
GEORGIAN MATHEMATICAL JOURNAL: Vol. 5, No. 3, 1998, 233-241

SPECTRAL AND BOUNDEDNESS RADII IN LOCALLY
CONVEX ALGEBRAS

A. EL KINANI, L. OUBBI, AND M. OUDADESS

Abstract. Connections between the spectral radius and the radius
of boundedness are studied. Different characterizations of algebras
(Q-property, strong saquentiality) are given in terms of these radii.
Examples and applications are also provided.

Introduction

In [1], Allan develops a spectral theory for locally convex algebras (l.c.a.),
using a spectrum (of an element) which is a subset of the extended com-
plex plane and considers the corresponding spectral radius r. He studies, in
particular, relations between r and the radius of boundedness β. The latter
plays an important role in studying sequentiality in l.c.a. In this paper,
we consider the classical notion of a spectrum and accordingly the classical
spectral radius ρ. We establish connections between ρ and β. Classes of
strongly sequential algebras are determined. Two simple conditions con-
cerning the convergence of the series

∑

xn are shown to be essential in this
context. Finally, a class of l.c.a.’s not necessarity m-convex, which contains
in particular Q-Fréchet locally convex algebras, on which the entire function
operates, is found.

I. Preliminaries

A locally convex algebra (l.c.a.) (E, τ) is an algebra over the complex field
endowed with a Hausdorff locally convex topology for which the product is
separately continuous. The classical spectral radius of an element x will be
denoted by ρ(x); it is ρ(x) := sup{|λ| : λ ∈ Sp x}, where Sp x = {λ ∈ C :
x = λe is not invertible in E}. An element x of E is said to be bounded
if for some nonzero complex number λ, the set {(λx)n : n = 1, 2, . . . } is
a bounded subset of (E, τ). The set of all bounded elements of (E, τ) is
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denoted by E0. The radius of boundedness β of an element x is defined
by β(x) := inf{a > 0 : (a−1x)n, n = 1, 2, . . . is bounded}, with ∅ = +∞.
A l.c.a. is said to be m-convex (m.c.a.) if its topology can be given by a
family of submultiplicative seminorms [2]. A l.c.a. (E, τ) is said to be:

i) strongly sequential if there is a zero-neighborhood U such that (xk)k
converges to zero for all x ∈ U ;

ii) sequential if for each sequence (xn)n tending to zero, there exists an
element x such that (xk

m)k converges to zero;
iii) infra-sequential if for each bounded set B of (E, τ), there is a > 0,

such that ((ax)k)k converges to zero for all x ∈ B.
It is clear that i) ⇒ ii) ⇒ iii) and that ii) ⇒ i) in metrizable l.c.a. (cf.

[3]).
Recall that a l.c.a. (E, τ) is said to be a Q-algebra if the group G(E) of

its invertible elements is open.

II. Comparison of ρ and β

First observe that ρ and β are not always comparable. Let E be the field
C(X) of rational fractions of the ring of complex polynomials endowed with
its strongest locally convex topology. One has ρ(X) = 0 and β(X) = +∞,
hence ρ and β are different. Now let F be a normed non Q-algebra. In F ,
we have β ≤ ρ. In the product algebra E ×F , ρ and β are not comparable.
Note that E yields an example of a complete commutative l.c.a. with unity
in which neither ρ nor β are submultiplicative seminorms. We begin with
a lemma which will be useful in the sequel. Denote by D(E) and S(E) the
set of all elements x ∈ E such that β(x) < 1 and ρ(x) ≤ 1 respectively.

Lemma II.1. Let (E, τ) be a l.c.a. with unity e. If (E, τ) is pseudo-
complete, then e + D(E) ⊂ G(E).

Proof. We will show that e − x is invertible for every x ∈ D(E) and that
the inverse is the classical series

∑

xn. We have
( ∑N

0 xn
)

(e − x) = (e −
x)

( ∑N
0 xn

)

= e− xN+1. But xN+1 tends to zero for x ∈ D(E). It remains
then only to show that the series converges. Consider a such that β(x) <
a < 1. The closed absolutely convex hull B of {(a−1x)n : n = 1, 2, . . . }
is an idempotent Banach disk. In the Banach algebra (EB , ‖ ‖B), one has
‖x‖B ≤ a < 1, where EB is the span of B and ‖ ‖B is the gauge of B.
Therefore the series

∑

xn converges in (EB , ‖ ‖B), and hence in (E, τ) as
well.

We now recall the lemma of Michael ([2], p. 58) with the term “absolutely
convex” replaced by “balanced” and the proof remaining the same:

Lemma II.2. Let (E, τ) be a unitary l.c.a. If U is a balanced subset of
E such that e + U ⊂ G(E), then U ⊂ S(E).
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Here is the first result concerning the comparison of ρ and β.

Proposition II.3. Let (E, τ) be a unitary pseudo-complete l.c.a. Then
ρ ≤ β.

Proof. By the previous lemmas, one has D(E) ⊂ S(E), whence follows the
conclusion.

Remark II.4. The preceding proposition can be seen as a consequence of
the result of [1]. But the proof given here is short and much easier, and it
does not, in particular, appeal to the notion of resolvent.

With no notion of completeness, we provide a condition under which
we still have ρ ≤ β. An element x of a l.c.a. is said to be sequentially
topologically invertible (s.t.-invertible in short) if there is a sequence (xn)n

in E such that (xnx)n and (xxn)n converge to the unit element.

Proposition II.5. Let (E, τ) be a unitary l.c.a. If every s.t.-invertible
element is invertible, then ρ ≤ β; this is the case, in particular, for Q-
algebras.

Proof. It is sufficient to show that D(E) ⊂ S(E) and, by Lemma II.2, we
just have to show that e + D(E) ⊂ G(E). Let further x be in D(E). Since
the sequence (xn)n tends to zero, the element e − x is s.t.-invertible, and
hence it is invertible by hypothesis.

Remark II.6. In the normed case, the condition ρ ≤ β is equivalent to
the fact that E is a Q-algebra. In a general l.c.a., the equivalence does not
hold. In fact, we have ρ ≤ β in any unitary and pseudo-complete l.c.a. (cf.
Proposition II.3). However, we obtain the following results:

Lemma II.7. Let (E, τ) be a unitary l.c.a. Then ρ ≤ β if and only if
there is a > 0 such that e− aD(E) ⊂ G(E).

Proof. If ρ ≤ β, then D(E) ⊂ S′(E), where S′(E) = {x ∈ E : ρ(x) < 1}.
But e− S′(E) ⊂ G(E) and hence e−D(E) ⊂ D(E). Conversely, let a > 0
be such that e− aD(E) ⊂ G(E). By Lemma II.2, aD(E) ⊂ S(E). Whence
aρ ≤ β. Then, taking xn, n ≥ 1, and letting n tend to infinity, we get
ρ ≤ β.

Proposition II.8. Let (E, τ) be a unitary l.c.a. such that β is an algebra
semi-norm. Then ρ ≤ β if and only if G(E) is β-open.

Using Warner’s techniques [4], one can obtain the following results pro-
viding situations where Proposition II.8 can be applied.

Lemma II.9. Let (E, τ) be a unitary and commutative l.c.a. with a
continuous product. Then β(x + y) ≤ β(x) + β(y) and β(xy) ≤ β(x)β(y),
for every x and y in E.
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Proof. Let us first observe that if β(x) or β(y) is infinite, there is nothing
to show. Now consider the set A = {x ∈ E : (xn)n is bounded}. It is an
idempotent disk. Indeed, let x and y be in A and 0 ≤ a ≤ 1. We have to
show that (zn)n where z = ax+(1− a)y is bounded. For a 0-neighborhood
V there is a 0-neighborhood U such that UU ⊂ V . By hypothesis, there
is λ > 0 such that (xn)n ⊂ λU and (yn)n ⊂ λU . Using the binomial
formula, we find that A is convex. On the other hand, it is easily seen
that A is balanced and idempotent. Now the gauge PA of A is exactly the
boundedness radius β, and PA verifies the required inequalities.

For every bounded element we have

Proposition II.10. Let (E, τ) be a unitary commutative l.c.a. with con-
tinuous product, and in which every element is bounded. Then ρ ≤ β if and
only if G(E) is β-open.

III. Strong Sequentiality

As far as we know, S. Warner [4] was the first to introduce this no-
tion in m-convex algebras. He used the term “P -algebras”. In connection
with Michael’s problem, Husain considered this notion in general topologi-
cal algebras [3]. In [5], Oudadess gave several classes of strongly sequential
algebras. We develop this idea in a larger setting. Here is a characterization
of strongly sequential l.c.a.’s. The proof, being straightforward, is omitted.

Proposition III.1. Let (E, τ) be a unitary l.c.a. Then (E, τ) is strongly
sequential if and only if β is continuous at 0.

Note that β may be continuous at 0 but not everywhere even in the
Banach case ([6], p. 88). In relation to Remark II.6, we have

Proposition III.2. Let (E, τ) be a unitary strongly sequential l.c.a.
Then ρ ≤ β if and only if (E, τ) is a Q-algebra. In particular, if (E, τ)
is pseudo-complete, then it is a Q-algebra.

Proof. We have seen that ρ ≤ β is any Q-algebra. Conversely, if ρ ≤ β,
then ρ is continuous since this is the case for β by the previous proposition
Therefore (E, τ) is a Q-algebra.

We now consider the relation between a strong sequentiality and the Q-
algebra property. None of the implications hold, as the following examples
show.
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Examples III.3. (1) Any normed algebra is strongly sequential but cer-
tainly is not necessarily a Q-algebra.

(2) Let E = C(X) be the field of rational functions endowed with its
finest linear locally convex topology. It is a Q-algebra which is not strongly
sequential for its elements are not all bounded.

As we will see, under additional conditions, the equivalence may hold.
We first give a general result.

Proposition III.4. Let (E, τ) be a pseudo-complete l.c.a. whose every
element is bounded. Then ρ ≤ β; hence (E, τ) is strongly sequential if and
only if it is a Q-algebra.

Proof. First suppose that E is commutative. Since E is pseudo-complete, it
can be written as a directed union of Banach algebras, i.e., E = ∪t∈IEi. For
every x in E, we have the following formulas: ρ(x) = inf{ρi(x) : i ∈ I(x)}
and β(x) = inf{βi(x) : i ∈ I(x)}, where I(x) = {i ∈ I : x ∈ Ei}. But
ρi = βi, in each Ei. Whence follows the result. Now if E is not commutative,
consider for every x, a maximal commutative subalgebra C(x) containing
x. Then one has β(x) = βC(x) = ρC(x) = ρ(x).

Remark III.5. The previous result can be obtained from Theorem 3.12 of
[1], but our proof is elementary; it makes no use of the holomorphy of the
resolvent.

Proposition III.6. Let (E, τ) be a Hausdorff l.c.a. If (E, τ) is a Q-
algebra whose every element is bounded, then it is strongly sequential.

Proof. Since (E, τ) is a Q-algebra, one has ρ ≤ β (cf. Proposition II.5). On
the other hand, β ≤ ρ by Theorem 3.12 on p. 411 of [1], for E = E0. So
ρ = β, whence follows the conclusion.

Corollary III.7. Let (E, τ) be a pseudo-complete l.c. Q-algebra with
the continuous inverse. Then it is strongly sequential.

Proof. The spectrum of every element of E is compact and hence bounded.
Therefore every element is bounded by ([1], 4.2, p. 414).

In any normed algebra we have the property

ρ(x) < 1 ⇒ (e− x)−1 =
+∞
∑

n=0

xn. (P1)

This property is not always fulfilled in a general l.c.a. (e.g., C(X) of Exam-
ple III.3.2). Actually, we have the following characterization:

Proposition III.8. Let (E, τ) be a unitary Hausdorff l.c.a. Then (E, τ)
verifies (P1) if and only if β ≤ ρ.
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Proof. Let x be in E. If ρ(x) = +∞, the inequality obviously holds. If
ρ(x) < +∞, then for every a > ρ(x), (a−1x)n tends to 0. Whence β(x) ≤ a.
Conversely if ρ(x) < 1, then β(x) < 1. Hence (xn)n tends to 0. The proof
is completed by a classical argument.

It appears that in the presence of (P1), the Q-algebra property implies
a strong sequentiality. An interesting consequence of Proposition III.8 is as
follows:

Corollary III.9. In every unitary Hausdorff l.c.a. we always have β≤ρ.

A property analogous to (P1) for β is

β(x) < 1 ⇒ (e− x)−1 =
+∞
∑

n=0

xn. (P2)

Let us note that under condition (P2), once e−x is invertible, its inverse
is exactly the series. So what is assumed in (P2) is actually the existence
of (e− x)−1.

An analogue of Proposition III. 7 is

Proposition III.10. Let (E, τ) be a unitary Hausdorff l.c.a. Then it
verifies (P2) if and only if ρ ≤ β.

Here it appears that in the presence of (P2), a strong sequentiality implies
the Q-algebra property. Note that any pseudo-complete l.c.a. and any Q-
algebra verify (P2).

Corollary III.11. In a pseudo-complete Hausdorff unitary l.m.c.a., we
have ρ = β.

Hence strong sequentiality and the Q-algebra property are the same.
We now give the third property involving both ρ and β:

min(ρ(x), β(x)) < 1 ⇒ (e− x)−1 =
+∞
∑

n=0

xn. (P3)

Remark III.12. (P3) is equivalent both to (P1) and (P2) together. So in
any Hausdorff l.c.a., the property (P3) is equivalent to ρ = β. Hence in this
context, the Q-algebra property and strong sequentiality are the same. As
a direct consequence of this, every element is bounded in any Q-l.m.c.a.
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IV. Classes of Strong Sequential Algebras

The following observation is given in [5]: A.l.c.a. (E, τ) is infra-sequential
if and only if β is bounded. One may define the notion of weak infra-
sequentiality, but according to the previous observation, it is the same as
infra-sequentiality, since the bounded sets are the same for all topologies
compatible with a given duality. In the sequel, if (E, τ) is a locally convex
space, denote by τi the finest linear locally convex topology on E having
the same bounded sets as τ (cf. [6]). If (E, τ) is a l.c.a. then so is (E, τ)
[4].

Proposition IV.1. If (E, τ) is a commutative Hausdorff infra-sequential
l.c.a. with a continuous product, then (E, τi) is strongly sequential.

Proof. Since (E, τ) is infra-sequential, β is finite. By Lemma II.9, β is an
algebra semi-norm. It is bounded by the hypothesis and therefore τi is
continuous.

As a consequence, we find that any bornological infra-sequential commu-
tative l.c.a. with continuous product is strongly sequential.

With a similar proof as for Proposition IV.1, we get the following result:

Proposition IV.2. Let (E, τ) be a commutative unitary l.c.a. If (E, τ)
is either pseudo-normed (i.e., every bounded set is regular) or pseudo-com-
plete and infra-sequential, then (E, τi) is strongly sequential.

Corollary IV.3. Let (E, τ) be a bornological unitary commutative and
pseudo-complete l.c.a. Then (E, τ) is infra-sequential if and only if it is
strongly sequential.

The following facts are worth stating:

Proposition IV.4. Let (E, τ) be a commutative unitary l.c.a. whose
every element is bounded such that β is an algebra semi-norm. Then:

(i) E can be endowed with a topology τ ′ finer than τ such that (E, τ ′) is
strongly sequential,

(ii) τ and τ ′ have always the same regular bounded sets (i-bounded sets
of [4]),

(iii) τ and τ ′ have the same bounded sets if and only if (E, τ) is infra-
sequential,

(iv) (E, τ) has the continuous inverse if and only if it is so for (E, τ ′).

Corollary IV.5. Any commutative unitary pseudo-complete infra-sequ-
ential and m-barrelled l.c.a. is strongly sequential.
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Corollary IV.6. Let (E, τ) be a commutative unitary pseudo-complete
l.c.a. whose every element is bounded. If (E, τ) has the continuous inverse,
then it can be endowed with an m-convex topology finer than τ and for which
E is strongly sequential.

V. Entire Functions

Blali asserts that entire functions operate in sequentially complete l.c.
Q-algebras ([7], Proposition II.6). This is not correct as the following ex-
ample shows. Let E = C(X) be the field of rational fractions of the ring
of polynomials and E∗ its algebraic dual. Consider the Mackey topol-
ogy τ = τ(E, E∗). Then (E, τ) is a complete l.c. Q-algebra. If f(z) =
∑+∞

n=0 anzn is an entire function, f(X) makes no sense. Indeed, the sequence
( ∑p

n=0 anXn
)

p should be contained in a finite-dimensional subspace of E
and this is not true. Blali’s proof relies on the following assertion of [3]: A
l.c.a. is a Q-algebra if and only if it is strongly sequential. But this is not
correct either, because of the example C(X) above. Husain’s result must be
split into two assertions. One of them is Proposition III. 3, and the second
is Corollary III. 7. The hypothesis making Blali’s proof work is the strong
sequentiality of the algebra, which is fulfilled under an additional condition
of the inverse. We then get:

Proposition V.1. Let (E, τ) be a sequentially complete l.c. Q-algebra
with the continuous inverse. Then entire functions operate on (E, τ).

Proof. By Corollary III.7, the algebra is strongly sequential. Then there
is a 0-neighbouhood U such that hn → 0 for every h in U . Let x be an
element of E and f(z) =

∑+∞
n=0 anzn an entire function. There is h in U

and t > 0 such that x = th. For an absolutely convex 0-neightborhood
W , there is n0 such that hn ∈ W and

∑q
k=p |ak|tk ≤ 1 for n, p, q ≥ n0.

Therefore
∑q

k=p akxk ∈ W , for p, q ≥ n0, whence follows the convegence of
the series.

Corollary V.2 ([8]). Entire functions operate in any Frèchet Q-algebra.

Remark V.3. By the result of P. Turpin [9], a commutative l.c.a. which
is a Q-algebra with the continuous inverse is actually m-convex and hence
entire functions operate in such a complete algebra. In the noncommutative
case, W. Zelazko gives in [10] an example of a complete non-m-convex locally
convex Q-algebra with the continuous inverse on which entire functions
operate. Proposition V.1. shows that entire functions operate on the whole
class of such algebras.
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