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Harmonic functions prestarlike in the unit disc!

G. Murugusundaramoorthy, K.Uma and M. Acu

Abstract

A comprehensive class of complex-valued harmonic prestarlike univa-
lent functions is introduced. Necessary and sufficient coefficient bounds
are given for functions in this class to be starlike. Distortion bounds and

extreme points are also obtained.
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1 Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a
complex domain G if both u and v are real and harmonic in G. In any simply
connected domain D C G we can write f = h+g where h and g are analytic in

D. We call h the analytic part and g the co-analytic part of f. A necessary and
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sufficient condition for f to be locally univalent and orientation preserving in
D is that |h/(2)] > |¢'(2)| in D (see [1, 2]). Denote by H the family of functions
f = h+ g that are harmonic univalent and orientation preserving in the open

unit disc U = {z : |2| < 1} for which f(0) = h(0) =0 = f,(0) — 1. Thus for
(1) f=h+g

in H the functions h and g analytic & can be expressed in the following forms:
h(Z) =z+ Z amzma g(z) = Z by 2™ (0 <b < 1),
m=2 m=1

and f(z) is then given by

(2) FR) =24 amz™+ Y bma™, (1| <1).
m=2 m=1

Note that the family H of orientation preserving, normalized harmonic uni-
valent functions reduces to S, the class of normalized analytic univalent func-
tions, if the co-analytic part of f = h+7 is identically zero, that is g = 0. Given
two functions ¢(z) = § Pmz™ and Y(z) = § Ymz™ in S, there Hadamard
product or convoluti(?;l:l(qﬁ x 1) (z) is deﬁnedmb:y1 (px)(2) = ¢(2) *xP(z) =
io:l Gmmz". Using the convolution ,in [6] Ruscheweyh introduced and stud-
me

ied the class of prestarlike function of order «, which are the function f such

that f % .S, is a starlike function of order «, where

z
(3) Sa(z):m, (zelU,0<a<)
We also note that S,(2) can be written in the form
(4) Sa(2) =2+ ) |Cula)]z",
m=2
where

(meN\{1},N:={1,2,3,---}).
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We note that Cy,(«) is decreasing in « and satisfies

00 ifa<%
(6) lim Cr(a) =9 1 ifa=3
0 ifa>%

For f = h+ g given by (2) and 0 < o < 1 we define the prestarlike harmonic
function f = h+ g in 'H by

(7) Sa(2) * f(2) = Sa(2) * h(2) + Sa(z) * g(2)

where S, is given by (4) and the operator * stands for the Hadamard product
or convolution product. Motivated by the earlier works of [3, 4, 5] on the
subject of harmonic functions, we introduce here a new subclass PSy (v, 7y) of
H.

For 0 < v < 1, let PSy(a, ) denote the subfamily of starlike harmonic
functions f € H of the form (1) such that

0 o (argSa(z) + 1)) > 7

Equivalently

9)

Re {z(%(z) () - 5l gf<z>>} >
5a(2) *h(2) + (Bal2) *902)

where S, (2) * f(2) is given by (7) and z € U.

We also let PV (a,y) = PSy(a,7y) () Vi where Vi the class of harmonic
functions with varying arguments introduced by Jahangiri and Silverman [3],
consisting of functions f of the form(1) in H for which there exists a real

number ¢ such that

(10) N+ (m—1)¢p =x( mod 27), dp+(m—1)¢ =0( mod 27), m > 2,
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where 7, = arg(a,,) and §,, = arg(b,,).

In this paper we obtain a sufficient coefficient condition for functions f
given by (2) to be in the class PSy(«,~). It is shown that this coefficient
condition is necessary also for functions belonging to the class PVy(a, 7).
Further, distortion results and extreme points for functions in PV («, ) are

also obtained.

2 The class PSy(a, 7).

We begin deriving a sufficient coefficient condition for the functions belonging

to the class PSx(a, 7).

Theorem 1 Let f = h+g be given by (2). If

> (m—y m + 7y 1+~
11 —|am — b, 'm <1- b
)Y (T el 4 Tl ) ) <1 10

m=2

0 <~y <1, then f € PSy(a,).

Proof. We first show that if the inequality (11) holds for the coefficients of
f = h+ 7, then the required condition (9) is satisfied.

Using (7) and (9), we can write

Re {z(soxz) +h(2) ~ () + g(z))’} ~ R A
Sa(z) * h(z) + Sa(2) * g(2) B(z)

where

and
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In view of the simple assertion that Re (w) > v if and only if |1 — v 4+ w| >

|1+~ — w|, it is sufficient to show that

(12) [A(2) + (1 = 7)B(2)] = [A(2) = (1 +7)B(2)[ = 0.

Substituting for A(z) and B(z) the appropriate expressions in (12), we get

[A(2) + (1 =) B(2)] = [A(2) = (1 +7)B(2)]

e} o0

> (2=y)|zl= Y (m+1=7)Cn(@)lam| 121" =Y (m—=147)Crn () bl | |2

m=2 m=1
[e.@] o0

A2l =Y (m—=1=7)Cn(@)|am| 2| = (mA147)Crn (@) bin] 2]

m=2 m=1

2 2(1 =)l {1—2 T Cn(@)am|[2]" = :Cm(a)lbml\ﬂ 1}-

1_7 m=1

m=2

2(1—v>rz|{1—””b1—(2 [T_‘JC (@)lan|+ 57 o >|bm|D}zo

m=2
by virtue of the inequality (11). This implies that f € PSy/(a, 7).
Now we obtain the necessary and sufficient condition for function f = h+g

be given with condition (10):

Theorem 2 Let f = h+g be given by (2). Then f € PVy(a,v) if and only

i
> m+ -y 1+~
1) {5 el T bl @ <1 1
m=2 1 v
0<~y<1.

Proof. Since PVx(a,y) C PSi(a,7y), we only need to prove the necessary
part of the theorem.
Assume that f € PVy(a,7), then by virtue of (7) to (9), we obtain

o { [t )
Sa(z) % h(z) + Sa(z) *x g(2)
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The above inequality is equivalent to

2+ (£ m = Cn(@lanlz” — & (m 4 (el )

m=2 m=1

Re = —
z+ Z Cm(@)]am|z™ + Z Crn ()b |Z™
m=2 m=1
(1=7)+ Z (m_'Y)Cm(O‘)|am|Zm_l_§ > (m+7)C (@) by |z
m=2 m=1
= Re >0

Cm(a)|bM|§m71

14 5 Con(@)lam|zm =t +
m=2 1

ISEENY|
T8

This condition must hold for all values of z, such that |2| = 7 < 1. Upon choosing
¢ according to (10) we must have
(134201~ ( £ (m=2)Co@lanlr ™+ () o)l

m=2

>0.

(14) — g
1+|b1|+( > C’m(oz)|am|+mzzj1 Cm(a)|bm|) rm—1

m=2
If (13) does not hold, then the numerator in (14) is negative for r sufficiently close
to 1. Therefore, there exists a point zp = o in (0,1) for which the quotient in (14)
is negative. This contradicts our assumption that f € PV (a, 7). We thus conclude
that it is both, necessary and sufficient, that the coefficient bound inequality (13)
holds true when f € PVyx(«, ). This completes the proof of Theorem 2.
If we put ¢ = 27 /k in (10), then Theorem 2 gives the following corollary:

Corollary 1 A necessary and sufficient condition for f = h+g satisfying (13) to be
starlike is that
arg(a,,) =m —2(m — V)7 /k,

and
arg(by) =27 —2(m - Um/k  ,(k=1,2,3,...).
3 Distortion and Extreme Points

In this section we obtain the distortion bounds for the functions f € PVy(«,~) that

lead to a covering result for the family PV (v, 7).
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Theorem 3 If f € PVy(w,7) then

SO @t b+ g (52 - 572l

and

1O A=l - s (522 - 52l ) o

Proof. @ We will only prove the right- hand inequality of the above theorem. The
arguments for the left- hand inequality are similar and so we omit it.

Let f € PVy(a, ). Taking the absolute value of f, we obtain

[£(2)]

IN

(L4 b1+ D (lam] + [bu])r

m=2

(14 by)r +r? Z (lam] + 1bm])-

m=2

IN

This implies that

|f(2)] < (1+]b1])r @&ﬂc’QZXG:O@QMMH(tJymmmMPQ

< g (52 ) |1 T2l

1 1-y 1494
1+|b b
< Dt s (52— i) 7

which establishes the desired inequality.
As a consequence of the above theorem and Corollary (1), we state the following

covering result:

Corollary 2 Let f = h+ 7 and of the form (2) be so that f € PV (o, ). Then

{wWw%<ﬂhm”_l_Khmﬁ_HV_2Cﬂ%)—1—wa0+H
' (2 —7)Ca(ar) 2 —7)Ca(cn)

For a compact family, the maximum or minimum of the real part of any continuous

Vm}cfwy

linear functional occurs at one of the extreme points of the closed convex hull. Unlike
many other classes, characterized by necessary and sufficient coeflicient conditions,
the family PV (e, ) is not a convex family . Nevertheless , we may still apply the

coefficient characterization of the PV (v, ) to determine the extreme points.
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Theorem 4 The closed convex hull of PV (c,7y) (denoted by clcoPVy(ar,7)) is

{f(z) =z+ Z |am|z™ + Z [bm 2™, Z m[|am| + [bm]] <1 — bl}
m=2 m=1

m=2

By setting Ay, = m and phy, = then for by fized, the extreme

1—y
(m+'Y)Cm (D‘) ’
points for clco PVy(a,7y) are

(15) {z—i—)\mxzm—i—sz}U{z—i—blz—i—umxzm}
where m > 2 and |z| =1 — |by].

Proof. Any function f in clcoPVx(«, ) can be expressed as

o0 oo
F@2) =24 lamlem 2™ + bz + > |bpleidmzm,

m=2 m=2

where the coefficients satisfy the inequality (11). Set

hi(2)=2,91(2)=b12, hp(2)=24+\pe 2™, gm(z):blz—l—umew’"zm form=2,3,...

Writing X, = 142l v, = Lol =93 and X1 =1- 3 X Vi=1- % Yo,
m m=2 m=2

Am,

we get

F2) =Y (Xmhm(2) + Yingm(2)).

m=1

In particular, putting
fi(z) = 2+ b1z and fin(2) = 2+ An@2™ + b1z + fmyz™, (m > 2, ]2+ |yl =1 —|b1])

we see that extreme points of clcoPVy (o, v) C {fm(2)}

To see that f1(z) is not an extreme point, note that fi(z) may be written as

f1(2) = 5LAE) + X1 = 1)) + LA () = dal1 = I0a72),

a convex linear combination of functions in clco PVx(a, 7).
To see that f,, is not an extreme point if both |z| # 0 and |y| # 0, we will show

that it can then also be expressed as a convex linear combinations of functions in clco
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PV (a, 7). Without loss of generality, assume |z| > |y|. Choose € > 0 small enough
so that € < % Set A=1+eand B=1—|S|. We then see that both

t1(z) = 2z + A Axz™ + b1z + pyBz™

and

ta(z) =24+ A (2 — A)xz™ + b1z + pny(2 — B)z™
are in clco PV (e, 7), and that
1
fm(2) = Sita(2) + t2(2)}-

The extremal coefficient bounds show that functions of the form (15) are the extreme

points for clco PV (a, ), and so the proof is complete.

4 Inclusion Relation

Following Avici and Zlotkiewicz [1] (see also Ruscheweyh [7]), we refer to the the j—
neighborhood of the function f(z) defined by (2) to be the set of functions F' for
which

(16)  Ns(f) = {F<z>=z+2Amzm+ZBmzm7

Z m(|a‘m _Am‘ + |bm _Bm|) + |b1 _Bl‘ S 6}

m=2

In our case, let us define the generalized §—neighborhood of f to be the set
(17)  Ns(f) = {F : Z Crn()[(m = Y)lam — Ap| + (m +7)|by — Bin|]
m=2
+ (A =9)lbr = Bi| < (1 —7)d}.

Theorem 5 Let f be given by (2). If | satisfies the conditions

(18) Z m(m —7)|am|Cp(e) + Z m(m + )b |Cr(a) < (1 —7),
0<~y<1and

_1—y I+
(19) 0= o (1 1—*y|b1|)’
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then Ns(f) C PSn(a,7).

Proof. Let f satisfy (18) and F(z) be given by

F(z) =2+ Bz + Z (Amzm —l—Bmzm)

m=2

which belongs to N(f). We obtain

(L+DIBil+ Y ((m =) Am| + (1 +7)|Bin]) Crn (@)

m=2

< (LB = b1+ (1+)[ba] + Y Conl@) [(m = )| Am = @] + (m+7)| By = by

m=2

+ D Con(@) [(m = Ylam] + (m+7) b
m=2

< (1= )8+ (4l + 57 32 mCo(@) (m =l |+ (m+ Dlb)

<=8+ (bl + = (=) = A+ S 1=,

Hence for 6 = ;:—j/ (1 - if—?{\bﬂ) , we infer that F(z) € WS («, ) which concludes
the proof of Theorem 5.
Now, we will examine the closure properties of the class PV («,~y) under the

generalized Bernardi-Libera -Livingston integral operatorL.(f) which is defined by

z

/t“lf(t)dt,c > —1.
0
Theorem 6 Let f(z) € PVu(a,v). Then L.(f(2)) € PVx (e, )

c+1
ZC

Ec(f) =

Proof. From the representation of L.(f(2)), it follows that

z

Lo(f) = C:cl /tc—l [h(t) +ﬁ] dt.
0
= Cjcl (O/Ztc—l (t—%a@”) dt+0/zt01 (g:l bmtm> dt)

o0 o0
=z— E Ap 2™+ E Bpz"
m=2 m=1
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where

Therefore,

= m+vyc+1
Z (1_70+m| m|>Cm(a)

m=1

Zl<m la] + m+7|bm|) Cn(a) < 2(1 — 7).

Since f(z) € PVy(a,7), therefore by Theorem 2, L.(f(2)) € PV (ax, 7).

Theorem 7 For 0 <0 <~ <1, let f(z) € PVu(e,7y) and F(z) € PVy(«,d). Then
f(2) * F(z) € PVy(a,y) C PVyr(e,9).

Proof. Let . .
f(z)=2z- Z amz" + Z bnz™ € PVy(a,7)
m=2 m=1
and . .
F(z)=2—-Y Anz™+ Y Bpz" € PVy(a,d).
m=2 m=1
Then

f( —Z_ Z am mz igmﬁmzm

For f(z) * F(z) € PVx(a,d) we note that A,

Theorem 2 we have

S Dy a4 Y Ay g,

m=2 m=1

<y IOy, 5o It A0ty

m=2 m=1

and since 0 < § <~y <1

IN

i |m|+27m+w @y, <1,

5 v

by Theorem 2 , f(z) € PVH(«,). Therefore f(z)* F(z) € PVH(a,v) C PVH(a,4).
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Concluding Remark: The various results presented in this paper would provide
interesting extensions and generalizations of those considered earlier for simpler har-
monic function classes (see [3, 4, 5]). The details involved in the derivations of such

specializations of the results presented in this paper are fairly straight-forward.
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