Pn(cos x)Pn(cos y),

where gn is a real number and Pn is the nth order Legendre polynomial, then
equations (8) and (9) have unique solutions as functions expressed by uniformly
convergent series of the form

M(t, x) =
∑
n

(2n + 1)gn| sin x|Pn(cos x)hn(t)

and
M∗(t, x) =

∑
n

(2n + 1)gn| sin t|Pn(cos x)hn(t),
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respectively, where hn is defined from the recurrent relation

(n + 1)hn+1(t) + nhn−1(t) = (2n + 1)(cos t− 4gn)hn(t),

h0(t) = | sin t|, (n = 0, 1, · · · ).
In our further consideration we will also need the following identity, which

immediately can be obtained by using the Bertrand–Poincaré formula [5]:

2π∫

0

M∗(t0, x)

cos x− cos t0
dx

2π∫

0

M(t, x)

cos x− cos t
u(t)dt

=

2π∫

0

u(t)

cos t0 − cos t
dt

( 2π∫

0

M∗(t0, x)M(t, x)

cos x− cos t0
dx−

2π∫

0

M∗(t0, x)M(t, x)

cos x− cos t
dx

)

π
(
(M̄∗(t0, t0)M̄(t0, t0) + M̄∗(t0, t̄0)M̄(t0, t̄0)

)
u(t0)

+
(
M̄∗(t0, t0)M̄(t̄0, t0) + M̄∗(t0, t̄0)M̄(t̄0, t̄0)

)
u(t̄0), t0 ∈ (0, 2π), (10)

where u ∈ H∗, M̄(t, x) and M̄∗(t, x) are unique solutions of the nonhomogeneous
integral equations

M̄(t, x) =

2π∫

0

K̃(t, x, y)M̄(t, y)dy + K(x, t), t, x ∈ [0, 2π],

and

M̄∗(t, x) =

2π∫

0

K̃∗(t, x, y)M̄∗(t, y)dy + K(t, x), t, x ∈ [0, 2π],

respectively. It is obvious that

M(t, x) = | sin t|M̄(t, x) and M∗(t, x) = | sin t|M̄∗(t, x).

3. Representation Theorem for a Function of the Class H∗

As is known that in the Hilbert–Schmidt theory for integral equations of
second kind an important role is played by one property of eigenfunctions,
which in our case corresponds to the following equality:

(cos x− z)ϕzk
(x)−

2π∫

0

K(x, y)ϕzk
(y)dy

= (zk − z)ϕzk
(x), x ∈ [0, 2π], zk ∈ κ. (11)

But in contrast to this theory, in our case the set of eigenfunctions, is not a
complete system even in the class of solutions of the initial equation. Therefore,
based on the spectral expansion theory, for this aim we try to find such a singular
operator which has a similar property.
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Theorem 3.1. Let M ∈ H be a solution of (8) and let u be function such
that

L(u(·))(x) := A(x)u(x) + B(x̄)u(x̄) +

2π∫

0

M(t, x)

cos x− cos t
u(t)dt, x ∈ (0, 2π), (12)

where x̄ = 2π − x,

A(x) = | sin x|+
2π∫

0

α(x, y)M(x, y)

cos x− cos y
dy, B(x̄) =

2π∫

0

α(x, y)M(x̄, y)

cos x− cos y
dy,

is meaningful and, moreover, integrable. Then the equality

(cos x− z)L(u(·))(x)−
2π∫

0

K(x, y)L(u(·))(y)dy

= L((cos(·)− z)u(·))(x), x ∈ (0, 2π),

holds.

Proof. Indeed, in view of (8) and (12) straightforward calculations shows that

2π∫

0

K(x, y)L(u(·))(y)dy =

2π∫

0

M(t, x)u(t)dt.

By (8) we obtain

L((cos x− cos(·))u(·))(x) =

2π∫

0

M(t, x)u(t)dt

and the result follows.

The latter result gives a motive to study the operator L more thoroughly.
Before beginning our systematic study we have to prove

Lemma 3.2. For every t ∈ (0, π) the system of algebraic equations

A(t)v(t) + B(t̄)w(t) = 0,

B(t)v(t) + A(t̄)w(t) = 0
(13)

with respect to (v, w) admits only a trivial solution.

Proof. Let us assume the contrary. Suppose for some t = t′ ∈ (0, π) this system
has a non-zero solution (v(t′), w(t′)). Then by virtue of (8) and (13) the function

M(t′, x)v(t′) + M(t̄′, x)w(t′)

is a non-zero solution of equation (4) when z′ = cos t′, which contradicts the
assumption A1.

The basic result for L is the following
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Theorem 3.3. Let f ∈ H∗. Then provided that the conditions

2π∫

0

fϕ∗zk
dx = 0, zk ∈ κ, (14)

are fulfilled, there exists a unique solution u of the class H∗, for which

L(u) = f. (15)

Proof. Suppose that u ∈ H∗ satisfies (15) and introduce into consideration the
function

Ψ(z, x) =
1

2πi

2π∫

0

M(t, x)

cos t− z
u(t)dt, x ∈ [0, 2π], z /∈ [−1, 1].

This function possesses the following properties:
P1. In the plane with a cut [−1, +1] it is piecewise holomorphic with respect

to the variable z, while for the variable x it satisfies the H condition.
P2. As z →∞ it vanishes uniformly in x.
P3. By the Plemelj–Sokhotskii formulas for boundary values, we have

Ψ±(ζ, x) =
1

2πi

2π∫

0

M(t, x)

cos t− ζ
u(t)dt±± 1

2
√

1− ζ2
(M(ζa, x)u(ζa)

+ M(ζ̄a, x)u(ζ̄a)), ζ ∈ (−1, +1), x ∈ [0, 2π].

Combining (3) with the latter equality we get

Ω+
ζ (Ψ+(ζ, ·))(x)− Ω−

ζ (Ψ−(ζ, ·))(x)

=
1√

1− ζ2
(M(ζa, x)u(ζa) + M(ζ̄a, x)u(ζ̄a))

+
1√

1− ζ2

2π∫

0

K(x; y)

ζ − cos y
(M(ζa, y)u(ζa) + M(ζ̄a, y)u(ζ̄a))dy

+
1√

1− ζ2
(K(x, ζa)

2π∫

0

M(t; ζa)

ζ − cos t
u(t)dt + K(x, ζ̄a)

2π∫

0

M(t; ζ̄a)

ζ − cos t
u(t)dt),

ζ ∈ (−1, +1), x ∈ [0, 2π].

Recall that M(t, x) satisfies (8) and then by straightforward calculation and
using (15) we obtain

Ω+
ζ (Ψ+)(x)− Ω−

ζ (Ψ−)(x) =
1√

1− ζ2
(K(x, ζa)f(ζa) + K(x, ζ̄a)f(ζ̄a)),

ζ ∈ (−1, +1), x ∈ [0, 2π].

Now it is evident that if we consider the function

F (z, x) = Ωz(Ψ)(x),
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then we will see that it is also piecewise holomorphic in z, vanishing as z →∞
and its boundary values satisfy the condition

F+(ζ, x)− F−(ζ, x) =
1√

1− ζ2
(K(x, ζa)f(ζa) + K(x, ζ̄a)f(ζ̄a)),

ζ ∈ (−1, +1), x ∈ [0, 2π].

Consequently, using the Plemelj–Sokhotskii formulas we get

F (z, x) =
1

2πi

+1∫

−1

1√
1− ξ2

K(x, ξa)f(ξa) + K(x, ξ̄a)f(ξ̄a)

ξ − z
dξ. (16)

Here ξa = arccos ξ, ξ̄a = 2π − arccos ξ. After some transformation of the right-
hand side of (16) we conclude that the function Ψ(z, x) satisfies the integral
equation

Ωz(Ψ)(x) =
1

2πi

2π∫

0

K(x, t)

cos t− z
f(t)dt, x ∈ [0, 2π]. (17)

However the condition of the solubility of the integral equation (17) is that its
free term be orthogonal to the eigenfunctions of the kernel K(y, x), that is,

2π∫

0

ϕ∗zk
(x)

2π∫

0

K(x, t)

cos t− zk

f(t)dt dx = 0, zk ∈ κ.

Now, using (6) we immediately come to conditions (14).
Now suppose that f ∈ H∗ satisfies conditions (14). Then by virtue of

Tamarkin’s Theorems it follows that there is a unique solution Ψ of (17) which
is a piecewise holomorphic function in z. Moreover, using (3) from (17) we
obtain

Ψ̃(t0, x)−
2π∫

0

K(x, y)Ψ̃(t0, y)dy + K(x, t0)

( π∫

0

Ψ̃(t, t0)

cos t− cos t0
dt + f(t0)

)

+K(x, t̄0)

( π∫

0

Ψ̃(t, t̄0)

cos t− cos t0
dt + f(t̄0)

)
= 0, t0 ∈ (0, 2π), x ∈ [0, 2π], (18)

where

Ψ̃(t0, x) = | sin t0|(Ψ+(cos t0, x)−Ψ−(cos t0, x)).

Now consider the nonhomogeneous system of equations:

A(t0)u(t0) + B(t̄0)v(t0) =

π∫

0

Ψ̃(t, t0)

cos t− cost0
dt + f(t0),

B(t0)u(t0) + A(t̄0)v(t0) =

π∫

0

Ψ̃(t, t̄0)

cos t− cost0
dt + f(t̄0), t0 ∈ (0, π),

(19)
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with respect to (u, v). Lemma 3.2 shows us that there is a unique solution of
(19) and, moreover, it is easy to see that v(t0) = u(t̄0).

Let

M̃(t0, x) = Ψ̃(t0, x)−M(t0, x)u(t0)−M(t̄0, x)u(t̄0).

A quick calculation using (18) and (8) shows that M̃(t0, x) is a solution of
the homogeneous equation (4) when z = cos t0. However, since K has no the
eigenvalues on [−1, +1], we obtain

Ψ̃(t0, x) = M(t0, x)u(t0) + M(t̄0, x)u(t̄0), t0 ∈ (0, 2π), x ∈ [0, 2π].

Combining this with (19), we have

A(t0)u(t0) + B(t̄0)u(t̄0) = f(t0) +

π∫

0

M(t, t0)

cos t− cos t0
u(t)dt

+

2π∫

π

M(t, t0)

cos t− cos t0
u(t)dt, t0 ∈ (0, 2π), x ∈ [0, 2π].

Consequently (15) holds and the proof is completed.

Now a major goal of ours is to invert the operator L. To do this, we need to
introduce, in the class H∗, the integral operators

S(v(·))(t) := A(t)v(t) + B(t)v(t̄) +

2π∫

0

M(t, y)

cos y − cos t
v(y)dy, t ∈ (0, 2π), (20)

and S∗ introduced similar to S according to the rule mentioned above. The
operator (20) can be rewritten as

S(v(·))(t) := | sin t|v(t)

+

2π∫

0

(
v(y)− v(t)

cos y − cos t
α(t, y) +

v(y)− v(t̄)

cos y − cos t
α(t̄, y)

)
M(t, y)dy, t ∈ (0, 2π);

the operator S∗ can be rewritten similarly.
It is easy to see that for any u and v from H∗

2π∫

0

u(t)S(v(·))(t)dt =

2π∫

0

v(x)L(u(·))(x)dx.

Hence, if there exists u such that (15) is fulfilled, then it is necessary that

2π∫

0

v(x)f(x)dx = 0, (21)

where v is an arbitrary solution of the homogeneous equation

S(v) = 0. (22)
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The converse statement is also true. Before proving this, we want to give some
properties of the operators S and S∗.

The following lemma is an immediate consequence of the construction of S,
together with equation (8).

Lemma 3.4. The equality

S(K(x, ·))(t) = M(t, x), x, t ∈ [0, 2π],

holds.

The same type of arguments leads to

Lemma 3.5. The equality

S∗(K(·, x))(t) = M∗(t, x), x, t ∈ [0, 2π],

holds.

Lemma 3.6. The equality

S∗(M(t0, ·))(t) = S(M∗(t, ·))(t0), t0, t ∈ [0, 2π], (23)

holds.

Proof. In view of (8), by Lemma 3.5 we conclude that

S∗(M(t0, ·))(t) = | sin t0|M∗(t, t0)

+

2π∫

0

(
M∗(t, y)−M∗(t, t0)

cos y − cos t0
α(t0, y) +

M∗(t, y)−M∗(t, t̄0)
cos y − cos t0

α(t̄0, y)

)
M(t0, y)dy

= S(M∗(t, ·))(t0).
We can put these pieces together to show a very important property of our

operators.
Let us start with some notation:

AM(t0) = Ã(t0)− π2(M̄∗(t0, t0)M̄(t0, t0) + M̄∗(t0, t̄0)M̄(t0, t̄0)),

BM(t̄0) = B̃(t̄0)− π2(M̄∗(t0, t0)M̄(t̄0, t0) + M̄∗(t0, t̄0)M̄(t̄0, t̄0)),
(24)

where t̄0 = 2π − t0 and

Ã(t0) = A∗(t0)A(t0) + B∗(t̄0)B(t̄0),

B̃(t0) = A∗(t0)B(t̄0) + B∗(t0)A(t̄0).

Theorem 3.7. The composition S∗L contains no singular parts and the equa-
lity

S∗(L(u))(t0) = AM(t0)u(t0) + BM(t̄0)u(t̄0), t0 ∈ (0, 2π),

holds.
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Proof. Performing the operations indicated on the left-hand side of (24) and
using identity (10), by the repeated integration we obtain

S∗(L(u))(t0) = AM(t0)u(t0) + BM(t̄0)u(t̄0)

+

2π∫

0

u(t)

cos t0 − cos t

(
S∗(M(t, ·))(t0)− S(M∗(t0, ·)(t)

)
dt.

Lemma 3.6 now completes the proof.

The following is an immediate consequence of Lemma 3.6 if in (23) we suc-
cessively take: a) t0 = t = s, b) t0 = 2π − s, t = s, c) t0 = s, t = 2π − s,
d) t0 = t = 2π − s.

Corollary 3.8. The equalities

a) A∗(s)M(s, s) + B∗(s̄)M(s, s̄) = A(s)M∗(s, s) + B(s̄)M∗(s, s̄),

b) A∗(s̄)M(s, s̄) + B∗(s)M(s, s) = A(s)M∗(s̄, s) + B(s̄)M∗(s̄, s̄),

c) A∗(s)M(s̄, s) + B∗(s̄)M(s̄, s̄) = A(s̄)M∗(s, s̄) + B(s)M∗(s, s),

d) A∗(s̄)M(s̄, s̄) + B∗(s̄)M(s̄, s) = A(s̄)M∗(s̄, s̄) + B(s)M∗(s̄, s),

s ∈ (0, 2π),

where s̄ = 2π − s, hold.

Our next task is to examine the system of equations

AM(t0)v(t0) + BM(t̄0)w(t0) = 0,

BM(t0)v(t0) + AM(t̄0)w(t0) = 0.
(25)

Let

C(t0) =

(
A(t0) B(t̄0)
B(t0) A(t̄0)

)
,

M̄(t0) =

(
M̄(t0, t0) M̄(t̄0, t0)
M̄(t0, t̄0) M̄(t̄0, t̄0)

)
,

CM(t0) =

(
AM(t0) BM(t̄0)
BM(t0) AM(t̄0)

)
.

Defines the operators C∗ and M̄∗ similarly. By Corollary 3.8 a simple calculation
shows that

C∗′M̄ = M̄∗′C,

where C∗′ and M̄∗′ are the transposed operators of C∗ and M̄∗, respectively.
As a result of this equality we have

Lemma 3.9. There exists a factorization

CM = (C∗′ + iπM̄∗′)(C− iπM̄).

The next lemma can be considered as a corollary of Lemmas 3.2 and 3.9.
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Lemma 3.10. For every t0 ∈ (0, π), the homogeneous system of algebraic
equations (25) admits only a trivial solution.

Denote

T (v(·))(t0) : =
1

∆(t0)
(AM(t̄0)S

∗(v(·))(t0)
−BM(t0)S

∗(v(·))(t̄0)), t0 ∈ (0, 2π), (26)

where

∆(t0) = detCM(t0),

moreover, here ∆(t̄0) = ∆(t0).
By using the Theorem 3.7 we have

Theorem 3.11. The equality

T (L(u)) = u (27)

holds.

We shall now consider a relationship between the eigenfunctions and the
above introduced operators.

Theorem 3.12. The eigenfunctions of the kernel K(x, y) are solutions of
the homogeneous equation (22).

Proof. By (20) and (6) we obtain

S(ϕ∗zk
(·))(t) = A(t)ϕ∗zk

(t) + B(t)ϕ∗zk
(t̄)

+

2π∫

0

M(t, x)

cos x− cos t

2π∫
0

K(y, x)ϕ∗zk
(y)dy

cos x− zk

dx, t ∈ (0, 2π).

It is easy to see that

1

cos x− cos t

1

cos x− zk

=

(
1

cos x− cos t
− 1

cos x− zk

)
1

cos t− zk

.

Therefore

S(ϕ∗zk
(·))(t) = A(t)ϕ∗zk

(t) + B(t)ϕ∗zk
(t̄)

+

2π∫

0

M(t, x)

cos x− cos t

1

cos t− zk

dx

2π∫

0

K(y, x)ϕ∗zk
(y)dy −

2π∫

0

M(t, x)

cos t− zk

ϕ∗zk
(x)dx.

But according to (8) we have

2π∫

0

ϕ∗zk
(x)

cos t− zk

M(t, x)dx = A(t)ϕ∗zk
(t) + B(t)ϕ∗zk

(t̄)
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+

2π∫

0

M(t, x)

cos x− cos t

1

cos t− zk

dx

2π∫

0

K(y, x)ϕ∗zk
(y)dy.

Hence we have proved the theorem.

Analogously we obtain

Theorem 3.13. The equalities

S∗(ϕzk
) = 0, zk ∈ κ,

hold.

Corollary 3.14. The equalities

T (ϕzk
) = 0, zk ∈ κ,

hold.

Now we shall prove one important property of the eigenfunctions

Theorem 3.15. The systems of eigenvalues {ϕzk
} and {ϕ∗zk

} are biorthogo-
nal systems.

Proof. Owing to equality (5) it remains to prove that the numbers

Nzk
=

2π∫

0

ϕzk
ϕ∗zk

dx, zk ∈ κ,

are different from zero. Let us assume the contrary, i.e., that Nzp = 0 holds for
some zp. Then it is obvious that ϕzp satisfies the conditions of Theorem 3.3 and
the integral equation

L(u) = ϕzp

has a unique solution. It follows from Theorem 3.11 and Corollary 3.14 that
ϕzp = 0. Thus we get a contradiction and the theorem is proved.

Remark 3.16. This results implies:
(i) Only the functions ϕ∗zk

, zk ∈ κ, and their linear combination are solutions
of the homogeneous equation (22).

(ii) Condition (21) is also sufficient for the solvability of equation (15).
The main result of this section is summarized in the following theorem.

Theorem 3.17. Let ψ ∈ H∗. Then

ψ =
∑

k

azk
ϕzk

+ L(u), (28)

where

azk
=

1

Nzk

2π∫

0

ψϕ∗zk
dx, u = T (ψ).

Moreover, azk
and u are defined uniquely.
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Proof. In view of Theorem 3.15 it is evident that the function

ψ0 = ψ −∑

k

azk
ϕzk

has the property
2π∫

0

ψ0ϕ
∗
zk

dx = 0, zk ∈ κ.

By Theorem 3.3 this yields (28). The uniqueness of azk
and u is also obvious.

4. Main Results

The results obtained in the preceding sections can be successfully applied to
solve of the nonhomogeneous integral equation

(cos x− z)ϕ̃z(x) =

2π∫

0

K(x; y)ϕ̃z(y)dy + f(x), x ∈ (0, 2π), (29)

where f ∈ H∗.

Theorem 4.1. Let f ∈ H∗ and let z /∈ [−1, +1]∪κ. Then equation (29) has
one and only one solution ϕ̃z ∈ H∗ expressed by the formula

ϕ̃z(x) =
∑

k

ϕzk
(x)

zk − z

1

Nzk

2π∫

0

f(y)ϕ∗zk
(y)dy + L

(
1

cos(·)− z
T (f)(·)

)
(x). (30)

Proof. Let ϕ̃z ∈ H∗ be a solution of equation (29). By virtue of Theorem 3.17
the function ϕ̃z can be written in the form

ϕ̃z =
∑

k

ãzk
ϕzk

+ L(ũ). (31)

To find the coefficients ãzk
and the function ũ, we proceed in the following way.

Putting (31) into equation (29) and using relation (11) and Theorem 3.1, we
get ∑

k

ãzk
(zk − z)ϕzk

+ L((cos(·)− z)ũ(·)) = f.

From this, by Theorem 3.17 we obtain

ãzk
(zk − z) =

1

Nzk

2π∫

0

fϕ∗zk
dy, zk ∈ κ,

(cos t− z)u(t) = T (f)(t), t ∈ (0, 2π).

Now let we show that the function ϕ̃z from (30) satisfies equation (29). Sub-
stituting (30) into (29) and using again the relation (11) and Theorem 3.1, we
obtain

∑

k

ϕzk

1

Nzk

2π∫

0

fϕ∗zk
dy + L(T (f)) = f.
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According to Theorem 3.17 last equality is true.

Theorem 4.2. Let z = z1 be r-tiple eigenvalue of the kernel K. Then the
solution of equation (29) exists if and only if the conditions

2π∫

0

fϕ∗zk
dx = 0, k ≤ r (32)

are fulfilled. In this case equation (29) has in the class H∗ infinitely many
solutions represented by the formula

ϕ̃z1 =
∑

k≤r

ckϕzk
+

∑

k>r

ϕzk
(x)

zk − z1

1

Nzk

2π∫

0

f(y)ϕ∗zk
(y)dy + L

(
1

cos(·)− z1

T (f)(·)
)
, (33)

where ck are arbitrary constant numbers.

Proof. Let ϕ̃z1 ∈ H∗ be a solution of (29). Then multiplying (29) by ϕ∗zk
and

integrating with respect to x from 0 to 2π, and using, in addition, equality (11),
we get

(zk − z1)

2π∫

0

ϕ̃z1(x)ϕ∗zk
(x)dx =

2π∫

0

f(x)ϕ∗zk
(x)dx.

Since zk = z1 for k ≤ r,we obtain

2π∫

0

f(x)ϕ∗zk
(x)dx = 0, k ≤ r.

Thus we have r necessary conditions for the solvability of equation (29).
Before proving that the function represented by formula (33) satisfies equation

(29), we show that this equation satisfies the function

ϕ̄z1 = L(
1

cos(·)− z1

T (f)(·)) +
∑

k>r

ϕzk

zk − z1

1

Nzk

2π∫

0

fϕ∗zk
dx.

Just as in Theorem 4.1 we find

∑

k>r

ϕzk

1

Nzk

2π∫

0

fϕ∗zk
dx + L(T (f)) = f.

But by (32) and Theorem 3.17 we conclude that latter equality is true. Now it
remains to observe that the function

ϕ̃z1 =
∑

k≤r

ckϕzk
+ ϕ̄z1

satisfies equation (29).
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Theorem 4.3. Let z = cos t0, where t0 ∈ (0, π). In order that equation (29)
be solvable in the class H∗; it is necessary and sufficient that its free term satisfy
the conditions

T (f)(t0) = T (f)(t̄0) = 0. (34)

Then the unique solution ϕ̄t0 ∈ H∗ can be written by formula (30).

Proof. Just as in Theorem 4.1, if a solution of (29) is exists, then

(cos t− cos t0)u(t) = T (f)(t)

whence for t = t0 and t = t̄0 there follows equality (34). This in fact is the
necessary condition which is satisfied by the function f(x) in order that equation
(29) would hold.

We can show that the function ϕz ∈ H∗, where z = cos t0, defined by formula
(30) satisfies equation (29) the condition (34) is fulfilled. Thus the theorem is
proved.

Corollary 4.4. Let z /∈ κ and let

f(x) =
∑

k

azk
ϕzk

(x). (35)

Then equation (29) has one and only one solution which is expressed by the
formula

ϕ̃z(x) =
∑

k

azk

zk − z
ϕzk

(x).

Corollary 4.5. Let z = z1 be an r-tiple eigenvalue of the kernel K and let
the function f(x) has form (35). Then the solution of equation (29) exists if
and only if the conditions azk

= 0, k ≤ r, are fulfilled. In this case equation
(29) has infinitely many solutions represented by the formula

ϕ̃z1 =
∑

k≤r

ckϕzk
+

∑

k>r

azk

zk − z1

ϕzk
(x),

where ck are arbitrary constant numbers.

Obviously as a particular case of the above stated results we obtain the fol-
lowing theorem which answers the question posed for equation (1) in the Intro-
duction. Note that in this connection we shall use (26).

Theorem 4.6. Let K ∈ H be such that the assumptions R1 and R2 are
fulfilled. Then the solution of equation (1) exists in the class H∗ if and only if
f(x) ∈ H∗ satisfies the conditions

AM

(
3π

2

)
S∗(f)

(
π

2

)
= BM

(
π

2

)
S∗(f))

(
3π

2

)
,

AM

(
π

2

)
S∗(f)

(
3π

2

)
= BM

(
3π

2

)
S∗(f)

(
π

2

)
,
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where AM and BM are defined by (24). Moreover, if the latter conditions are
fulfilled, then the solution is unique and can be expressed by the formula

ϕ(x) =
∑

k

ϕzk
(x)

z−1
k

Nzk

2π∫

0

f(y)ϕ∗zk
(y)dy + L(

1

cos(·)T (f)(·))(x).
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