On certain subclasses of prestarlike functions ¹

Thomas Rosy, S. Kavitha, Mugur Acu and G.Murugusundaramoorthy

Abstract

In the present investigation, we introduce and study interesting properties of a new unified class of pre-starlike functions with negative coefficients in the open unit disk Δ . These properties include growth and distortion, radii of convexity, radii of starlikeness and radii of close to convexity.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic function, Prestarlike functions,

Convolution product, radii of starlikeness.

1 Introduction and Motivations

Let \mathcal{A} denote the class of functions of the form

(1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

that are analytic in the open unit disc $\Delta := \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} be a subclass of \mathcal{A} consisting of univalent functions in Δ . By $\mathcal{S}^*(\alpha)$, we mean the class of analytic functions that satisfy the analytic condition

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (z \in \Delta)$$

Accepted for publication (in revised form) 14 April, 2009

¹Received 16 March, 2009

for $0 \le \alpha < 1$. In particular, $\mathcal{S}^*(\alpha) \subseteq \mathcal{S}^*(0) \equiv \mathcal{S}^*$, the well-known standard class of starlike functions. For functions $f \in \mathcal{A}$ given by (1) and $g \in \mathcal{A}$ given by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, we define the Hadamard product (or Convolution) of f and g by

(2)
$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in \Delta.$$

A function $f \in \mathcal{S}$ is said to be convex of order α , $(0 \le \alpha < 1)$ if

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \Delta).$$

This class is denoted by $\mathcal{K}(\alpha)$. Further, $\mathcal{K} = \mathcal{K}(0)$, is the well-known standard class of convex functions. It is an established fact that

$$f \in \mathcal{K}(\alpha) \iff zf' \in \mathcal{S}^*(\alpha).$$

Let the function

(3)
$$S_{\alpha}(z) = \frac{z}{(1-z)^{2(1-\alpha)}}, \quad (z \in \Delta, \ 0 \le \alpha < 1)$$

which is the extremal function for the class $\mathcal{S}^*(\alpha)$. We also note that $\mathcal{S}_{\alpha}(z)$ can be written in the form

(4)
$$S_{\alpha}(z) = z + \sum_{n=2}^{\infty} |C_n(\alpha)| z^n,$$

where

(5)
$$C_n(\alpha) = \frac{\prod_{j=2}^{n} (j-2\alpha)}{(n-1)!} \quad (n \in \mathbb{N} \setminus \{1\}, \mathbb{N} := \{1, 2, 3, \dots\}).$$

We note that $C_n(\alpha)$ is decreasing in α and satisfies

(6)
$$\lim_{n \to \infty} C_n(\alpha) = \begin{cases} \infty & \text{if } \alpha < \frac{1}{2} \\ 1 & \text{if } \alpha = \frac{1}{2} \\ 0 & \text{if } \alpha > \frac{1}{2} \end{cases}$$

Let $\mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ denote the class of pre-starlike functions satisfying the following condition

(7)
$$\left| \frac{\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1}{2\gamma(B - A)\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - \zeta\right) - B\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1\right)} \right| < \beta,$$

where

$$h(z) = f * \mathcal{S}_{\alpha}(z), 0 < \beta \le 1, 0 \le \zeta < 1,$$

$$\Phi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n,$$

and

$$\Psi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n$$

analytic in Δ , with $\lambda_n \geq 0, \mu_n \geq 0, \lambda_n \geq \mu_n$, for $n = 2, 3, 4, \dots$, and

$$\frac{B}{2(B-A)} < \gamma \le \left\{ \begin{array}{ll} \frac{B}{2(B-A)\zeta}, & \text{if } \zeta \neq 0 \\ \\ 1 & \text{if } \zeta \neq 0 \end{array} \right.$$

for fixed $-1 \le A \le B \le 1$ and $0 \le B \le 1$.

We note that a function f is so called pre-starlike of order α function $(0 \le \alpha < 1)$ if and only if $f * \mathcal{S}_{\alpha}$ is a starlike function of order α , which was introduced by Ruscheweyh [5]. Many subclasses of the pre-starlike function were studied by Silverman and Silvia [6], (see also [9]), Owa and Ahuja [4], Maslina Darus [2] and also by Uralegaddi and Sarangi [10]. Our results generalize the results of Maslina Darus [2] and also some other known results.

Let T denote the subclass of A consisting of functions of the form

(8)
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \ a_n \ge 0.$$

Let us write

$$\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B] = \mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B] \cap T,$$

where T is the class all functions with negative coefficients and of the form (8) that are analytic and univalent in Δ .

In this paper, we make a systematic investigation of the newly defined class $\mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. It is assumed throughout this paper that $\Phi(z)$, and $\Psi(z)$ satisfy the conditions stated in (7) and that $(h*\Psi)(z) \neq 0$ for $z \in \Delta$.

2 Coefficient inequalities

Our main tool in this paper is the following result, which can be easily proven, and the details are omitted.

Theorem 1 Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, be in the class A. If, for some A and B with $-1 \le A < B \le 1$,

(9)
$$\sum_{n=2}^{\infty} \sigma(\Phi, \Psi, n) C_n(\alpha) |a_n| \le 2\beta \gamma (1 - \zeta) (B - A)$$

where

(10)
$$\sigma(\Phi, \Psi, n) = (\lambda_n - \mu_n)(1 - B\beta) + 2\gamma\beta(B - A)(\lambda_n - \zeta\mu_n)$$

then $f \in \mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. The result is sharp.

Proof. Suppose the condition (9) holds for all admissible values of A and B. In view of (7), it is enough to prove that

(11)
$$\left| \frac{\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1}{2\gamma(B - A)\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - \zeta\right) - B\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1\right)} \right| < \beta,$$

For |z| = r, $0 \le r < 1$, we have $|(h * \Phi)(z) - (h * \Psi)(z)|$

$$-\beta |2\gamma(B-A)\{(h*\Phi)(z)-\zeta(h*\Psi)(z)\}-B\{(h*\Phi)(z)-(h*\Psi)(z)\}|$$

$$\leq \sum_{n=2}^{\infty} \left\{ (\lambda_n - \mu_n)(1 - B\beta) + 2\beta\gamma(B - A)(\lambda_n - \zeta\mu_n) \right\} C_n(\alpha) |a_n| r^n - C_n$$

$$-2\beta\gamma(1-\zeta)(B-A)r$$

which is clearly lesser than zero as $r \to 1$ in view of (9). Thus, (11) is satisfied and hence, $f \in \mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$.

For the choices of

$$\Psi(z) = (1 - \lambda)\frac{z}{1 - z} + \lambda \frac{z}{(1 - z)^2}$$

and

$$\Phi(z) = (1 - \lambda) \frac{z}{(1 - z)^2} + \lambda \frac{z + z^2}{(1 - z)^3},$$

we get the following result of Maslina Darus [2]

Corollary 1 Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, be in the class A. If, for some A and B with $-1 \le A < B \le 1$,

(12)
$$\sum_{n=2}^{\infty} \sigma(\Phi, \Psi, n) C_n(\alpha) |a_n| \le 2\beta \gamma (1 - \zeta) (B - A)$$

where

(13)
$$\sigma(\Phi, \Psi, n) = (1 + (n-1)\lambda) \{n - 1 + 2\beta\gamma(n - \zeta)(B - A) - B\beta(n - 1)\}$$

then $f \in \mathcal{R}[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$.

Theorem 2 Let $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, be in the class T. Then $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ if and only if (9) is satisfied.

Proof. In view of Theorem 1, it is sufficient to show the "only if" part. Thus, let $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Then,

$$(14) \qquad |\omega(z)| = \left| \frac{\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1}{2\gamma(B - A)\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - \zeta\right) - B\left(\frac{(h * \Phi)(z)}{(h * \Psi)(z)} - 1\right)} \right|.$$

Using the power series expansion for f, Φ and Ψ , we get,

$$(15) |\omega(z)| =$$

$$\left| \frac{\sum_{n=2}^{\infty} (\lambda_n - \mu_n) C_n(\alpha) a_n z^n}{\sum_{n=2}^{\infty} \left[2\gamma (B - A)(\lambda_n - \zeta \mu_n) - B(\lambda_n - \mu_n) \right] a_n C_n(\alpha) z^n - 2\gamma (B - A)(1 - \zeta) |z|} \right|$$

and hence,

$$\Re\left(\frac{\sum_{n=2}^{\infty} (\lambda_n - \mu_n) C_n(\alpha) a_n z^n}{\sum_{n=2}^{\infty} [2\beta\gamma(B-A)(\lambda_n - \zeta\mu_n) C_n(\alpha) a_n z^n - \beta B(\lambda_n - \mu_n) C_n(\alpha) a_n z^n] - 2\gamma(B-A)(1-\zeta)z}\right)$$

is less than β for all $z \in \Delta$. We consider real values of z and take z = r with 0 < r < 1. Then, for r = 0, the denominator of (16) is positive and so is for all $r, 0 \le r < 1$. Then (16) gives,

(17)
$$\sum_{n=2}^{\infty} \sigma(\Phi, \Psi, n) C_n(\alpha) |a_n| r^{n-1} \le 2\beta \gamma (1 - \zeta) (B - A)$$

where $\sigma(\Phi, \Psi, n)$ is as defined in (10). Letting $r \to 1^-$, we get (9). For the choices of

$$\Psi(z) = (1 - \lambda)\frac{z}{1 - z} + \lambda \frac{z}{(1 - z)^2}$$

and

$$\Phi(z) = (1 - \lambda) \frac{z}{(1 - z)^2} + \lambda \frac{z + z^2}{(1 - z)^3},$$

we get the following result of Maslina Darus [2]

Corollary 2 Let $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, be in the class T. If, for some A and B with $-1 \le A < B \le 1$,

(18)
$$\sum_{n=2}^{\infty} \sigma(\Phi, \Psi, n) C_n(\alpha) a_n \le 2\beta \gamma (1 - \zeta) (B - A)$$

where

(19)
$$\sigma(\Phi, \Psi, n) = (1 + (n-1)\lambda) \{n - 1 + 2\beta\gamma(n - \zeta)(B - A) - B\beta(n - 1)\}$$

then $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$.

Indeed, since $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ from (9), we have

$$\sum_{n=2}^{\infty} \sigma(\Phi, \Psi, n) C_n(\alpha) |a_n| \le 2\beta \gamma (1 - \zeta) (B - A),$$

where $\sigma(\Phi, \Psi, n)$ is as defined in (10). Hence for all $n \geq 2$, we have

$$a_n \le \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,n)C_n(\alpha)}.$$

whenever $-1 \le A < B \le 1$. Hence we state this important observation as a separate theorem.

Theorem 3 If $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$, then

(20)
$$a_n \le \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,n)C_n(\alpha)}, \ n \ge 2,$$

where $-1 \le A < B \le 1$. Equality in (20) holds for the function

(21)
$$f(z) = z - \frac{\beta \gamma (1 - \zeta)(B - A)}{\sigma(\Phi, \Psi, n)(1 - \alpha)} z^2.$$

3 Covering theorem and Distortion Bounds

Theorem 4 If $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ then $f \in T^*(\xi)$, the class of star-like functions of order ξ , $(0 \le \xi < 1)$, with

$$\xi = 1 - \frac{2\beta\gamma(1-\zeta)(B-A)}{(1+\beta)\sigma(\Phi,\Psi,2)C_2(\alpha) - 2\beta\gamma(1-\zeta)(B-A)}.$$

This result is sharp with the extremal function being

(22)
$$f(z) = z - \frac{\beta \gamma (1 - \zeta)(B - A)}{(1 - \alpha)\sigma(\Phi, \Psi, 2)} z^2.$$

Proof. It is sufficient to show that (9) implies $\sum_{n=2}^{\infty} (n-\xi)a_n \leq 1-\xi$ [6], that is,

(23)
$$\frac{n-\xi}{1-\xi} \le \frac{\sigma(\Phi, \Psi, n)C_n(\alpha)}{2\beta\gamma(1-\zeta)(B-A)}, \ n \ge 2.$$

Since, for $n \ge 2$, (23) is equivalent to

$$\xi \le 1 - \frac{2(n-1)\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,n)C_n(\alpha) - 2\beta\gamma(n-1)(1-\zeta)(B-A)} = \Phi_1(n),$$

and $\Phi_1(n) \leq \Phi_2(2)$, (23) holds true for any $n \geq 2$, and for $-1 \leq B < A \leq 1$. This completes the proof of the Theorem 4.

Theorem 5 Let $\sigma(\Phi, \Psi, n)$ be as defined in (10). Then, for $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ with $z = re^{i\theta} \in \Delta$, we have

(24)
$$r - \frac{\beta \gamma (1 - \zeta)(B - A)}{(1 - \alpha)\sigma(\Phi, \Psi, 2)} r^2 \le |f(z)| \le r + \frac{\beta \gamma (1 - \zeta)(B - A)}{(1 - \alpha)\sigma(\Phi, \Psi, 2)} r^2.$$

Proof. Observing that $C_n(\alpha)$ defined by (5) is increasing for $0 \le \alpha \le \frac{1}{2}$, we find from Theorem 2 that,

(25)
$$\sum_{n=2}^{\infty} a_n \le \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,2)C_2(\alpha)}.$$

Using (8) and (25), we readily have for $z \in \Delta$,

(26)
$$|f(z)| \ge |z| - |z|^2 \sum_{n=2}^{\infty} a_n \ge |z| - \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,2)C_2(\alpha)} |z|^2,$$

(27)
$$|f(z)| \le |z| + |z|^2 \sum_{n=2}^{\infty} a_n \le |z| + \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,2)C_2(\alpha)} |z|^2,$$

and noting that $C_2(\alpha) = 2(1 - \alpha)$, we get the assertion (24) of Theorem 5.

Theorem 6 If $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$, then for |z| = r < 1

(28)
$$1 - \frac{2\beta\gamma(1-\zeta)(B-A)}{(1-\alpha)\sigma(\Phi,\Psi,2)}r \le |f'(z)| \le 1 + \frac{2\beta\gamma(1-\zeta)(B-A)}{(1-\alpha)\sigma(\Phi,\Psi,2)}r.$$

Proof. Using (8), we readily have for $z \in \Delta$,

(29)
$$|f'(z)| \ge 1 - |z| \sum_{n=2}^{\infty} a_n \ge |z| - \frac{4\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,2)C_2(\alpha)} |z|,$$

(30)
$$|f'(z)| \le |z| + |z|^2 \sum_{n=2}^{\infty} a_n \le |z| + \frac{4\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,2)C_2(\alpha)} |z|,$$

and noting that $C_2(\alpha) = 2(1 - \alpha)$, we get the assertion (28) of Theorem 6.

4 Radii of close-to-convexity, starlikeness and convexity

Theorem 7 Let the function f be in the class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Then f(z) is close-to-convex of order ρ , $0 \le \rho < 1$ in $|z| < r_1(\beta, \gamma, A, B, \rho)$, where

$$r_1(\beta, \gamma, A, B, \rho) = \inf_{n} \left[\frac{(1 - \rho)\mathcal{C}_n(\alpha)\sigma(\Phi, \Psi, n)}{2n\beta\gamma(1 - \zeta)(B - A)} \right]^{\frac{1}{n - 1}}, \qquad n \ge 2,$$

with $\sigma(\Phi, \Psi, n)$ be defined as in (10). This result is sharp for the function f(z) given by (22).

Proof. Since

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n,$$

we get

$$f'(z) = 1 - \sum_{n=2}^{\infty} n a_n z^{n-1}.$$

It is sufficient to show that $|f'(z) - 1| \le 1 - \rho$, $0 \le \rho < 1$, for $|z| < r_1(\beta, \gamma, A, B, \rho)$, or equivalently

(31)
$$\sum_{n=2}^{\infty} \left(\frac{n}{1-\rho}\right) a_n |z|^{n-1} \le 1.$$

By Theorem 1, (31) will be true if

$$\left(\frac{n}{1-\rho}\right)|z|^{n-1} \le \frac{C_n(\alpha)\sigma(\Phi,\Psi,n)}{2\beta\gamma(1-\zeta)(B-A)}$$

or, if

(32)
$$|z| \le \left[\frac{(1-\rho)\mathcal{C}_n(\alpha)\sigma(\Phi,\Psi,n)}{2n\beta\gamma(1-\zeta)(B-A)} \right]^{\frac{1}{n-1}}, \quad n \ge 2.$$

The theorem follows easily from (32).

Theorem 8 Let the function $f \in T$ be in the class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ Then f(z) is starlike of order ρ , $0 \le \rho < 1$ in $|z| < r_2(\beta, \gamma, A, B, \rho)$, where

$$r_2(\beta, \gamma, A, B, \rho) = \inf_{n} \left[\frac{(1 - \rho)\mathcal{C}_n(\alpha)\sigma(\Phi, \Psi, n)}{2(n - \rho)\beta\gamma(1 - \zeta)(B - A)} \right]^{\frac{1}{n - 1}}, \qquad n \ge 2,$$

with $\sigma(\Phi, \Psi, n)$ be defined as in (10). This result is sharp for the function f(z) given by (22).

Proof. Since,

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n,$$

we get

$$f'(z) = 1 - \sum_{n=2}^{\infty} n a_n z^{n-1}.$$

It is sufficient to show that

(33)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho \text{ or equivalently}$$

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{\sum_{n=2}^{\infty} (n-1)a_n z^n}{z - \sum_{n=2}^{\infty} a_n z^n} \right| \le 1 - \rho \text{ or}$$

$$\sum_{n=2}^{\infty} \left(\frac{n-\rho}{1-\rho} \right) a_n |z|^{n-1} \le 1,$$

for $0 \le \rho < 1$, and $|z| < r_2(\beta, \gamma, A, B, \rho)$. By Theorem 1, (33) will be true if

$$\left(\frac{n-\rho}{1-\rho}\right)|z|^{n-1} \le \frac{\mathcal{C}_n(\alpha)\sigma(\Phi,\Psi,n)}{2\beta\gamma(1-\zeta)(B-A)}$$

or, if

(34)
$$|z| \leq \left[\frac{(1-\rho)\mathcal{C}_n(\alpha)\sigma(\Phi,\Psi,n)}{2(n-\rho)\beta\gamma(1-\zeta)(B-A)} \right]^{\frac{1}{n-1}}, \quad n \geq 2.$$

The theorem follows easily from (32).

Theorem 9 Let the function $f \in T$ be in the class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Then f(z) is convex of order ρ , $0 \le \rho < 1$ in $|z| < r_3(\beta, \gamma, A, B, \rho)$ where

$$r_3(\beta, \gamma, A, B, \rho) = \inf_{n} \left[\frac{(1 - \rho)C_n(\alpha)\sigma(\Phi, \Psi, n)}{2n(n - \rho)\beta\gamma(1 - \zeta)(B - A)} \right]^{\frac{1}{n - 1}}, \qquad n \ge 2,$$

with $\sigma(\Phi, \Psi, n)$ be defined as in (10). This result is sharp for the function f(z) given by (22).

Proof. It is sufficient to show that

(35)
$$\left| \frac{zf''(z)}{f'(z)} \right| \leq 1 - \rho \quad \text{or equivalently}$$

$$\left| \frac{-\sum_{n=2}^{\infty} n(n-1)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} na_n z^{n-1}} \right| \leq 1 - \rho \quad \text{or equivalently}$$

$$\sum_{n=2}^{\infty} \left(\frac{n(n-\rho)}{1-\rho} \right) a_n |z|^{n-1} \leq 1,$$

for $0 \le \rho < 1$ and $|z| < r_3(\beta, \gamma, A, B, \rho)$. By Theorem 1, (35) will be true if

$$\left(\frac{n(n-\rho)}{1-\rho}\right)|z|^{n-1} \le \frac{C_n(\alpha)\sigma(\Phi,\Psi,n)}{2\beta\gamma(1-\zeta)(B-A)}$$

or, if

(36)
$$|z| \le \left[\frac{(1-\rho)\mathcal{C}_n(\alpha)\sigma(\Phi,\Psi,n)}{2n(n-\rho)\beta\gamma(1-\zeta)(B-A)} \right]^{\frac{1}{n-1}}, \quad n \ge 2.$$

The theorem follows easily from (36).

5 Extreme points of the class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$

Theorem 10 Let $f_1(z) = z$ and

(37)
$$f_n(z) = z - \frac{2\beta\gamma(1-\zeta)(B-A)}{C_n(\alpha)\sigma(\Phi,\Psi,n)} z^n, \qquad n \ge 2$$

and with $\sigma(\Phi, \Psi, n)$ be defined as in (10). Then $f \in T$ belong to the class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$, if and only if it can be represented in the form

(38)
$$f(z) = \sum_{n=1}^{\infty} \xi_n f_n(z), \qquad \xi_n \ge 0, \qquad \sum_{n=1}^{\infty} \xi_n = 1.$$

Proof. Suppose f(z) can be written as in (38). Then

$$f(z) = z - \sum_{n=2}^{\infty} \xi_n \left\{ \frac{2\beta\gamma(1-\zeta)(B-A)}{C_n(\alpha)\sigma(\Phi,\Psi,n)} \right\} z^n.$$

Now,

$$\sum_{n=2}^{\infty} \frac{\mathcal{C}_n(\alpha)\sigma(\Phi, \Psi, n)}{2\beta\gamma(1-\zeta)(B-A)} \frac{2\beta\gamma(1-\zeta)(B-A)}{\mathcal{C}_n(\alpha)\sigma(\Phi, \Psi, n)} \xi_n = \sum_{n=2}^{\infty} \xi_n = 1 - \xi_1 \le 1.$$

Thus $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Conversely, let $f \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Then, by using (20),

$$a_n \le \frac{2\beta\gamma(1-\zeta)(B-A)}{\sigma(\Phi,\Psi,n)C_n(\alpha)}.$$

Setting,

$$\xi_n = \frac{C_n(\alpha)\sigma(\Phi, \Psi, n)}{2\beta\gamma(1-\zeta)(B-A)}a_n, \qquad n \ge 2,$$

and
$$\xi_1 = 1 - \sum_{n=2}^{\infty} \xi_n$$
, we have $f(z) = \sum_{n=1}^{\infty} \xi_n f_n(z)$, with $f_n(z)$ is as given in (37).

Corollary 3 The extreme points of $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$, are the functions $f_1(z) = z$ and

$$f_n(z) = z - \frac{2\beta\gamma(1-\zeta)(B-A)}{C_n(\alpha)\sigma(\Phi,\Psi,n)}z^n, \quad n \ge 2.$$

As in earlier theorems, we can deduce known results for various other classes and we omit details.

Theorem 11 The class $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ is closed under linear combination.

Proof. Let $f, g \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. Let

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \ a_n \ge 0,$$

and

$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n, \ b_n \ge 0.$$

For η such that $0 \le \eta \le 1$, it is sufficient to show that the function h, defined by $h(z) = (1 - \eta)f(z) + \eta g(z), z \in \Delta$, belongs to $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$.

Since,

$$h(z) = z - \sum_{n=2}^{\infty} [(1 - \eta)a_n + \eta b_n] z^n,$$

applying Theorem 2, we get

$$\sum_{n=2}^{\infty} C_n(\alpha) \qquad \sigma(\Phi, \Psi, n)[(1 - \eta)a_n + \eta b_n]$$

$$= (1 - \eta) \sum_{n=2}^{\infty} C_n(\alpha)\sigma(\Phi, \Psi, n)a_n + \eta \sum_{n=2}^{\infty} C_n(\alpha)\sigma(\Phi, \Psi, n)b_n$$

$$\leq 2(1 - \eta)\beta\gamma(1 - \zeta)(B - A) + 2\eta\beta\gamma(1 - \zeta)(B - A)$$

$$= 2\beta\gamma(1 - \zeta)(B - A).$$

This implies that $h \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$.

6 Integral Means Inequalities

Lemma 1 [3] If the functions f and g are analytic in Δ with $g \prec f$, then for $\kappa > 0$, and 0 < r < 1,

(39)
$$\int_{0}^{2\pi} \left| g(re^{i\theta}) \right|^{\kappa} d\theta \le \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\kappa} d\theta.$$

In [6], Silverman found that the function $f_2(z) = z - \frac{z^2}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality, conjectured in [7] and settled in [8], that

$$\int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\kappa} d\theta \le \int_{0}^{2\pi} \left| f_2(re^{i\theta}) \right|^{\kappa} d\theta,$$

for all $f \in T$, $\kappa > 0$ and 0 < r < 1. In [8], he also proved his conjecture for the subclasses $T^*(\beta)$ and $\mathcal{C}(\beta)$ of T.

In this section, we obtain integral means inequalities for the functions in the family $\mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$. By taking appropriate choices of the parameters Φ, Ψ, A, B we obtain the integral means inequalities for several known as well as new subclasses.

Applying Lemma 1, Theorem 1 and Theorem 10, we prove the following result.

Theorem 12 Suppose $f(z) \in \mathcal{R}_T[\zeta, \alpha, \beta, \gamma, \Phi, \Psi, A, B]$ and $f_2(z)$ is defined by

$$f_2(z) = z - \frac{\beta \gamma (1 - \zeta)(B - A)}{(1 - \alpha)\sigma(\Phi, \Psi, 2)} z^2,$$

with

$$\sigma(\Phi, \Psi, 2) = (\lambda_2 - \mu_2)(1 - B\beta) + 2\gamma\beta(B - A)(\lambda_2 - \zeta\mu_2)$$

Then for $z = re^{i\theta}$, 0 < r < 1, we have

(40)
$$\int_{0}^{2\pi} |f(z)|^{\kappa} d\theta \leq \int_{0}^{2\pi} |f_{2}(z)|^{\kappa} d\theta.$$

Proof. For

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n,$$

(40) is equivalent to proving that

$$\int_{0}^{2\pi} \left| 1 - \sum_{n=2}^{\infty} |a_n| z^{n-1} \right|^{\kappa} d\theta \le \int_{0}^{2\pi} \left| 1 - \frac{\beta \gamma (1-\zeta)(B-A)}{(1-\alpha)\sigma(\Phi,\Psi,2)} z \right|^{\kappa} d\theta.$$

By Lemma 1, it suffices to show that

$$1 - \sum_{n=2}^{\infty} |a_n| z^{n-1} \prec 1 - \frac{\beta \gamma (1-\zeta)(B-A)}{(1-\alpha)\sigma(\Phi, \Psi, 2)} z.$$

Setting

(41)
$$1 - \sum_{n=2}^{\infty} |a_n| z^{n-1} = 1 - \frac{\beta \gamma (1-\zeta)(B-A)}{(1-\alpha)\sigma(\Phi, \Psi, 2)} w(z),$$

and using (9), we obtain

$$|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\sigma(\Phi, \Psi, n) C_n(\alpha)}{2\beta \gamma (1 - \zeta)(B - A)} |a_n| z^{n-1} \right|$$

$$\leq |z| \sum_{n=2}^{\infty} \frac{\sigma(\Phi, \Psi, n) C_n(\alpha)}{2\beta \gamma (1 - \zeta)(B - A)} |a_n|$$

$$\leq |z|,$$

where $\sigma(\Phi, \Psi, n)$ is as defined in (10). This completes the proof Theorem 12.

References

- [1] O. P. Ahuja and H. Silverman, Convolutions of prestarlike functions, Internat. J. Math. Math. Sci., 6(1), 1983, 59–68.
- [2] M. Darus, A unified treatment of certain subclasses of prestarlike functions, J. Inequal. Appl. 6(5), Art. 132, (2005), pp:1–7.
- [3] J. E. Littlewood, On inequalities in theory of functions, Proc. London Math. Soc., 23 (1925), 481–519.
- [4] S. Owa and O. P. Ahuja, A class of functions defined by using Hadamard product, Hokkaido J. Math., 15(2) (1986), 217–232.
- [5] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115.
- [6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975) 109–116.
- [7] H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mt. J. Math., 21 (1991), 1099–1125.
- [8] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math., 23 (1997), 169–174.
- [9] H. Silverman and E. Silvia, Subclasses of prestarlike functions, Math. Japon., 29(6), (1984), 929–935.
- [10] B. A. Uralegaddi and Sarangi, Certain generalization of prestarlike functions with negative coefficients, Ganita, 34 (1983), 99–105.

Thomas Rosy, S. Kavitha

Department of Mathematics East Tambaram, Chennai-600 059, India e-mail: thomas.rosy@gmail.com

Mugur Acu

Lucian Blaga University
Department of Mathematics
Str. Dr. I. Ratiu 5-7, 550012 Sibiu, Romania.
e-mail: acu_mugur@yahoo.com

${\bf G.} \\ {\bf Murugus undaramoorthy}$

School of Science and Humanities VIT University Vellore - 632014, India. e-mail: gmsmoorthy@yahoo.com