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ITERATING THE BAR CONSTRUCTION

T. KADEISHVILI AND S. SANEBLIDZE

Abstract. For a 1-connected space X Adams’s bar construction
B(C∗(X)) describes H∗(ΩX) only as a graded module and gives
no information about the multiplicative structure. Thus it is not
possible to iterate the bar construction in order to determine the
cohomology of iterated loop spaces ΩiX. In this paper for an n-
connected pointed space X a sequence of A(∞)-algebra structures
{m(k)

i }, k = 1, 2, . . . , n, is constructed, such that for each k ≤ n there
exists an isomorphism of graded algebras

H∗(ΩkX) ∼=
∼= (H(B(· · · (B(B(C∗(X); {m(1)

i }); {m(2)
i }); · · · ); {m(k−1)

i })); m(k)∗
2 ).

Introduction

For a 1-connected pointed space X Adams [1] found a natural isomor-
phism of graded modules

H(B(C∗(X)) ∼= H∗(ΩX),

where B(C∗(X)) is the bar construction of DG-algebra C∗(X). The method
cannot be extended directly for iterated loop spaces ΩkX for k ≥ 2, since
the bar construction B(A) of a DG-algebra A is just a DG-coalgebra, and
it does not carry the structure of a DG-algebra in order to produce a double
bar construction B(B(A)).

However, for A = C∗(X) Baues [2] has constructed an associative pro-
duct

µ : B(C∗(X))⊗B(C∗(X)) → B(C∗(X)),

which turns B(C∗(X)) into a DG-algebra and which is geometric: for 1-
connected X there exists an isomorphism of graded algebras

H(B(C∗(X)) ∼= H∗(ΩX)
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and for a 2-connceted X there exists an isomorphism of graded modules

H(B(B(C∗(X))) ∼= H∗(Ω2X).

But again, as mentioned in [2], this method cannot be extended for Ω3X
either, since “it is impossible to construct a ‘nice’ product on B(B(C∗(X)).”

We remark here that in order to produce the bar construction B(M) it
is not necessary to have, on a DG-module M , a strict associative product

µ : M ⊗M → M ;

it suffices to have a strong homotopy associative product, or, which is the
same, to have an A(∞)-algebra structure on M . This notion was introduced
by Stasheff in [3]. An A(∞)-algebra (M, {mi}) is a graded module M
equipped with a sequence of operations

{mi : M ⊗ · · · (i-times) · · · ⊗M → M, i = 1, 2, 3, . . . ; deg mi = 2− i},

which satisfies the suitable associativity conditions (see below). Such a
sequence defines on B(M) the correct differential

dm : B(M) → B(M),

which is a coderivation with respect to the standard coproduct. This DG-
coalgebra (B(M); dm) is denoted by B(M, {mi}) and called the bar con-
struction of A(∞)-algebra (M, {mi}).

In particular, an A(∞)-algebra of the type

(M, {m1,m2, 0, 0, . . . })

is just a DG-algebra with a differential m1 and a strict associative product
m2 (up to signs). For such an A(∞)-algebra, B(M, {mi}) coincides with
the usual bar construction. For a general A(∞)-algebra (M, {mi}) the first
operation m1 : M → M is a differential, which is a derivation with respect
to the second operation m2 : M ⊗M → M ; this operation is not neccesarily
associative, but is homotopy associative (the operation m3 is a suitable
homotopy). Thus we can consider homology of DG-module (M, m1). Then
the product m2 induces, on H(M, m1), the strict associative product m∗

2.
Now we can formulate the main result of this paper.

Theorem A. Let X be an n-connected pointed space. Then there exists
a sequence of A(∞)-algebra structures {m(k)

i }, k = 1, 2, . . . , n, such that for
each k ≤ n there exists an isomorphism of graded algebras

H∗(ΩkX) ∼=
∼= (H(B(· · · (B(B(C∗(X); {m(1)

i }); {m(2)
i }); · · · ); {m(k−1)

i })); m(k)∗
2 ).
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Remark 0.1. The latter A(∞)-algebra structure {m(n)
i } allows one to pro-

duce the next bar construction

(B(· · · (B(B(C∗(X); {m(1)
i ); {m(2)

i ); · · · ); {m(n)
i })),

but it is not clear whether it is geometric, i.e., whether homology of this bar
construction is isomorphic to H∗(Ωn+1X) if X is not (n + 1)-connected.

The proof is based on

Theorem B. Let (M, {mi}) be an A(∞)-algebra, (C, d) be a DG-module,
and

f : (M, m1) → (C, d)

be a weak equivalence of DG-modules. Assume further that M and C are
connected and free as graded modules. Then there exist
(1) an A(∞)-algebra structure {m′

i} on C with m′
1 = d;

(2) a morphism of A(∞)-algebras

{fi} : (M, {mi}) → (C, {m′
i})

with f1 = f .

Let us mention some results from the literature dedicated to the problem
of iterating the bar construction.

In [4] Khelaia has constructed, on C∗(X), an aditional structure which, in
particular, contains Steenrod’s ∪1 product, and which is used to introduce,
in the bar construction BC∗(X), a homotopy associative product which is
geometric: there exists an isomorphism of graded algebras

H∗(B(C∗(X)) ∼= H∗(ΩX).

One can show that this product is strong homotopy associative. Thus there
is the possibility to produce the next bar construction B(B(C∗(X))), but
the aditional structure itself is lost in B(C∗(X)) and hence this structure is
not enough to determine the product in B(B(C∗(X))).

Later Smirnov [5], using the technique of operands, introduced a more
powerful aditional structure – the E∞-structure which can be transferred
on B(C∗(X)). Hence there is the possibility of an iteration.

The structure of an m-algebra introduced by Jastin Smith [6] is also
transferable on the bar constuction and, as mentioned in [6], is smaller and
has computational advantages against Smirnov’s one.

Seemingly, the structure introduced in this paper, i.e., the sequence of
A(∞)-algebra structures {m(k)

i }, should be the smallest one because the
A(∞)-algebra structure is a minimal structure required to produce the bar
construction.
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The disadvantage of our structure is that it cannot be considered as a
sequence of operations from Hom(⊗kC∗(X), C∗(X)) as in [5] and [6]. In
the forthcoming publication we are going to make up for this disadvantage.

The proof of Theorem B is based on the perturbation lemma (see [7,8]),
extended for chain equivalences in [9].

In Section 1 Stasheff’s notion of an A(∞)-algebra is given. Section 2 is
dedicated to the perturbation lemma and in Section 3 Theorem A is proved.

1. A(∞)-Algebras

The notion of an A(∞)-algebra was introduced by J. Stasheff in [3].

An A(∞)-algebra is a graded module M =
∞
∑

i=0
M i with a given sequence

of operations

{mi : ⊗iM → M ; i = 1, 2, 3, . . . }

which satisfies the following conditions:
(1) deg mi = 2− i;

(2)
n−1
∑

k=1

n−k+1
∑

j=1

mn−j+1(a1⊗· · ·⊗ak⊗mj(ak+1⊗· · ·⊗ak+j)⊗· · ·⊗an)=0

for each ai ∈ M and n > 0.
The sequence of operations {mi} defines on the tensor coalgebra

T ′(s−1M) = R + s−1M + s−1M ⊗ s−1M + · · · =
∞
∑

i=0

⊗is−1M

(here s−1M is the desuspension of M) a differential dm : T (s−1M) →
T (s−1M), given by

dm(s−1a1 ⊗ · · · ⊗ s−1an) =

=
n−1
∑

k=1

n−k+1
∑

j=1

s−1a1 ⊗ · · · ⊗ s−1ak ⊗ s−1mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ s−1an.

This differential turns (T ′(s−1M), dm) into a differential graded coalge-
bra called the bar-construction of an A(∞)-algebra (M, {mi}) and denoted
by B(M, {mi}). Conversely, using the cofreeness of the tensor coalgebra
one can show that any differential d : T ′(s−1M) → T ′(s−1M) which is a
coderivation at the same time coincides with dm for some A(∞)-algebra
structure {mi} (see [10] for details).

For an A(∞)-algebra of the type (M ; {m1,m2, 0, 0, . . . }), i.e., for a dif-
ferential algebra with the differential m1 and the multiplication m2 the
bar-construction coincides with the usual one.
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A morphism of A(∞)-algebras

{fi} : (M ; {mi}) → (N ; {ni})

is defined as a sequence of homomorphisms

{fi : ⊗iM → N ; i = 1, 2, 3, . . . }

which satisfies the following conditions:
(1) deg fi = 1− i;

(2)
n−1
∑

k=1

n−k+1
∑

j=1
fn−j+1(a1⊗· · ·⊗ak⊗mj(ak+1⊗· · ·⊗ak+j)⊗ak+j+1⊗···⊗an)=

=
n
∑

t=1

∑

k1+···+kt=n
nt(fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fkt(an−kt+1 ⊗ · · · ⊗ an))

for each ai ∈ M and n > 0.
Each A(∞)-algebra morphism induces a DG-coalgebra morphism

B({fi}) : B(M, {mi}) → B(N, {ni})

by

B({fi})(s−1a1 ⊗ · · · ⊗ s−1an) =
n

∑

t=1

∑

k1+···+kt=n

s−1fk1(a1 ⊗ · · · ⊗ ak1)⊗

⊗ · · · ⊗ s−1fkt(an−kt+1 ⊗ · · · ⊗ an).

Conversely, as above, because of the cofreeness of a tensor coalgebra, each
DG-colagebra morphism

F : B(M, {mi}) → B(N, {ni})

coincides with B({fi}) for a suitable A(∞)-algebra morphism {fi}.

Remark 1.1. The first component f1 : (M ; m1) → (N ;n1), which is a
chain map, is homotopy multiplicative with respect to the homotopy asso-
ciative products m2 and n2. Therefore it induces a map of graded algebras

f∗1 : (H(M, m1),m2∗) → (H(M, m1),m2∗).

We call an A(∞)-algebra morphism {fi} a weak equivalence if f∗1 is an
isomorphism.
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2. Perturbation Lemma

The general perturbation lemma [7,8] deals with the following problem.
Let (M,dM ) and (N, dN ) be cochain complexes, and suppose they are

equivalent in some sense, which will be discussed. A perturbation of the
differential dN is a homomorphism t : N → N which satisfies

dN t + tdN + tt = 0

so that dt = dN +t is a new differential on N . Then, according to the pertur-
bation lemma, in some suitable circumstances, there exists a perturbation
t′ : M → M so that the complexes (M, dt′) and (N, dt) remain “equivalent.”
There are (co)algebraic versions of the perturbation lemma (see [11,9]): if
M and N are DG-(co)algebras and t is a (co)derivation, then, in suitable
circumstances, t′ is a (co)derivation too.

Using the so-called “tensor trick” (see [11]), the perturbation lemma al-
lows one to transfer not only differentials, but certain algebraic structures
too. Suppose, for example, that N is equipped with a DG-algebra structure.
Applying the functor T ′s−1 we get new complexes T ′(s−1M) and T ′(s−1N)
with differentials induced by dM and dN , respectively. The product opera-
tion of N determines the perturbation t so that

(T ′(s−1N), dt) = B(N).

Then, according to the coalgebra perturbation lemma, there appears a new
differential on T ′(s−1N), which is a coderivation too and therefore can be
interpreted as an A(∞)-algebra structure on M .

Let us specify what an “equivalence” means.
The basic perturbation lemma [7,8] requires of M and N to form a filtered

SDR (strong defomation retraction)

((M, dM )
α
�
β

(N, dN ), ν)

which consists of the following data:
(1) the cochain complexes (M, dM ) and (N, dN ), both filtered with complete
filtrations;
(2) the filtration preserving chain maps α and β such that βα = idM ;
(3) the filtration preserving chain homotopy which is a homomorphism ν :
N → N of degree −1 such that

αβ − idN = dNν + νdN .

We can now formulate the following
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Perturbation Lemma. Let

((M, dM )
α
�
β

(N, dN ), ν)

be a filtered SDR and t : N → N be a perturbation of dN which increases
filtration. Then there are formulas for t′, α′, β′, ν′ such that

((M, dt′)
α′

�
β′

(N, dt), ν′)

is a filtered SDR and t′, α− α′, β − β′, ν − ν′ increase filtrations.

Remark 2.1. In [11,9] the (co)algebra version of this lemma is shown: if
the initial SDR is (co)algebraic, i.e., M and N are filtered DG-(co)algebras,
α and β are multiplicative, ν is a (co)derivation homotopy, and if t is a
(co)derivation, then the resulting SDR is (co)algebraic too.

In [9] the perturbation lemma is extended for chain equivalences in the
following sense: a filtered chain equivalence

(µ, (M, dM )
α
�
β

(N, dN ), ν)

consists of
– the filtered cochain complexes M and N ;
– the filtration preserving chain maps α and β;
– the filtration preserving chain homotopies µ : M → and ν : N → N such
that

βα− idM = dMµ + µdM , αβ − idN = dNν + νdN .

Extended Perturbation Lemma. Let

(µ, (M, dM )
α
�
β

(N, dN ), ν)

be a filtered chain equivalence and t : N → N be a perturbation of dN , which
increases filtration. Then there are formulas for t′, α′, β′, µ′, ν′ such that

(µ′, (M, dt′)
α′

�
β′

(N, dt), ν′)

is a filtered chain equivalence and t′, α − α′, β − β′, µ − µ′, ν − ν′ increase
filtrations.

Although there is no (co)algebraic version of this extended perturbation
lemma in a general setting, we are going to use in this paper the following
result, dual to Theorem (2.3∗) from [9].
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Proposition 1. Let

(µ,X
α
�
β

Y, ν)

be a chain equivalence, let

(T ′µ, T ′(X)
T ′α
�
T ′β

(Y ), T ′ν)

be the corresponding filtered chain equivalence of DG-coalgebras, and let t be
a comultiplicative perturbation of the differential on T ′(Y ) (i.e., it increases
the augmentation filtration of T ′(Y ) and is a coderivation). Then there
exsist a comultiplicative perturbation t′ of the differential on T ′(X) and a
filtered chain equivalence of DG-coalgebras

(T ′tµ, T ′t (X)
T ′tα
�
T ′tβ

T ′t (Y ), T ′tν),

where T ′t (X) and T ′t (Y ) refer to new chain complexes.

This proposition (a weak form of the extended coalgebra perturbation
lemma) will be used to prove

Theorem B. Let (M, {mi}) be an A(∞)-algebra, (C, d) be a DG-module,
and

f : (M, m1) → (C, d)

be a weak equivalence of DG-modules. Assume further that M and C are
connected and free as graded modules. Then there exist
(1) an A(∞)-algebra structure {m′

i} on C with m′
1 = d;

(2) a morphism of A(∞)-algebras

{fi} : (M, {mi}) → (C, {m′
i})

with f1 = f .

Proof. Since M and C are free, it is possible to construct a chain equivalence

(µ, (C, d)
g
�
f

(M, m1), ν).

Using the desuspension functor s−1we get the chain equivalence

(s−1µs, (s−1C, s−1ds)
s−1gs
�

s−1fs
(s−1M, s−1m1s), s−1νs).
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Applying the functor T ′, we get the filtered chain equivalence

(T ′s−1µs, (T ′(s−1C), T ′(s−1ds)))

T ′(s−1gs)
�

T ′(s−1fs)
((T ′(s−1M), T ′(s−1m1s)), T ′(s−1νs)).

Let t be the perturbation of T ′(s−1m1s)) given by

t = dB − T ′(s−1m1s)),

where dB is the differential of the bar construction B(M, {mi}). Clearly, t
is a coderivation and increases the standard filtration of T ′(s−1M). Then,
by virtue of the proposition there exist a perturbation t′ and a filtered chain
equivalence of DG-algebras

(T ′ts
−1µs, (T ′t (s

−1C), d′ = T ′(s−1ds) + t′)

T ′t (s
−1gs)
�

T ′t (s
−1fs)

(T ′t ((s
−1M), dB = T ′(s−1m1s) + t), T ′ts

−1νs),

The differential d′ can be interpreted as the A(∞)-algebra structure {m′
i}

and the map T ′t (s
−1fs) as the morphism of A(∞)-algebras

{fi} : (M, {mi}) → (C, {m′
i}),

which completes the proof.

3. Proof of Theorem A

For an n-connected space X and 0 ≤ k ≤ n we are going to construct a
sequences of A(∞)-algebra structures {m(k)

i (X)} and weak equivalences of
A(∞)-algebras

{f (k)
i (X)} : C∗(ΩkX) →

((B(· · · (B(B(C∗(X); {m(1)
i (X)}); {m(2)

i (X)}); · · · ); {m(k)
i (X)}).

Then

f (k)∗
1 (X) : H∗(ΩkX) →

(H(B(· · · (B(B(C∗(X); {m(1)
i (X)}); · · · ); {m(k−1)

i (X)}));m∗(k)(X)
2 )

will be the required isomorphism from Theorem A.
According to Adams and Hilton [1] (see also Brown [12]), for a 1-connec-

ted space X there exists a weak equivalence of DG-coalgebras

f : C∗(ΩX) → BC∗(X).
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Furthermore, the cup product

µ : C∗(ΩX)⊗ C∗(ΩX) → C∗(ΩX)

turns (C∗(ΩX), d, µ) into a DG-algebra, i.e., it can be considered as an
A(∞)-algebra

(C∗(ΩX), {m1 = d, m2 = µ, m>2 = 0}).

Now by Theorem B there exists, on the bar construction BC∗(X), a struc-
ture of A(∞)-algebra (BC∗(X), {m(1)

i (X)}) and a weak equivalence of
A(∞)-algebras

{f (1)
i (X)} : (C∗(ΩX), {m1 =d,m2 =µ,m>2 =0})→(BC∗(X), {m(1)

i (X)}).

For the next inductive step, assume that X is 2-connected. Then, if
instead of X we consider the loop space ΩX (which is 1-connected), by
virtue of the preceding we have a weak equivalence of A(∞)-algebras

{f (1)
i (ΩX)} : C∗(Ω2X) → (BC∗(ΩX), {m(1)

i (ΩX)}).

Moreover, the A(∞)-morphism {f (1)
i (X)} induces a weak equivalence of

DG-coalgebras

B({f (1)
i (X)}) : B(C∗(ΩX) → B(BC∗(X), {m(1)

i (X)}).

By Theorem B this weak equivalence transfers the A(∞)-algebra struc-
ture {m(1)

i (ΩX)} of B(C∗(ΩX) to B(BC∗(ΩX), {m(1)
i (ΩX)}) and we get

the A(∞)-algebra structure {m(2)
i (X)} and the weak equivalence of A(∞)-

algebras

{f̄ (2)
i (X)} : (BC∗(ΩX), {m(1)

i (ΩX)}) →

(B(BC∗(X), {m(1)
i (X)}), {m(2)

i (X)}).

Now we can define the A(∞)-morphism {f (2)
i (X)} as the composition

{f̄ (2)
i (X)} ◦ {f (1)

i (ΩX)} : C∗(Ω2X) → (BC∗(ΩX),m(1)
i (ΩX)) →

(B(BC∗(X), {m(1)
i (X)}), {m(2)

1 (X)}).

Suppose now that {m(k−1)
i (X)} and {f (k−1)

i (X)} have already been con-
structed for k ≤ n. Then, since Ωk−1X is at least 1-connected, there exists
a weak equivalence of A(∞)-algebras

{f (1)
i (Ωk−1X)} : C∗(ΩkX) → (BC∗(Ωk−1X), {m(1)

i (Ωk−1X)}).



ITERATING THE BAR CONSTRUCTION 451

Moreover, we also have a weak equivalence of DG-coalgebras

B({f (k−1)
i (X)}) : B(C∗(Ωk−1X) →

B(· · · (BC∗(X), {m(1)
i (X)}), · · · ), {m(k−1)

i (X)}).

By Theorem B this weak equivalence transfers the A(∞)-algebra structure
({m(1)

i (Ωk−1X)} of B(C∗(Ωk−1X)) to

B(· · · (BC∗(X), {m(1)
i (X)}), · · · ), {m(k−1)

i (X)})

and we get the A(∞)-algebra structure {m(k)
i (X)} and the morphism of

A(∞)-algebras

{f̄ (k)
i (X)} : (B(C∗(Ωk−1X), {m(1)

i (Ωk−1X)}) →

(B(· · · (BC∗(X), {m(1)
i (X)}), · · · ), {m(k−1)

i (X)}), {m(k−1)
i (X)}).

Now we can define the A(∞)-morphism {f (k)
i (X)} as the composition

{f̄ (k)
i (X)} ◦ {f (1)

i (Ωk−1X)} :C∗(ΩkX)→(B(C∗(Ωk−1X), {m(1)
i (Ωk−1X)})

→ (B(· · · (BC∗(X), {m(1)
i (X)}), · · · ), {m(k−1)

i (X)}), {m(k−1)
i (X)}).

This completes the proof.
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