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Fourier transform of the probability
measures

Romeo Vomişescu

Abstract

In this paper we make the connection between Fourier transform
of a probability measure and the characteristic function in the R2

space; also we establish some the properties.
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1. Let Ω and Ω′ be any sets, let K and K′ to be two σ-algebras on Ω

and Ω′ respectively and the measurable spaces (Ω,K), (Ω′,K′).
A function f : Ω → Ω′ is said to be (K,K′) - measurable if the borelian

filed f−1(K′) ⊂ K. Let f : (Ω,K) → (Ω′,K′) be a measurable function and

let µ : K → [0,∞) be a measure on K. Then the function of set µ ◦ f−1

defined on K′ by the rule µ◦ f−1 is called, the image of the measure µ by f .

The triple (Ω,K, µ) where (Ω,K) is a measurable space, and µ is a

measure on K, is called the space with measure. If µ(Ω) = 1, then µ is

called the probability measure.

Let ϕ : (Ω,K) → (Ω′,K′) be a measurable function

f : (Ω,K) → X(R ∨ C) is µ ◦ ϕ−1 - integrable, if and only if f ◦ ϕ is

µ-integrable. In this case the following relation holds
∫

(f ◦ ϕ)dµ =

∫
f · dµ ◦ ϕ−1(1)
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and is called the transport formula.

2. We note with (Ω,K, P ) a probability field and let (X,X ) be a

measurable space where X is a borelian field on X. A measurable functions

f : (Ω,K, P ) → (X,X ) is called a random variable. If the function f is a

random variable, then the image of P by f we will note with P ◦ f−1 and

will be called, distribution of f . In this case the distribution of f is the

probability on X defined by P ◦ f−1(A) = P (f−1(A)), A ∈ X . This events

f−1(A) we also denote by {f ∈ A}. If F is a probability on Rk, then we

will say that F has the density ρ if F < mk (mk is the Lebesque measure

on Rk) and ρ is a version of the Radonikodym derivative dF/dm.

(For λ, µ-measures, λ < µ denote that λ is absolutely continuous with

respect to µ, i.e. µ(A) = 0 implies that λ(A) = 0)

If the function f : (Ω,K, P ) → Rk is a random variable, we will say that

f has the density ρ if the distribution P ◦ f−1 has the density ρ. Hence a

function ρ : Rk → R is the density of the random variable f if:

i) ρ is measurable and ρ ≥ 0

ii) P (f ∈ A) =
∫
A

ρ(x)dmk(x), A ∈ BRk , where B is a borelian field.

For a random variable f : (Ω,K, P ) → Rk and for a measurable function

ϕ : Rk and for a measurable function ϕ : Rk → C, the transport formula

can be written as ∫

Ω

ϕ ◦ fdP =

∫

Rk

ϕ(x)dP ◦ f−1(x)(2)

In particular, if f has the density ρ, then∫

Ω

ϕ ◦ fdP =

∫

Rk

ϕ(x)ρ(x)dx(3)

Let ζ = (ξ, η) be a random vector whose components are the random

variables ξ and η. If so, the function F define by the relation

F (z) = F (x, y) = P (ξ ≤ x, η ≤ y), ∀(z) = (x, y) ∈ R2(4)

is called the distribution function of the random vector ζ, where

P (ξ ≤ x, η ≤ y) is the probability that an aleatory point ξ ∈ (−∞, x],

η ∈ (−∞, y].
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The function F has analogous properties with the distribution function

from the unudimensional case:

0 ≤ F (x, y) ≤ 1, lim
x,y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = 1.

The monotony condition of the function F will be characterized by the

following inequalities:

F (x + h, y)− F (x, y) ≥ 0, F (x, y + h)− F (x, y) ≥ 0

F (x + h, y + h)− F (x + h, y) ≥ F (x, y + h)− F (x, y)

where h and k represent two positive increases. Let V be boolean algebra

of all B-intervals of the form

∆ = [a, b]× [c, d], a, b, c, d ∈ R

and let µ : V → [0,∞] be a measure on V so that µ(∆) < ∞.

We know (see [3]) that there exists a monotone nondecreasing and left-

continuous function F on R2, so that ∀a, b, c, d ∈ R we have

µ([a, b)× [c, d)) = F (b, d)− F (a, d)− F (b, c) + F (a, c) = P (ζ ∈ ∆)(5)

The reciprocal being also valid.

If F1 and F2 are monotone non-decreasing and left-continuous functions

on R2, so that

µ([a, b]× [c, d]) = F1(b, d)− F1(a, d)− F1(b, c) + F1(a, c) =

= F2(b, d)− F2(a, d)− F2(b, c) + F2(a, c), ∀a, b, c, d ∈ R,

then there exists a hyperbolic constant.

ψ(x, y) = ϕ(x) + ψ(y) so that F2(x, y) = F1(x, y) + ψ. If µ is a

measure on V with µ(R2) = α < ∞, then a monotone non-decreasing

and left-continuous function F on R2, can be found, having the properties

lim
x,y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = α and (4) holds.

The function F so defined, is unique. If α = 1, then the function F is

called distribution (probability).
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3. Let ζ = (ξ, η) be a random vector. Then, one defines for each

measure µ on R2, Fourier transform or otherwise characteristically function

of the probability measure

µ̂(t) =

∫
ei<t,z>dF (z), t ∈ R2(6)

where t = (u, v), z = (x, y) ∈ R2. This function is called the distribution

of µ. We have

µ̂(t) =

∫

R2

e<t,z>dF (z)(7)

where F (z) has the expression (4).

If the random vraiable f : (Ω,K, P ) → R2 and µ = P ◦f−1 is distribution

of f , then the characteristically function µ̂ is

µ̂(t) =

∫
ei<t,z>dµ(z) =

∫

Ω

ei<t,f>dP = M · ei<t,f>(8)

where M is the mean value. In this case we say that µ̂ is the characteristically

function of the random variable f . If ρ is the density in the point (x, y) of

a mass equal with the unit ditributed in plane x, y, then

µ̂(u, v) =

∫

R2

ei(ux+vy)dµ(x, y) =

∫

R2

ei(ux+vy)P (x, y)dxdy(9)

Theorem 1 For each measure µ on R2 we have:

i) µ̂(0) = 1

ii) µ̂(−t) = µ̂(t)

iii) ∀a1, a2, ..., an ∈ C and t1, t2, ..., tn ∈ R2 we have

n∑

j,k=1

aj · ak · µ̂(tj − tk) ≥ 0

iv) µ̂ is a uniformly continuous function.

Proof. i) This follows from (8)

ii) µ̂(−t) =
∫
R2

ei<t,z>dµ(z) =
∫
R2

ei<t,z>dµ(z) = µ̂t
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iii)
∑
j,k

ajakµ̂(tj − tk) =
∫
R2

∑
j,k

aj · ake
i<tj−tk,z>dµ(z) =

=

∫

R2

|
∑

j

aj · ei<t,z>|2 · dµ(z) ≥ 0

iv) ∀ν = (h, k) ∈ R2
+, |µ̂(u + h, v + k) − µ̂(u, v)| ≤ ∫

R2

|ei<ν,z> − 1|dµ(z),

where |ν| = (h2 + k2)
1
2 .

The integrand is bounded and it tends to zero for ν → 0. Then according

to Lebesque,s dominated convergence theorem, we have

lim
|ν|→0

sup
(u,v)∈R2

|µ̂(u + h, v + k)− µ̂(u, v)| = 0

and so µ̂ is uniformly continuous.

Theorem 2 Let µ be a measure ON R2 and

∫
|xj|dµ(x) < ∞, j = 1, k, x = (x1, ..., xk), t = (t1, ..., tk).

Then µ̂ is partial derivative with respect to tj and we have

∂µ̂

∂tj
(t) = i

∫
xj · ei<t,z>dµ(x)(10)

The partial derivatives
∂µ̂
∂tj

(t) are uniformly continuous.

Proof. Let ej be the vectors of an orthonormal base. Then we have

µ̂(t + hej)− µ̂(t)

h
=

∫
ei<t,x> · eihxj − 1

h
dµ(x)

and

∣∣∣∣ei<t,x> · eihxj − 1
h

∣∣∣∣ ≤ |xj|.
For h → 0 and using the Lebesque,s dominated convergence theorem,

we obtain (10). The second part of the theorem follows from Theorem (1).
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Observation 1 It is easy to show that, if µ is a measure on Rk and
∫
|xn|dµ(x) < ∞, xn = xn

1 , ..., x
nk
k , ni ≥ 0, |n| = n1 + ... + nk,

then the ∂|n|
∂tn1

1 ...∂tnk
k

(µ̂(t)) exists and

∂|n|

∂tn1
1 ...∂tnk

k

µ̂(t) = i|n| ·
∫

xn1
1 ...xnk

k · ei<t,x> · dµ(x)(11)

where i-imaginary unit.

Theorem 3 Let µ be a probability measure on R2, so that∫ |x|dµ(x, y) < ∞,
∫ |y|dµ(x, y) < ∞. Then

a) If
∫

xdµ(x, y) = 0,
∫

ydµ(x, y) = 0 we have

lim
n→∞

[
µ̂

(u

n
,
v

n

)]n

= 1(12)

b) If in addition,

∫
x2dµ(x, y) = 1,

∫
y2dµ(x, y) = 1 and

∫
xdyµ(x, y) = 0

we have

lim
n→∞

[
µ̂

(u

n
,
v

n

)]n

= e
−1
2

(u2+v2)

Proof. a) From hypothesis and from the theorem (2) follows that µ̂(u, v)

is differentiable and it,s partial derivatives are continuous. Since

∂µ̂(u, v)

∂u
= i

∫
x · ei(ux+vy)dµ(x, y),

∂µ̂(u, v)

∂v
= i

∫
yei(ux+vy)dµ(x, y)

follows that

∂µ̂

∂u
(0, 0) = i

∫
xdµ(x, y) = 0,

∂µ̂

∂v
(0, 0) = i

∫
ydµ(x, y) = 0

Applying the formula Mac-Laurin, we obtain

µ̂(t) = µ̂(u, v) = µ̂(0, 0) + u
∂µ̂

∂u
(θu, θv) + v

∂µ̂

∂v
(θu, θv) =
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= 1 + u · α(t) + v · β(t)

for |u| ≤ 1, |v| ≤ 1 where α(t), β(t) are continuous functions in (0,0), and

α(0) = 0, β(0) = 0, 0 < θ < 1. Then,

µ̂

(
t

n

)
= µ̂

(u

n
,
v

n

)
= 1 +

u

n
α

(
t

n

)
+

v

n
β

(
t

n

)
= 1 + γn(t)

where γn(t) = u
nα

(
t
n

)
+ v

n
β

(
t
n

)
with lim

n→∞
nγn(t) = 0, ∀(u, v) ∈ R2. Then

∀(u, v), we have

lim
n→∞

[
µ̂

(
t

n

)]n

= lim
n→∞

[1 + γn(t)]n = lim
n→∞

[
(1 + γn(t))

1
γn(t)

]n·γn(t)

= 1

b) From the theorem (2) follows that µ̂ is twice differentiable with the

partial derivatives of the second continuous order and

∂µ̂

∂u
(0, 0) = 0,

∂µ̂

∂v
(0, 0) = 0,

∂2µ̂

∂u2
(0, 0) = −1,

∂2µ̂

∂v2
(0, 0) = −1,

∂2µ̂

∂u∂v
(0, 0) = 0.

Applying again the formula Mac-Laurin for |u| ≤ 1, |v| ≤ 1, 0 < θ < 1 we

have

µ̂(t) = µ̂(u, v) = µ̂(0, 0) + u
∂µ̂

∂u
(0, 0) + v

∂µ̂

∂v
(0, 0)+

+
1

2

[
u2∂2µ̂

∂u2
(θu, θv) + 2uv

∂2µ̂

∂u, ∂v
+ v2 · ∂2µ̂

∂v2
(θu, θv)

]
or

µ̂(t) = µ̂(u, v) = 1 +
1

2
u2θ1(t) + uvθ2(t) +

1

2
v2θ3(t) where

θ1(0, 0) = −1, θ3(0, 0) = −1, θ2(0, 0) = 0. Then,

µ̂

(
t√
n

)
= µ̂

(
u√
n

,
v√
n

)
= 1 +

1

2
· u2

n
θ1

(
t√
n

)
+

uv

n
θ2

(
t√
n

)
+

+
1

2
· v2

n
θ3

(
t√
n

)
= 1 + σn(t), where

σn(t) =
1

2

u2

n
θ1

(
t√
n

)
+

uv

n
θ2

(
t√
n

)
+

1

2

v2

n
θ3

(
t√
n

)

and

lim
n→∞

nσn(t) = −1

2
(u2 + v2), ∀(u, v)
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.

Then

lim
n→∞

[
µ̂

(
t√
n

)]n

= e
−1
2

(u2+v2)
.
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