ITERATING THE BAR CONSTRUCTION

T. KADEISHVILI AND S. SANEBLIDZE

ABSTRACT. For a 1-connected space X Adams's bar construction $B(C^*(X))$ describes $H^*(\Omega X)$ only as a graded module and gives no information about the multiplicative structure. Thus it is not possible to iterate the bar construction in order to determine the cohomology of iterated loop spaces $\Omega^i X$. In this paper for an *n*connected pointed space X a sequence of $A(\infty)$ -algebra structures $\{m_i^{(k)}\}, k = 1, 2, \ldots, n$, is constructed, such that for each $k \leq n$ there exists an isomorphism of graded algebras

$$\begin{split} H^*(\Omega^k X) &\cong \\ &\cong (H(B(\cdots(B(B(C^*(X); \{m_i^{(1)}\}); \{m_i^{(2)}\}); \cdots); \{m_i^{(k-1)}\})); m_2^{(k)*}). \end{split}$$

INTRODUCTION

For a 1-connected pointed space X Adams [1] found a natural isomorphism of graded modules

$$H(B(C^*(X)) \cong H^*(\Omega X),$$

where $B(C^*(X))$ is the bar construction of DG-algebra $C^*(X)$. The method cannot be extended directly for iterated loop spaces $\Omega^k X$ for $k \ge 2$, since the bar construction B(A) of a DG-algebra A is just a DG-coalgebra, and it does not carry the structure of a DG-algebra in order to produce a double bar construction B(B(A)).

However, for $A = C^*(X)$ Baues [2] has constructed an associative product

$$\mu: B(C^*(X)) \otimes B(C^*(X)) \to B(C^*(X)),$$

which turns $B(C^*(X))$ into a *DG*-algebra and which is *geometric*: for 1-connected X there exists an isomorphism of *graded algebras*

$$H(B(C^*(X)) \cong H^*(\Omega X))$$

1072-947X/98/0900-044115.00/0 © 1998 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 55P35.

Key words and phrases. Bar construction, $A(\infty)$ -algebra, perturbation lemma.

and for a 2-connected X there exists an isomorphism of graded modules

$$H(B(B(C^*(X))) \cong H^*(\Omega^2 X).$$

But again, as mentioned in [2], this method cannot be extended for $\Omega^3 X$ either, since "it is impossible to construct a 'nice' product on $B(B(C^*(X)))$."

We remark here that in order to produce the bar construction B(M) it is not necessary to have, on a DG-module M, a strict associative product

$$\mu: M \otimes M \to M;$$

it suffices to have a strong homotopy associative product, or, which is the same, to have an $A(\infty)$ -algebra structure on M. This notion was introduced by Stasheff in [3]. An $A(\infty)$ -algebra $(M, \{m_i\})$ is a graded module M equipped with a sequence of operations

$$\{m_i: M \otimes \cdots (i\text{-}times) \cdots \otimes M \to M, i = 1, 2, 3, \ldots; \deg m_i = 2 - i\},\$$

which satisfies the suitable associativity conditions (see below). Such a sequence defines on B(M) the correct differential

$$d_m: B(M) \to B(M),$$

which is a coderivation with respect to the standard coproduct. This DGcoalgebra $(B(M); d_m)$ is denoted by $B(M, \{m_i\})$ and called the bar construction of $A(\infty)$ -algebra $(M, \{m_i\})$.

In particular, an $A(\infty)$ -algebra of the type

$$(M, \{m_1, m_2, 0, 0, \dots\})$$

is just a DG-algebra with a differential m_1 and a strict associative product m_2 (up to signs). For such an $A(\infty)$ -algebra, $B(M, \{m_i\})$ coincides with the usual bar construction. For a general $A(\infty)$ -algebra $(M, \{m_i\})$ the first operation $m_1 : M \to M$ is a differential, which is a derivation with respect to the second operation $m_2 : M \otimes M \to M$; this operation is not neccessarily associative, but is homotopy associative (the operation m_3 is a suitable homotopy). Thus we can consider homology of DG-module (M, m_1) . Then the product m_2 induces, on $H(M, m_1)$, the strict associative product m_2^* .

Now we can formulate the main result of this paper.

Theorem A. Let X be an n-connected pointed space. Then there exists a sequence of $A(\infty)$ -algebra structures $\{m_i^{(k)}\}, k = 1, 2, ..., n$, such that for each $k \leq n$ there exists an isomorphism of graded algebras

$$H^*(\Omega^k X) \cong$$

$$\cong (H(B(\cdots(B(B(C^*(X); \{m_i^{(1)}\}); \{m_i^{(2)}\}); \cdots); \{m_i^{(k-1)}\})); m_2^{(k)*}).$$

Remark 0.1. The latter $A(\infty)$ -algebra structure $\{m_i^{(n)}\}$ allows one to produce the next bar construction

$$(B(\cdots(B(B(C^*(X); \{m_i^{(1)}); \{m_i^{(2)}); \cdots); \{m_i^{(n)}\})),$$

but it is not clear whether it is geometric, i.e., whether homology of this bar construction is isomorphic to $H^*(\Omega^{n+1}X)$ if X is not (n+1)-connected.

The proof is based on

Theorem B. Let $(M, \{m_i\})$ be an $A(\infty)$ -algebra, (C, d) be a DG-module, and

$$f: (M, m_1) \to (C, d)$$

be a weak equivalence of DG-modules. Assume further that M and C are connected and free as graded modules. Then there exist

(1) an $A(\infty)$ -algebra structure $\{m'_i\}$ on C with $m'_1 = d$;

(2) a morphism of $A(\infty)$ -algebras

$$\{f_i\}: (M, \{m_i\}) \to (C, \{m'_i\})$$

with $f_1 = f$.

Let us mention some results from the literature dedicated to the problem of iterating the bar construction.

In [4] Khelaia has constructed, on $C^*(X)$, an aditional structure which, in particular, contains Steenrod's \cup_1 product, and which is used to introduce, in the bar construction $BC^*(X)$, a homotopy associative product which is geometric: there exists an isomorphism of graded algebras

$$H^*(B(C^*(X)) \cong H^*(\Omega X).$$

One can show that this product is strong homotopy associative. Thus there is the possibility to produce the next bar construction $B(B(C^*(X)))$, but the additional structure itself is lost in $B(C^*(X))$ and hence this structure is not enough to determine the product in $B(B(C^*(X)))$.

Later Smirnov [5], using the technique of operands, introduced a more powerful additional structure – the E_{∞} -structure which can be transferred on $B(C^*(X))$. Hence there is the possibility of an iteration.

The structure of an m-algebra introduced by Jastin Smith [6] is also transferable on the bar constuction and, as mentioned in [6], is smaller and has computational advantages against Smirnov's one.

Seemingly, the structure introduced in this paper, i.e., the sequence of $A(\infty)$ -algebra structures $\{m_i^{(k)}\}$, should be the smallest one because the $A(\infty)$ -algebra structure is a minimal structure required to produce the bar construction.

The disadvantage of our structure is that it cannot be considered as a sequence of operations from $\operatorname{Hom}(\otimes^k C^*(X), C^*(X))$ as in [5] and [6]. In the forthcoming publication we are going to make up for this disadvantage.

The proof of Theorem B is based on the perturbation lemma (see [7,8]), extended for chain equivalences in [9].

In Section 1 Stasheff's notion of an $A(\infty)$ -algebra is given. Section 2 is dedicated to the perturbation lemma and in Section 3 Theorem A is proved.

1.
$$A(\infty)$$
-Algebras

The notion of an $A(\infty)$ -algebra was introduced by J. Stasheff in [3].

An $A(\infty)\text{-algebra is a graded module } M = \sum_{i=0}^\infty M^i$ with a given sequence of operations

$$\{m_i:\otimes^i M\to M;\ i=1,2,3,\dots\}$$

which satisfies the following conditions:

(1) deg
$$m_i = 2 - i;$$

(2) $\sum_{k=1}^{n-1} \sum_{j=1}^{n-k+1} m_{n-j+1}(a_1 \otimes \cdots \otimes a_k \otimes m_j(a_{k+1} \otimes \cdots \otimes a_{k+j}) \otimes \cdots \otimes a_n) = 0$

for each $a_i \in M$ and n > 0.

The sequence of operations $\{m_i\}$ defines on the tensor coalgebra

$$T'(s^{-1}M) = R + s^{-1}M + s^{-1}M \otimes s^{-1}M + \dots = \sum_{i=0}^{\infty} \otimes^{i} s^{-1}M$$

(here $s^{-1}M$ is the desuspension of M) a differential $d_m : T(s^{-1}M) \to T(s^{-1}M)$, given by

$$d_m(s^{-1}a_1 \otimes \cdots \otimes s^{-1}a_n) =$$
$$= \sum_{k=1}^{n-1} \sum_{j=1}^{n-k+1} s^{-1}a_1 \otimes \cdots \otimes s^{-1}a_k \otimes s^{-1}m_j(a_{k+1} \otimes \cdots \otimes a_{k+j}) \otimes \cdots \otimes s^{-1}a_n$$

This differential turns $(T'(s^{-1}M), d_m)$ into a differential graded coalgebra called the *bar-construction* of an $A(\infty)$ -algebra $(M, \{m_i\})$ and denoted by $B(M, \{m_i\})$. Conversely, using the cofreeness of the tensor coalgebra one can show that any differential $d: T'(s^{-1}M) \to T'(s^{-1}M)$ which is a coderivation at the same time coincides with d_m for some $A(\infty)$ -algebra structure $\{m_i\}$ (see [10] for details).

For an $A(\infty)$ -algebra of the type $(M; \{m_1, m_2, 0, 0, ...\})$, i.e., for a differential algebra with the differential m_1 and the multiplication m_2 the bar-construction coincides with the usual one. A morphism of $A(\infty)$ -algebras

$$\{f_i\}: (M; \{m_i\}) \to (N; \{n_i\})$$

is defined as a sequence of homomorphisms

$$\{f_i:\otimes^i M\to N;\ i=1,2,3,\dots\}$$

which satisfies the following conditions:

(1) deg
$$f_i = 1 - i;$$

(2) $\sum_{k=1}^{n-1} \sum_{j=1}^{n-k+1} f_{n-j+1}(a_1 \otimes \cdots \otimes a_k \otimes m_j(a_{k+1} \otimes \cdots \otimes a_{k+j}) \otimes a_{k+j+1} \otimes \cdots \otimes a_n) =$
 $= \sum_{t=1}^n \sum_{k_1 + \dots + k_t = n} n_t(f_{k_1}(a_1 \otimes \cdots \otimes a_{k_1}) \otimes \cdots \otimes f_{k_t}(a_{n-k_t+1} \otimes \cdots \otimes a_n)))$
for each $a_i \in M$ and $n > 0.$

Each $A(\infty)$ -algebra morphism induces a DG-coalgebra morphism

$$B({f_i}) : B(M, {m_i}) \to B(N, {n_i})$$

by

$$B({f_i})(s^{-1}a_1 \otimes \cdots \otimes s^{-1}a_n) = \sum_{t=1}^n \sum_{k_1 + \cdots + k_t = n} s^{-1}f_{k_1}(a_1 \otimes \cdots \otimes a_{k_1}) \otimes \otimes \cdots \otimes s^{-1}f_{k_t}(a_{n-k_t+1} \otimes \cdots \otimes a_n).$$

Conversely, as above, because of the cofreeness of a tensor coalgebra, each DG-colagebra morphism

$$F:B(M,\{m_i\})\to B(N,\{n_i\})$$

coincides with $B({f_i})$ for a suitable $A(\infty)$ -algebra morphism ${f_i}$.

Remark 1.1. The first component $f_1 : (M; m_1) \to (N; n_1)$, which is a chain map, is homotopy multiplicative with respect to the homotopy associative products m_2 and n_2 . Therefore it induces a map of graded algebras

$$f_1^*: (H(M, m_1), m_2^*) \to (H(M, m_1), m_2^*).$$

We call an $A(\infty)\text{-algebra morphism }\{f_i\}$ a weak equivalence $\text{ if }f_1^* \text{ is an isomorphism.}$

2. Perturbation Lemma

The general perturbation lemma [7,8] deals with the following problem.

Let (M, d_M) and (N, d_N) be cochain complexes, and suppose they are *equivalent* in some sense, which will be discussed. A *perturbation* of the differential d_N is a homomorphism $t : N \to N$ which satisfies

$$d_N t + t d_N + t t = 0$$

so that $d_t = d_N + t$ is a new differential on N. Then, according to the perturbation lemma, in some suitable circumstances, there exists a perturbation $t': M \to M$ so that the complexes $(M, d_{t'})$ and (N, d_t) remain "equivalent." There are (co)algebraic versions of the perturbation lemma (see [11,9]): if M and N are DG-(co)algebras and t is a (co)derivation, then, in suitable circumstances, t' is a (co)derivation too.

Using the so-called "tensor trick" (see [11]), the perturbation lemma allows one to transfer not only differentials, but certain algebraic structures too. Suppose, for example, that N is equipped with a DG-algebra structure. Applying the functor $T's^{-1}$ we get new complexes $T'(s^{-1}M)$ and $T'(s^{-1}N)$ with differentials induced by d_M and d_N , respectively. The product operation of N determines the perturbation t so that

$$(T'(s^{-1}N), d_t) = B(N).$$

Then, according to the coalgebra perturbation lemma, there appears a new differential on $T'(s^{-1}N)$, which is a coderivation too and therefore can be interpreted as an $A(\infty)$ -algebra structure on M.

Let us specify what an "equivalence" means.

The basic perturbation lemma [7,8] requires of M and N to form a filtered SDR (strong defonation retraction)

$$((M, d_M) \underset{\beta}{\overset{\alpha}{\leftarrow}} (N, d_N), \nu)$$

which consists of the following data:

(1) the cochain complexes (M, d_M) and (N, d_N) , both filtered with complete filtrations;

(2) the filtration preserving chain maps α and β such that $\beta \alpha = id_M$;

(3) the filtration preserving chain homotopy which is a homomorphism $\nu:N\to N$ of degree -1 such that

$$\alpha\beta - id_N = d_N\nu + \nu d_N.$$

We can now formulate the following

Perturbation Lemma. Let

$$((M, d_M) \stackrel{\alpha}{\underset{\beta}{\leftrightarrow}} (N, d_N), \nu)$$

be a filtered SDR and $t: N \to N$ be a perturbation of d_N which increases filtration. Then there are formulas for $t', \alpha', \beta', \nu'$ such that

$$((M, d_{t'}) \stackrel{\alpha'}{\underset{\beta'}{\rightleftharpoons}} (N, d_t), \nu')$$

is a filtered SDR and $t', \alpha - \alpha', \beta - \beta', \nu - \nu'$ increase filtrations.

Remark 2.1. In [11,9] the (co)algebra version of this lemma is shown: if the initial SDR is (co)algebraic, i.e., M and N are filtered DG-(co)algebras, α and β are multiplicative, ν is a (co)derivation homotopy, and if t is a (co)derivation, then the resulting SDR is (co)algebraic too.

In [9] the perturbation lemma is extended for chain equivalences in the following sense: a filtered chain equivalence

$$(\mu, (M, d_M) \stackrel{lpha}{\underset{eta}{\rightleftharpoons}} (N, d_N), \nu)$$

consists of

– the filtered cochain complexes M and N;

– the filtration preserving chain maps α and β ;

– the filtration preserving chain homotopies $\mu: M \to {\rm and} \ \nu: N \to N$ such that

$$\beta \alpha - id_M = d_M \mu + \mu d_M, \quad \alpha \beta - id_N = d_N \nu + \nu d_N.$$

Extended Perturbation Lemma. Let

$$(\mu, (M, d_M) \stackrel{\alpha}{\underset{\beta}{\rightleftharpoons}} (N, d_N), \nu)$$

be a filtered chain equivalence and $t: N \to N$ be a perturbation of d_N , which increases filtration. Then there are formulas for $t', \alpha', \beta', \mu', \nu'$ such that

$$(\mu', (M, d_{t'}) \stackrel{\alpha'}{\underset{\beta'}{\rightleftharpoons}} (N, d_t), \nu')$$

is a filtered chain equivalence and $t', \alpha - \alpha', \beta - \beta', \mu - \mu', \nu - \nu'$ increase filtrations.

Although there is no (co)algebraic version of this extended perturbation lemma in a general setting, we are going to use in this paper the following result, dual to Theorem (2.3^*) from [9].

Proposition 1. Let

$$(\mu, X \underset{\beta}{\stackrel{\alpha}{\rightleftharpoons}} Y, \nu)$$

be a chain equivalence, let

$$(T'\mu, T'(X) \stackrel{T'\alpha}{\underset{T'\beta}{\rightleftharpoons}} (Y), T'\nu)$$

be the corresponding filtered chain equivalence of DG-coalgebras, and let t be a comultiplicative perturbation of the differential on T'(Y) (i.e., it increases the augmentation filtration of T'(Y) and is a coderivation). Then there exsist a comultiplicative perturbation t' of the differential on T'(X) and a filtered chain equivalence of DG-coalgebras

$$(T'_t\mu, T'_t(X) \underset{T'_t\beta}{\overset{T'_t\alpha}{\rightleftharpoons}} T'_t(Y), T'_t\nu),$$

where $T'_t(X)$ and $T'_t(Y)$ refer to new chain complexes.

This proposition (a weak form of the extended coalgebra perturbation lemma) will be used to prove

Theorem B. Let $(M, \{m_i\})$ be an $A(\infty)$ -algebra, (C, d) be a DG-module, and

$$f:(M,m_1)\to(C,d)$$

be a weak equivalence of DG-modules. Assume further that M and C are connected and free as graded modules. Then there exist (1) an $A(\infty)$ -algebra structure $\{m'_i\}$ on C with $m'_1 = d$; (2) a morphism of $A(\infty)$ -algebras

$$\{f_i\}: (M, \{m_i\}) \to (C, \{m'_i\})$$

with $f_1 = f$.

Proof. Since M and C are free, it is possible to construct a chain equivalence

$$(\mu, (C, d) \stackrel{g}{\underset{f}{\leftarrow}} (M, m_1), \nu).$$

Using the desuspension functor s^{-1} we get the chain equivalence

$$(s^{-1}\mu s, (s^{-1}C, s^{-1}ds) \overset{s^{-1}gs}{\underset{s^{-1}fs}{\overset{s^{-1}gs}{\leftrightarrow}}} (s^{-1}M, s^{-1}m_1s), s^{-1}\nu s).$$

448

Applying the functor T', we get the filtered chain equivalence

$$(T's^{-1}\mu s, (T'(s^{-1}C), T'(s^{-1}ds)))$$

$$\stackrel{T'(s^{-1}gs)}{\rightleftharpoons} ((T'(s^{-1}M), T'(s^{-1}m_1s)), T'(s^{-1}\nu s)).$$

Let t be the perturbation of $T'(s^{-1}m_1s)$ given by

$$t = d_B - T'(s^{-1}m_1s)),$$

where d_B is the differential of the bar construction $B(M, \{m_i\})$. Clearly, t is a coderivation and increases the standard filtration of $T'(s^{-1}M)$. Then, by virtue of the proposition there exist a perturbation t' and a filtered chain equivalence of DG-algebras

$$(T'_t s^{-1} \mu s, (T'_t (s^{-1}C), d' = T'(s^{-1}ds) + t')$$

$$\underset{T'_t (s^{-1}gs)}{\rightleftharpoons} (T'_t ((s^{-1}M), d_B = T'(s^{-1}m_1s) + t), T'_t s^{-1} \nu s),$$

The differential d' can be interpreted as the $A(\infty)$ -algebra structure $\{m'_i\}$ and the map $T'_t(s^{-1}fs)$ as the morphism of $A(\infty)$ -algebras

$$\{f_i\}: (M, \{m_i\}) \to (C, \{m'_i\}),\$$

which completes the proof. \Box

For an *n*-connected space X and $0 \le k \le n$ we are going to construct a sequences of $A(\infty)$ -algebra structures $\{m_i^{(k)}(X)\}$ and weak equivalences of $A(\infty)$ -algebras

$$\{f_i^{(k)}(X)\} : C^*(\Omega^k X) \to ((B(C^*(X); \{m_i^{(1)}(X)\}); \{m_i^{(2)}(X)\}); \cdots); \{m_i^{(k)}(X)\})$$

Then

$$f_1^{(k)*}(X) : H^*(\Omega^k X) \to (H(B(C^*(X); \{m_i^{(1)}(X)\}); \cdots); \{m_i^{(k-1)}(X)\}); m*_2^{(k)(X)})$$

will be the required isomorphism from Theorem A.

According to Adams and Hilton [1] (see also Brown [12]), for a 1-connected space X there exists a weak equivalence of DG-coalgebras

$$f: C^*(\Omega X) \to BC^*(X).$$

Furthermore, the cup product

$$\mu: C^*(\Omega X) \otimes C^*(\Omega X) \to C^*(\Omega X)$$

turns $(C^*(\Omega X),d,\mu)$ into a DG-algebra, i.e., it can be considered as an $A(\infty)\text{-algebra}$

$$(C^*(\Omega X), \{m_1 = d, m_2 = \mu, m_{>2} = 0\}).$$

Now by Theorem B there exists, on the bar construction $BC^*(X)$, a structure of $A(\infty)$ -algebra $(BC^*(X), \{m_i^{(1)}(X)\})$ and a weak equivalence of $A(\infty)$ -algebras

$$\{f_i^{(1)}(X)\}: (C^*(\Omega X), \{m_1 = d, m_2 = \mu, m_{>2} = 0\}) \to (BC^*(X), \{m_i^{(1)}(X)\}).$$

For the next inductive step, assume that X is 2-connected. Then, if instead of X we consider the loop space ΩX (which is 1-connected), by virtue of the preceding we have a weak equivalence of $A(\infty)$ -algebras

$$\{f_i^{(1)}(\Omega X)\}: C^*(\Omega^2 X) \to (BC^*(\Omega X), \{m_i^{(1)}(\Omega X)\}).$$

Moreover, the $A(\infty)\text{-morphism}~\{f_i^{(1)}(X)\}$ induces a weak equivalence of $DG\text{-}\mathrm{coalgebras}$

$$B(\{f_i^{(1)}(X)\}): B(C^*(\Omega X) \to B(BC^*(X), \{m_i^{(1)}(X)\}).$$

By Theorem B this weak equivalence transfers the $A(\infty)$ -algebra structure $\{m_i^{(1)}(\Omega X)\}$ of $B(C^*(\Omega X)$ to $B(BC^*(\Omega X), \{m_i^{(1)}(\Omega X)\})$ and we get the $A(\infty)$ -algebra structure $\{m_i^{(2)}(X)\}$ and the weak equivalence of $A(\infty)$ algebras

$$\begin{split} &\{\bar{f}_i^{(2)}(X)\}: (BC^*(\Omega X), \{m_i^{(1)}(\Omega X)\}) \to \\ &(B(BC^*(X), \{m_i^{(1)}(X)\}), \{m_i^{(2)}(X)\}). \end{split}$$

Now we can define the $A(\infty)$ -morphism $\{f_i^{(2)}(X)\}$ as the composition

$$\begin{split} \{\bar{f}_i^{(2)}(X)\} \circ \{f_i^{(1)}(\Omega X)\} : C^*(\Omega^2 X) \to (BC^*(\Omega X), m_i^{(1)}(\Omega X)) \to \\ (B(BC^*(X), \{m_i^{(1)}(X)\}), \{m_1^{(2)}(X)\}). \end{split}$$

Suppose now that $\{m_i^{(k-1)}(X)\}$ and $\{f_i^{(k-1)}(X)\}$ have already been constructed for $k \leq n$. Then, since $\Omega^{k-1}X$ is at least 1-connected, there exists a weak equivalence of $A(\infty)$ -algebras

$$\{f_i^{(1)}(\Omega^{k-1}X)\}: C^*(\Omega^k X) \to (BC^*(\Omega^{k-1}X), \{m_i^{(1)}(\Omega^{k-1}X)\}).$$

Moreover, we also have a weak equivalence of DG-coalgebras

$$B(\{f_i^{(k-1)}(X)\}) : B(C^*(\Omega^{k-1}X) \to B(\dots (BC^*(X), \{m_i^{(1)}(X)\}), \dots), \{m_i^{(k-1)}(X)\})$$

By Theorem B this weak equivalence transfers the $A(\infty)$ -algebra structure $(\{m_i^{(1)}(\Omega^{k-1}X)\} \text{ of } B(C^*(\Omega^{k-1}X)) \text{ to }$

$$B(\cdots(BC^*(X), \{m_i^{(1)}(X)\}), \cdots), \{m_i^{(k-1)}(X)\})$$

and we get the $A(\infty)\text{-algebra structure }\{m_i^{(k)}(X)\}$ and the morphism of $A(\infty)\text{-algebras}$

$$\{\bar{f}_i^{(k)}(X)\} : (B(C^*(\Omega^{k-1}X), \{m_i^{(1)}(\Omega^{k-1}X)\}) \to (B(\cdots(BC^*(X), \{m_i^{(1)}(X)\}), \cdots), \{m_i^{(k-1)}(X)\}), \{m_i^{(k-1)}(X)\}).$$

Now we can define the $A(\infty)\text{-morphism}\;\{f_i^{(k)}(X)\}$ as the composition

$$\begin{split} &\{\bar{f}_i^{(k)}(X)\} \circ \{f_i^{(1)}(\Omega^{k-1}X)\} : C^*(\Omega^k X) \to (B(C^*(\Omega^{k-1}X), \{m_i^{(1)}(\Omega^{k-1}X)\}) \\ &\to (B(\cdots (BC^*(X), \{m_i^{(1)}(X)\}), \cdots), \{m_i^{(k-1)}(X)\}), \{m_i^{(k-1)}(X)\}). \end{split}$$

This completes the proof.

Acknowledgment

The research described in this publication was made possible in part by Grant No. RVC2OO from the International Science Foundation.

References

1. J. F. Adams and P. J. Hilton, On the cochain algebra of a loop space. *Comment. Math. Helv.* **20**(1955), 305–330.

2. H. Baues, Geometry of loop spaces and the cobar construction. *Mem. Amer. Math. Soc.* **25**(1980), No. 230, 55–106.

3. J. D. Stasheff, Homotopy associativity of *H*-spaces. Trans. Amer. Math. Soc. 108(1963), 275–312.

4. L. G. Khelaia, On some chain operations. (Russian) *Trudy Tbiliss. Mat. Inst. Razmadze* **83**(1986), 102–115.

5. V. A. Smirnov, Homotopy theory of coalgebras. (Russian) *Izv. Akad.* Nauk SSSR, Ser. Mat. **49**(1985), 575–593.

6. J. Smith, Iterating the cobar construction. Mem. Amer. Math. Soc. **109**(1994), No. 524, 1–141.

7. R. Brown, The twisted Eilenberg–Zilber theorem. *Celebrazioni Archi*medee del secolo XX, Simposio di Topologia (1967), 34–37.

8. V. K. A. M. Gugenheim, On the chain complex of a fibration. J. Math. 3(1972), No. 111, 392–414.

9. I. Huebschman and T. Kadeishvili, Small models for chain algebras. *Math. Z.* **207**(1991), 245–280.

10. T. V. Kadeishvili, $A(\infty)$ -algebra structure in cohomology and the rational homotopy type. (Russian) *Trudy Thiliss. Mat. Inst. Razmadze* **107**(1993), 1–94.

11. V. K. A. M. Gugenheim, L. Lambe, and J. D. Stasheff, Perturbation theory in differential homological algebra II. *Illinois J. Math.* **35**(1991), No. 3, 357–373.

12. E. Brown, Twisted tensor product. Ann. Math. (2) **69**(1959), No. 2, 223–246.

(Received 27.05.1996)

Authors' address:

A. Razmadze Mathematical Institute Georgian Academy of Sciences1, M. Aleksidze St., Tbilisi 380093 Georgia