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Fourier transform of the probability
measures

Romeo Vomisescu

Abstract

In this paper we make the connection between Fourier transform
of a probability measure and the characteristic function in the R?

space; also we establish some the properties.
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1. Let ©Q and € be any sets, let K and K’ to be two o-algebras on 2
and () respectively and the measurable spaces (€2, K), (', K’).

A function f: Q — Q' is said to be (K, K’) - measurable if the borelian
filed f~HK") C K. Let f: (,K) — (€,K') be a measurable function and
let o : KK — [0,00) be a measure on K. Then the function of set o f~*
defined on K’ by the rule po f~! is called, the image of the measure i by f.

The triple (£2,/C, ) where (§2,K) is a measurable space, and p is a
measure on K, is called the space with measure. If p(Q2) = 1, then p is
called the probability measure.

Let ¢ : (,K) — (,K') be a measurable function
f:(Q,K) - X(RVC)is pop ! - integrable, if and only if f o ¢ is
p-integrable. In this case the following relation holds

(1) /(J‘"O@O)duz/f-duocp‘1
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and is called the transport formula.
2. We note with (2, K, P) a probability field and let (X, X) be a
measurable space where X is a borelian field on X. A measurable functions

f:(QK P)— (X,X) is called a random variable. If the function f is a

—1 and

random variable, then the image of P by f we will note with P o f
will be called, distribution of f. In this case the distribution of f is the
probability on X defined by Po f~1(A) = P(f~'(A)), A € X. This events
f~YA) we also denote by {f € A}. If F is a probability on R*  then we
will say that F has the density p if F' < my (my is the Lebesque measure
on R¥) and p is a version of the Radonikodym derivative dF'/dm.

(For A, u-measures, A < u denote that A is absolutely continuous with
respect to p, i.e. p(A) = 0 implies that A(A) = 0)

If the function f : (2, K, P) — R* is a random variable, we will say that
f has the density p if the distribution P o f~! has the density p. Hence a
function p : R¥ — R is the density of the random variable f if:

i) p is measurable and p > 0

i) P(f € A) fp Ydmy(z), A € Bk, where B is a borelian field.

For a random vamable (K, P) — R¥ and for a measurable function
¢ : R¥ and for a measurable function ¢ : R¥ — C, the transport formula

can be written as
) [eetir= [ e@are @)
Q RE
In particular, if f has the density p, then
3) [eotir= [ daparts
Q Rk

Let ¢ = (£,m) be a random vector whose components are the random

variables & and 7. If so, the function F define by the relation

(4) F(z) = F(z,y) = P <z,n <), ¥(2) = (z,y) € R

is called the distribution function of the random vector (, where

P < x,n < y) is the probability that an aleatory point £ € (—o0,x],
1 € (—o0,y].
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The function F has analogous properties with the distribution function
from the unudimensional case:

0< F(x,y) <1, lim F(zr,y)=0, lim F(z,y) =1

z,y——00 ,y—00

The monotony condition of the function F will be characterized by the

following inequalities:
F(x+hy) = F(z,y) >0, F(z,y+h) = F(z,y) 20

Flx+hy+h)—F(x+hy) > F(z,y+h)— F(z,y)

where h and k represent two positive increases. Let V be boolean algebra
of all B-intervals of the form

A =a,b] X [¢,d], a,b,c,d € R

and let v : V — [0, 00] be a measure on V so that u(A) < oc.
We know (see [3]) that there exists a monotone nondecreasing and left-

continuous function F on R?, so that Va,b,c,d € R we have
(5) M([aab) X [Cad)) = F(b7d) _F(avd) _F(b7c) +F(G,C) = P(C € A)

The reciprocal being also valid.
If F; and F; are monotone non-decreasing and left-continuous functions
on R?, so that

p([a,b] x [e,d]) = Fi(b,d) — Fi(a,d) — Fy(b,c) + Fi(a,c) =

= Fy(b,d) — Fy(a,d) — F5(b,¢) + Fy(a,c), Ya,b,c,d € R,

then there exists a hyperbolic constant.

U(z,y) = ¢(@) + ¢(y) so that Fy(z,y) = Fi(z,y) +¢. If pis a
measure on V with pu(R?) = a < oo, then a monotone non-decreasing
and left-continuous function F on R2, can be found, having the properties

lim F(z,y) =0, lim F(z,y) = a and (4) holds.
o Tfloe function F sgydg;lned, is unique. If o = 1, then the function F is
called distribution (probability).
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3. Let ¢ = ({,n) be a random vector. Then, one defines for each
measure 4 on R?, Fourier transform or otherwise characteristically function

of the probability measure

(6) fi(t) = / ¢<t=>qF (), t € R?

where t = (u,v), z = (x,y) € R? This function is called the distribution
of p. We have
1) i) = [ et=ar(e)
R2
where F'(z) has the expression (4).
If the random vraiable f : (2, K, P) — R? and u = Po f~! is distribution

of f, then the characteristically function i is

(8) a(t) = /ei<t’z>du(z) = /e"<tvf>dp — M . oi<US>
0

where M is the mean value. In this case we say that i is the characteristically
function of the random variable f. If p is the density in the point (x,y) of

a mass equal with the unit ditributed in plane z,y, then

©) Ao = [ dulny) = [0 P y)dudy

R2 R2
Theorem 1 For each measure u on R? we have:
i) 7i(0) = 1
it) ju(—t) = u(t)
i) Yay, as, ...,a, € C and ty,ts, ..., t, € R* we have

> ity — t) 2 0
G k=1

i) 1t is a uniformly continuous function.

Proof. i) This follows from (8)

ii) fi(—t) = [ e<t=>du(z) = [ ei<t=>du(z) = fit
R2 R2
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i) 3 aarfi(t; —tr) = [ 3 a; - e~ du(z) =
ik B2 ik

:/|Zaj-ei<t’z>\2~du(z) >0
R2 I

iv) Vv = (h, k) € R, [fi(u + h,v + k) = fi(u, v)| < [ |e'="*> = 1]dp(z),
R2

1
where |v| = (h? + k?)2.
The integrand is bounded and it tends to zero for v — 0. Then according

to Lebesque’s dominated convergence theorem, we have

lim  sup |u(u+h,v+k)—p(u,v)=0
lv|—0 (u,v)ER?

and so f is uniformly continuous.

Theorem 2 Let pu be a measure ON R? and

/\:L’j\du(x) <oo, j=1,kx= (1, ey Tg) b = (L1, ..., ).

Then pi is partial derivative with respect to t; and we have

(10) g—tu(t) = i/xj e ()
j

The partial derivatives %(t) are uniformly continuous.
j

Proof. Let e; be the vectors of an orthonormal base. Then we have

Hthe) SO _ [ s i -1

- T——du(z)

ihx;
i<ta> _ e 9 —1 A
and ‘e S <zj].

For h — 0 and using the Lebesque’s dominated convergence theorem,

we obtain (10). The second part of the theorem follows from Theorem (1).
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Observation 1 It is easy to show that, if i is a measure on R* and

/ |2"|dp(z) < oo, x™ =, ... apF n; >0, |n| =ng + ... + ny,
then the L(ﬁ(t)) exists and
oty*...ot*

8|n| - - M n n 7 x
(1) ot G hlt) =i '/xll---xk’“ -e' =M dp(x)

where i-imaginary unit.

Theorem 3 Let p  be a probability measure on R2?,  so
Jlzldp(z,y) < oo, [|yldu(z,y) < oco. Then
a) If [wdu(z,y) =0, [ydu(z,y) =0 we have

(12) lim [ﬁ (9, f)r —1

n—00 nn

b) If in addition,

/afzdu(%y) = 1,/y2du(l’7y) =1 and /wdyu(fv7y) =0

we have .
n I
i 5 (2. )] = 4

n—oo nn

o6

that

Proof. a) From hypothesis and from the theorem (2) follows that i(u,v)

is differentiable and it’s partial derivatives are continuous. Since

Opi(u, v) Opi(u, v)
ou

follows that

on o

0.0 =i [ aduteg) =0, 50,0 =1 [ vdu(e.0) =0
Applying the formula Mac-Laurin, we obtain

O o,
() = p(u,v) = 1(0,0) + up (Ou, Ov) + o (Ou, Ov) =

=i / e dp (e, y), = = / ye W dp(, )
v
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=14u-at)+v-5(t)

for |u| <1, |v] <1 where a(t), 3(t) are continuous functions in (0,0), and
a(0) =0, 3(0) = 0,0 < 6 < 1. Then,

()G o) (i) e

where 7, () = Za <i> + 2 (%) with lim ny,(t) = 0, V(u,v) € R% Then

=)

V(u,v), we have

lim [ﬁ (E)r — lim [1 + 7 (&))" = lim

n—oo n n—oo n—oo

1 qrm(®)
(1 w(t»%(t)] =1

b) From the theorem (2) follows that i is twice differentiable with the

partial derivatives of the second continuous order and

on on 0’1 0’1 o

o 5(0.0) = 082(00) 82(00) 1@3(00)

Applying again the formula Mac-Laurin for |u| < 1, [v]| < 1,0 <60 < 1 we

22(0,0) = 0,

have on o5
Alt) = filu, v) = i(0,0) + uz2(0,0) + v52(0,0)+
02

25 27 275
[ 8—(Qu 6v) + 2uv all +v?- #(Qu,ﬁv)} or

v =

ou? ou, Qv v?

N —

1
() = fiu,v) = 1+ %u291 (1) + wolo(t) + 50%65(1) where
0,(0,0) = —1,05(0,0) = —1,05(0,0) = 0. Then,

()G 14 20 ()5 ()

1
_|_§ %93 <%> =1+ 0,(t), where

= () 2 () -1 ()

lim no,(t) = —%(u2 +v?), VY(u,v)

n—0oo

and
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Then !
t R T F
i [ (7)) =2
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