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Harmonic functions prestarlike in the unit disc 1

G. Murugusundaramoorthy, K.Uma and M. Acu

Abstract

A comprehensive class of complex-valued harmonic prestarlike univa-

lent functions is introduced. Necessary and sufficient coefficient bounds

are given for functions in this class to be starlike. Distortion bounds and

extreme points are also obtained.
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1 Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a

complex domain G if both u and v are real and harmonic in G. In any simply

connected domain D ⊂ G we can write f = h+g where h and g are analytic in

D. We call h the analytic part and g the co-analytic part of f. A necessary and
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sufficient condition for f to be locally univalent and orientation preserving in

D is that |h′(z)| > |g′(z)| in D (see [1, 2]). Denote by H the family of functions

f = h + g that are harmonic univalent and orientation preserving in the open

unit disc U = {z : |z| < 1} for which f(0) = h(0) = 0 = fz(0)− 1. Thus for

(1) f = h + g

in H the functions h and g analytic U can be expressed in the following forms:

h(z) = z +
∞∑

m=2

amzm, g(z) =
∞∑

m=1

bmzm (0 ≤ b1 < 1),

and f(z) is then given by

(2) f(z) = z +
∞∑

m=2

amzm +
∞∑

m=1

bmzm, (|b1| < 1).

Note that the family H of orientation preserving, normalized harmonic uni-

valent functions reduces to S, the class of normalized analytic univalent func-

tions, if the co-analytic part of f = h+g is identically zero, that is g ≡ 0. Given

two functions φ(z) =
∞∑

m=1
φmzm and ψ(z) =

∞∑
m=1

ψmzm in S, there Hadamard

product or convolution (φ ∗ ψ)(z) is defined by (φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =
∞∑

m=1
φmψmzm. Using the convolution ,in [6] Ruscheweyh introduced and stud-

ied the class of prestarlike function of order α, which are the function f such

that f ∗ Sα is a starlike function of order α, where

(3) Sα(z) =
z

(1− z)2(1−α)
, (z ∈ U, 0 ≤ α < 1)

We also note that Sα(z) can be written in the form

(4) Sα(z) = z +
∞∑

m=2

|Cm(α)|zn,

where

(5) Cm(α) =

m∏
j=2

(j − 2α)

(m− 1)!
(m ∈ N \ {1},N := {1, 2, 3, · · · }).
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We note that Cn(α) is decreasing in α and satisfies

(6) lim
m→∞Cm(α) =





∞ if α < 1
2

1 if α = 1
2

0 if α > 1
2

.

For f = h + g given by (2) and 0 ≤ α < 1 we define the prestarlike harmonic

function f = h + g in H by

(7) Sα(z) ∗ f(z) = Sα(z) ∗ h(z) + Sα(z) ∗ g(z)

where Sα is given by (4) and the operator ∗ stands for the Hadamard product

or convolution product. Motivated by the earlier works of [3, 4, 5] on the

subject of harmonic functions, we introduce here a new subclass PSH(α, γ) of

H.

For 0 ≤ γ < 1, let PSH(α, γ) denote the subfamily of starlike harmonic

functions f ∈ H of the form (1) such that

(8)
∂

∂θ
(argSα(z) ∗ f(z)) > γ

Equivalently

(9) Re

{
z(Sα(z) ∗ h′(z))− z(Sα(z) ∗ g′(z))

Sα(z) ∗ h(z) + (Sα(z) ∗ g(z))

}
≥ γ

where Sα(z) ∗ f(z) is given by (7) and z ∈ U.

We also let PVH(α, γ) = PSH(α, γ)
⋂

VH where VH the class of harmonic

functions with varying arguments introduced by Jahangiri and Silverman [3],

consisting of functions f of the form(1) in H for which there exists a real

number φ such that

(10) ηm +(m−1)φ ≡ π ( mod 2π), δm +(m−1)φ ≡ 0( mod 2π), m ≥ 2,
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where ηm = arg(am) and δm = arg(bm).

In this paper we obtain a sufficient coefficient condition for functions f

given by (2) to be in the class PSH(α, γ). It is shown that this coefficient

condition is necessary also for functions belonging to the class PVH(α, γ).

Further, distortion results and extreme points for functions in PVH(α, γ) are

also obtained.

2 The class PSH(α, γ).

We begin deriving a sufficient coefficient condition for the functions belonging

to the class PSH(α, γ).

Theorem 1 Let f = h + g be given by (2). If

(11)
∞∑

m=2

(
m− γ

1− γ
|am|+ m + γ

1− γ
|bm|

)
Cm(α) ≤ 1− 1 + γ

1− γ
b1

0 ≤ γ < 1, then f ∈ PSH(α, γ).

Proof. We first show that if the inequality (11) holds for the coefficients of

f = h + g, then the required condition (9) is satisfied.

Using (7) and (9), we can write

Re

{
z(Sα(z) ∗ h(z))′ − z(Sα(z) ∗ g(z))′

Sα(z) ∗ h(z) + Sα(z) ∗ g(z)

}
= Re

A(z)
B(z)

,

where

A(z) = [z(Sα(z) ∗ h(z))′ − z(Sα(z) ∗ g(z))′]

and

B(z) = Sα(z) ∗ h(z) + Sα(z) ∗ g(z).
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In view of the simple assertion that Re (w) ≥ γ if and only if |1 − γ + w| ≥
|1 + γ − w|, it is sufficient to show that

(12) |A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0.

Substituting for A(z) and B(z) the appropriate expressions in (12), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2−γ)|z|−
∞∑

m=2

(m+1−γ)Cm(α)|am| |z|m−
∞∑

m=1

(m−1+γ)Cm(α)|bm| | |z|m

−γ|z|−
∞∑

m=2

(m−1−γ)Cm(α)|am| |z|m−
∞∑

m=1

(m+1+γ)Cm(α)|bm| |z|m.

≥ 2(1− γ)|z|
{

1−
∞∑

m=2

m−γ

1−γ
Cm(α)|am||z|m−1−

∞∑

m=1

m+γ

1−γ
Cm(α)|bm||z|m−1

}
.

≥ 2(1−γ)|z|
{

1− 1+γ

1−γ
b1−

( ∞∑

m=2

[
m−γ

1−γ
Cm(α)|am|+m+ γ

1−γ
Cm(α)|bm|

])}
≥0

by virtue of the inequality (11). This implies that f ∈ PSH(α, γ).

Now we obtain the necessary and sufficient condition for function f = h+g

be given with condition (10):

Theorem 2 Let f = h + g be given by (2). Then f ∈ PVH(α, γ) if and only

if

(13)
∞∑

m=2

{
m− γ

1− γ
|am|+ m + γ

1− γ
|bm|

}
Cm(α) ≤ 1− 1 + γ

1− γ
b1

0 ≤ γ < 1.

Proof. Since PVH(α, γ) ⊂ PSH(α, γ), we only need to prove the necessary

part of the theorem.

Assume that f ∈ PVH(α, γ), then by virtue of (7) to (9), we obtain

Re

{[
z(Sα(z) ∗ h(z))′ − z(Sα(z) ∗ g(z))′

Sα(z) ∗ h(z) + Sα(z) ∗ g(z)

]
− γ

}
≥ 0.
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The above inequality is equivalent to

Re





z +
( ∞∑

m=2
(m− γ)Cm(α)|am|zm −

∞∑
m=1

(m + γ)Cm(α)|bm|zm

)

z +
∞∑

m=2
Cm(α)|am|zm +

∞∑
m=1

Cm(α)|bm|zm





= Re





(1−γ)+
∞∑

m=2

(m−γ)Cm(α)|am|zm−1−z
z

∞∑
m=1

(m + γ)Cm(α)|bm|zm−1

1 +
∞∑

m=2
Cm(α)|am|zm−1 + z

z

∞∑
m=1

Cm(α)|bm|zm−1




≥ 0.

This condition must hold for all values of z, such that |z| = r < 1. Upon choosing

φ according to (10) we must have

(14)
(1−γ)−(1+γ)b1−

( ∞∑
m=2

(m−γ)Cm(α)|am|rm−1+(m+γ)Cm(α)|bm|rm−1

)

1+|b1|+
( ∞∑

m=2
Cm(α)|am|+

∞∑
m=1

Cm(α)|bm|
)

rm−1

≥0.

If (13) does not hold, then the numerator in (14) is negative for r sufficiently close

to 1. Therefore, there exists a point z0 = r0 in (0,1) for which the quotient in (14)

is negative. This contradicts our assumption that f ∈ PVH(α, γ). We thus conclude

that it is both, necessary and sufficient, that the coefficient bound inequality (13)

holds true when f ∈ PVH(α, γ). This completes the proof of Theorem 2.

If we put φ = 2π/k in (10), then Theorem 2 gives the following corollary:

Corollary 1 A necessary and sufficient condition for f = h + g satisfying (13) to be

starlike is that

arg(am) = π − 2(m− 1)π/k,

and

arg(bm) = 2π − 2(m− 1)π/k , (k = 1, 2, 3, . . . ).

3 Distortion and Extreme Points

In this section we obtain the distortion bounds for the functions f ∈ PVH(α, γ) that

lead to a covering result for the family PVH(α, γ).
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Theorem 3 If f ∈ PVH(α, γ) then

|f(z)| ≤ (1 + |b1|)r +
1

C2(α1)

(
1− γ

2− γ
− 1 + γ

2− γ
|b1|

)
r2

and

|f(z)| ≥ (1− |b1|)r − 1
C2(α)

(
1− γ

2− γ
− 1 + γ

2− γ
|b1|

)
r2.

Proof. We will only prove the right- hand inequality of the above theorem. The

arguments for the left- hand inequality are similar and so we omit it.

Let f ∈ PVH(α, γ). Taking the absolute value of f, we obtain

|f(z)| ≤ (1 + |b1|)r +
∞∑

m=2

(|am|+ |bm|)rm

≤ (1 + b1)r + r2
∞∑

m=2

(|am|+ |bm|).

This implies that

|f(z)| ≤ (1+|b1|)r+
1

C2(α1)

(
1−γ

2−γ

) ∞∑
m=2

[(
2−γ

1−γ

)
C2(α1)|am|+

(
2− γ

1−γ

)
C2(α1)|bm|

]
r2

≤ (1+|b1|)r+
1

C2(α1)

(
1−γ

2−γ

)[
1− 1+γ

1−γ
|b1|

]
r2

≤ (1+|b1|)r+
1

C2(α1)

(
1−γ

2−γ
− 1+γ

2−γ
|b1|

)
r2,

which establishes the desired inequality.

As a consequence of the above theorem and Corollary (1), we state the following

covering result:

Corollary 2 Let f = h + g and of the form (2) be so that f ∈ PVH(α, γ). Then
{

w : |w| < 2C2(α1)− 1− [C2(α1)− 1]γ
(2− γ)C2(α1)

− 2C2(α1)− 1− [C2(α1) + 1]γ
(2− γ)C2(α1)

b1

}
⊂ f(U).

For a compact family, the maximum or minimum of the real part of any continuous

linear functional occurs at one of the extreme points of the closed convex hull. Unlike

many other classes, characterized by necessary and sufficient coefficient conditions,

the family PVH(α, γ) is not a convex family . Nevertheless , we may still apply the

coefficient characterization of the PVH(α, γ) to determine the extreme points.
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Theorem 4 The closed convex hull of PVH(α, γ) (denoted by clcoPVH(α, γ)) is

{
f(z) = z +

∞∑
m=2

|am|zm +
∞∑

m=1

|bm|zm, :
∞∑

m=2

m[|am|+ |bm|] < 1− b1

}

By setting λm = 1−γ
(m−γ)Cm(α) and µm = 1−γ

(m+γ)Cm(α) , then for b1 fixed, the extreme

points for clco PVH(α, γ) are

(15)
{
z + λmxzm + b1z} ∪ {z + b1z + µmxzm

}

where m ≥ 2 and |x| = 1− |b1|.

Proof. Any function f in clcoPVH(α, γ) can be expressed as

f(z) = z +
∞∑

m=2

|am|eiηmzm + b1z +
∞∑

m=2

|bm|eiδmzm,

where the coefficients satisfy the inequality (11). Set

h1(z)=z, g1(z)=b1z, hm(z)=z+λmeiηmzm, gm(z)=b1z+µmeiδmzm for m = 2, 3, . . .

Writing Xm = |am|
λm

, Ym = |bm|
µm

, m = 2, 3, . . . and X1 = 1−
∞∑

m=2
Xm; Y1 = 1−

∞∑
m=2

Ym,

we get

f(z) =
∞∑

m=1

(Xmhm(z) + Ymgm(z)).

In particular, putting

f1(z) = z + b1z and fm(z) = z + λmxzm + b1z + µmyzm, (m ≥ 2, |x|+ |y| = 1− |b1|)

we see that extreme points of clcoPVH(α, γ) ⊂ {fm(z)}.
To see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1
2
{f1(z) + λ2(1− |b1|)z2}+

1
2
{f1(z)− λ2(1− |b1|)z2},

a convex linear combination of functions in clco PVH(α, γ).

To see that fm is not an extreme point if both |x| 6= 0 and |y| 6= 0, we will show

that it can then also be expressed as a convex linear combinations of functions in clco
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PVH(α, γ). Without loss of generality, assume |x| ≥ |y|. Choose ε > 0 small enough

so that ε < |x|
|y| . Set A = 1 + ε and B = 1− | εxy |. We then see that both

t1(z) = z + λmAxzm + b1z + µmyBzm

and

t2(z) = z + λm(2−A)xzm + b1z + µmy(2−B)zm

are in clco PVH(α, γ), and that

fm(z) =
1
2
{t1(z) + t2(z)}.

The extremal coefficient bounds show that functions of the form (15) are the extreme

points for clco PVH(α, γ), and so the proof is complete.

4 Inclusion Relation

Following Avici and Zlotkiewicz [1] (see also Ruscheweyh [7]), we refer to the the δ−
neighborhood of the function f(z) defined by (2) to be the set of functions F for

which

Nδ(f) =

{
F (z) = z +

∞∑
m=2

Amzm +
∞∑

m=1

Bmzm,(16)

∞∑
m=2

m(|am −Am|+ |bm −Bm|) + |b1 −B1| ≤ δ

}
.

In our case, let us define the generalized δ−neighborhood of f to be the set

Nδ(f) =

{
F :

∞∑
m=2

Cm(α)[(m− γ)|am −Am|+ (m + γ)|bm −Bm|](17)

+ (1− γ)|b1 −B1| ≤ (1− γ)δ} .

Theorem 5 Let f be given by (2). If f satisfies the conditions

(18)
∞∑

m=2

m(m− γ)|am|Cm(α) +
∞∑

m=1

m(m + γ)|bm|Cm(α) ≤ (1− γ),

0 ≤ γ < 1 and

(19) δ =
1− γ

2− γ

(
1− 1 + γ

1− γ
|b1|

)
,
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then Nδ(f) ⊂ PSH(α, γ).

Proof. Let f satisfy (18) and F(z) be given by

F (z) = z + B1z +
∞∑

m=2

(
Amzm + Bmzm

)

which belongs to N(f). We obtain

(1 + γ)|B1|+
∞∑

m=2

((m− γ)|Am|+ (m + γ)|Bm|)Cm(α)

≤ (1+ γ)|B1− b1|+(1+ γ)|b1|+
∞∑

m=2

Cm(α) [(m− γ)|Am − am|+ (m + γ)|Bm − bm|]

+
∞∑

m=2

Cm(α) [(m− γ)|am|+ (m + γ)|bm|]

≤ (1− γ)δ + (1 + γ)|b1|+ 1
2− γ

∞∑
m=2

mCm(α) ((m− γ)|am|+ (m + γ)|bm|)

≤ (1− γ)δ + (1 + γ)|b1|+ 1
2− γ

[(1− γ)− (1 + γ)|b1|] ≤ 1− γ.

Hence for δ = 1−γ
2−γ

(
1− 1+γ

1−γ |b1|
)

, we infer that F (z) ∈ WSH(α, γ) which concludes

the proof of Theorem 5.

Now, we will examine the closure properties of the class PVH(α, γ) under the

generalized Bernardi-Libera -Livingston integral operatorLc(f) which is defined by

Lc(f) =
c + 1
zc

z∫

0

tc−1f(t)dt, c > −1.

Theorem 6 Let f(z) ∈ PVH(α, γ). Then Lc(f(z)) ∈ PVH(α, γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c + 1
zc

z∫

0

tc−1
[
h(t) + g(t)

]
dt.

=
c + 1
zc




z∫

0

tc−1

(
t−

∞∑
m=2

amtn

)
dt +

z∫

0

tc−1

( ∞∑
m=1

bmtm

)
dt




= z −
∞∑

m=2

Amzm +
∞∑

m=1

Bmzm
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where

Am =
c + 1
c + m

am; Bm =
c + 1
c + m

bm.

Therefore,

∞∑
m=1

(
m + γ

1− γ

c + 1
c + m

|bm|
)

Cm(α)

≤
∞∑

m=1

(
m− γ

1− γ
|am|+ m + γ

1− γ
|bm|

)
Cm(α) ≤ 2(1− γ).

Since f(z) ∈ PVH(α, γ), therefore by Theorem 2, Lc(f(z)) ∈ PVH(α, γ).

Theorem 7 For 0 ≤ δ ≤ γ < 1, let f(z) ∈ PVH(α, γ) and F (z) ∈ PVH(α, δ). Then

f(z) ∗ F (z) ∈ PVH(α, γ) ⊂ PVH(α, δ).

Proof. Let

f(z) = z −
∞∑

m=2

amzn +
∞∑

m=1

bmzm ∈ PVH(α, γ)

and

F (z) = z −
∞∑

m=2

Amzm +
∞∑

m=1

Bnzm ∈ PVH(α, δ).

Then

f(z) ∗ F (z) = z −
∞∑

m=2

amAmzm +
∞∑

m=1

bmBmzm.

For f(z) ∗ F (z) ∈ PVH(α, δ) we note that |Am| ≤ 1 and |Bm| ≤ 1. Now by

Theorem 2 we have

∞∑
m=2

[m− δ]Cm(α)
1− δ

|am| |Am|+
∞∑

m=1

[m + δ]Cm(α)
1− δ

|bm| |Bm|

≤
∞∑

m=2

[m− δ]Cm(α)
1− δ

|am|+
∞∑

m=1

[m + δ]Cm(α)
1− δ

|bm|

and since 0 ≤ δ ≤ γ < 1

≤
∞∑

m=2

[m− γ]Cm(α)
1− γ

|am|+
∞∑

m=1

[m + γ]Cm(α)
1− γ

|bm| ≤ 1,

by Theorem 2 , f(z) ∈ PVH(α, γ). Therefore f(z)∗F (z) ∈ PVH(α, γ) ⊂ PVH(α, δ).
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Concluding Remark: The various results presented in this paper would provide

interesting extensions and generalizations of those considered earlier for simpler har-

monic function classes (see [3, 4, 5]). The details involved in the derivations of such

specializations of the results presented in this paper are fairly straight-forward.
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