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On some 2-Banach spaces !

Hemen Dutta

Abstract

The main aim of this article is to introduce some difference sequence
spaces with elements in a finite dimensional 2-normed space and extend
the notion of 2-norm and derived norm to thus constructed spaces. We
investigate the spaces under the action of different difference operators
and show that these spaces become 2-Banach spaces when the base space
is a 2-Banach space. We also prove that convergence and completeness in
the 2-norm is equivalent to those in the derived norm as well as show that
their topology can be fully described by using derived norm. Further we
compute the 2-isometric spaces and prove the Fixed Point Theorem for

these 2-Banach spaces.
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1 Introduction

The concept of 2-normed spaces was initially developed by Gahler [3] in the
mid of 1960’s. Since then, Gunawan and Mashadi [5], Giirdal [6] and many
others have studied this concept and obtained various results.
Let X be a real vector space of dimension d, where 2 < d. A real-valued
function ||.,.]| on X? satisfying the following four conditions:
(1) ||z1,x2]| = 0 if and only if z1, x5 are linearly dependent,
(2) ||x1, x2]| is invariant under permutation,
(3) llazr, 2] = |21, 2], for any a € B,
(4) |z + 2, zo|| < ||z, 2| + (|2, 2]
is called a 2-norm on X, and the pair (X, |.,.||) is called a 2-normed space.
A sequence () in a 2-normed space (X, [|.,.||) is said to converge to some

L € X in the 2-norm if
lim ||z — L,ui|| =0, for every u; € X.
k—o0

A sequence () in a 2-normed space (X, ||.,.||) is said to be Cauchy with
respect to the 2-norm if

lim ||z — x,ui|| =0, for every u; € X.

J1—00

If every Cauchy sequence in X converges to some L € X, then X is said
to be complete with respect to the 2-norm. Any complete 2-normed space is
said to be 2-Banach space.

The notion of difference sequence space was introduced by Kizmaz [7], who
studied the difference sequence spaces oo (A), ¢(A) and c¢y(A). The notion was
further generalized by Et and Colak [1] by introducing the spaces foo(A),

c(A®) and co(A®). Another type of generalization of the difference sequence
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spaces is due to Tripathy and Esi [8], who studied the spaces (oo (Ar,), ¢(Ar)
and co(A,,). Tripathy, Esi and Tripathy [9] generalized the above notions and
unified these as follows:

Let m, s be non-negative integers, then for Z a given sequence space we

have

Z(83,) = fa = (wx) € w : (M) € 2},

where A 2 = (AS xx) = (A5 1o — AS 2, ,) and Az = 2 forall k € N,
which is equivalent to the following binomial representation:
s
Ajx = 1;(—1)” (i) Tmo-
Let m, s be non-negative integers, then for Z a given sequence space we
define:
Z(Afm)) ={z=(zx) Ew: (Afm)a:k) €7},

where Afm)x = (Afm)ask) = (Af;lixk — As*;xk_m) and A(()m)azk = gy, for all

(m

k € N, which is equivalent to the following binomial representation:
> S
A(Sm)ﬂjk = Z(—l)v< >$k—mv-
v=0 v

It is important to note here that we take xx_,,, = 0, for non-positive values
of k — muv.

Let (X,].,.||x) be a finite dimensional real 2-normed space and w(X)
denotes X-valued sequence space. Then for non-negative integers m and s, we
define the following sequence spaces:

ol Afyy) = (1) € w(X) + Tim [[A], o, 21]Lx = 0, for every 21 €
X},

(-1 Afy) = {(@n) € w(X) 5 lim AL, — Lozallx = 0,for some L

and for every z; € X},
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ol Ay) = ((02) € w(X) & sup ALyl < o0, for every 2
€ X}.
It is obvious that co(||.,.||,Afm)) C (]|, .||,Afm)) C Lol .||,A‘(Sm)). Also

for Z = ¢p, c and £, we have
(1) Z(||.,.||,Aim)) C Z(||.,.||,Afm)),z' =0,1,...,s— 1.

Similarly we can define the spaces co(||., .||, A%,), ¢(||., .||, A%,) and loo (], .||, AZ,).

2 Discussions and Main Results

In this section we give some examples associated with 2-normed space and in-
vestigate the main results of this article involving the sequence spaces
Z(]|., Al Aly) and Z(]., Al A% ), for Z = ¢g,c and lo. Further we compute

2-isometric spaces and give the fixed point theorem for these spaces.

Example 1 AS an example of a 2-normed space, we may take X = R? being
equipped with the 2-norm ||z,y|| = the area of the parallelogram spanned by

the vectors = and y, which may be given explicitly by the formula:
2, yll = |z1y2 — z2yn|, 2 = (21, 22), y = (y1,92) € X.

Example 2 Let us take X = R? and consider a 2-norm ||.,.|x as defined
above. Consider the divergent sequence v = {1,2,3,...} € w(X), where k =
(k, k), for each k € N. But x belongs to Z(||., .||, A) and Z(]|.,.||, A()). Hence
by (1) for every m, s > 1, x belong to Z(H.,.H,Asm)) and Z(||., .||, AL,), for Z

= ¢, c and lx.

Theorem 1 The spaces Z(H.,.H,Afm)) and Z(||., .||, As,), for Z = co,c and

lso are linear.
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Proof. Proof is easy and so omitted.

Theorem 2 (i) Let Y be any one of the spaces Z(||., .H,Afm)), for Z = ¢y, c
and ls. We define the following function ||.,.|ly onY xY by
lz,ylly =0, if z,y are linearly dependent,

= sup ||Afm):ck, z1||x, for every z1 € X, ifx,y are linearly independent.
k
(2) Then |.,.|ly is a 2-norm on'Y.

(13) Let H be any one of the spaces Z(||., .||, AS,), for Z = co,c and lg. We
define the following function ||.,.|m on H x H by
lz,yllg =0, if x,y are linearly dependent,

= Tf |lxk, z1l|x + supl||AZ,xk, 21| x, for every z1 € X, if x,y are

k=1 k
linearly independent.

(3) Then ||., .|| is a 2-norm on'Y.

Proof. (i) If z',2? are linearly dependent, then |z!,22||y = 0. Conversely

assume ||z!, 22|y = 0. Then using (2), we have
sgp |]Afm)x,1€, z1|lx =0, for every z; € X.
This implies that
HA‘(Sm)x,lg,zlﬂ =0, for every z; € X and k > 1.

Hence we must have

Afm)ﬂlj}C =0 for all k > 1.

S .
Let k = 1, then Afm):r% = ‘Z%(—l)l(f)):v%fmi = 0 and so x1 = 0, by putting
. 1=
xi_,,; =0fori=1,... s Similarly taking £ = 2,...,ms, we have ==

zl .= 0. Next let k = ms + 1, then Afm)x}nsﬂ = Z(—l)i(fj)ths_mi =0.

=0
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1

m 1 = 0. Proceeding in this way

. = 0, we have

: 11
Since x; =25 = -+ =T et

we can conclude that a;/,l€ =0, for all ¥ > 1. Hence 2! = 6 and so z!,2? are
linearly dependent.
It is obvious that ||z!, 22|y is invariant under permutation, since ||z2, z!||y

(m)x}CHX and ||.,.][x is a 2-norm.

= sup ||z, A?
k

2

Let @ € R be any element. If ax',2? are linearly dependent then it is

obvious that

lazt, 2|y = |allla*, 2* [y
Otherwise,
o 2l = sup A,k 21 = o] sup A7k 21l = o, 22]-
Lastly, let ! = (z}) and y' = (y}) € Y. Then clearly
=t + oyt 2?lly < llat, 2y + Iy, 2®(ly-

Thus we can conclude that ., .||y is a 2-norm on Y.

(ii) For this part we shall only show that ||z!, 22| = 0 implies 2!, z? are
linearly dependent. Proof of other properties of 2-norm follow similarly with
that of part (7).

Let us assume that ||2!, 22|y = 0. Then using (3), for every z; in X, we

have
ms
(4) Dz, z1llx 4+ sup [ASap, zllx =0
k=1 k
We have
ms

Z |z}, z1]|x = 0, for every z; € X.
k=1
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Hence

a:}f:O, for k=1,2,...,ms.

Also we have from (4)
sup ||AS,xh, z1]|x = 0 for every z; € X.
k

Hence we must have

AS xl =0, for each k € N.

Let k = 1, then we have
A3 1_ —1)Y s 1 —
) et = 207 (ot =0

Also we have
(6) =0, for k=14+mv,v=1,2,...5— 1.

Thus from (5) and (6), we have 21 ,,,,, = 0. Proceeding in this way inductively,
we have :1:,1€ =0, for each k € N.
Hence z! = 6 and so z', 22 are linearly dependent.
Theorem 3 Let Y be any one of the spaces Z(||., .||, Afm)), for Z = cp,c and
lo. We define the following function ||.||s on Y by
lz|loo = 0, if x is linearly dependent,

= Stlipmax{HAfm)a:k,blHX :l=1,...,d}, where B={by,...,b3} is a

basis of X, if x is linearly independent.
(7)  Then ||.||cc is a norm on'Y and we call this as derived norm on'Y.

Proof. Proof is a routine verification and so omitted.
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Remark 1 Associated to the derived norm ||.||so, we can define balls(open)

S(z,e) centered at x and radius € as follows:
S(x,e) ={y: ||z — ylloo < €}

Corollary 1 The spaces Z(||.,.||,Afm)), for Z = co,c and lo are normed

linear spaces.

Theorem 4 If X is a 2-Banach space, then the spaces Z(||., .H,Afm)), for Z

= ¢p,c and L are 2-Banach spaces under the 2-norm (2).

Proof. We give the proof only for the space ¢ (], .||,A‘(9m)) and for other
spaces it will follow on applying similar arguments.
Let (2%) be any Cauchy sequence in £ (]|., .H,Afm)) and ¢ > 0 be given.

Then there exists a positive integer ngy such that
2" — 27, ul||y <e, for all i, j > ng and for every u'.
Using the definition of 2-norm, we get
s&;p ||A‘€m)(a:}C — xi), z1|lx < e, for all 4,j > ng and for every z; € X.
It follows that
HAfm)(xz — xi),21||x <eg, forall 7,5 > ng,k € N and for every z; € X.

Hence (Afm)xz) is a Cauchy sequence in X for all £ € N and so convergent in

X for all £ € N, since X is a 2-Banach space. For simplicity, let

lim A‘E’m)x}; = Yk, say, exists for each k € N.

1—00

Taking k =1,2,...,ms,... we can easily conclude that

lim 2} = xy, exists for each k € N.
71— 00
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Now for i, j > ng, we have
SL;p ||A(5m)(x}i€ - xi), z1|lx < e, and for every z; € X.
Hence for every z; in X, we have
SI;p HA‘E’m)(x}C — 1), 21l x <e, for all i > ng and as j — oo.

It follows that (z° —z) € Loo(]-, || Afm)) and £oo (]|, -], Afm)) is a linear space,
so we have x = 2 — (z° — x) € Loo(]|., .|, A‘(*m)). This completes the proof of

the theorem.

Theorem 5 Let Y be any one of the spaces Z(||., .||,A‘(9m)), for Z = cg,c and
ls. Then (z°) converges to an z in Y in the 2-norm if and only if (x%) also

converges to x in the derived norm.
Proof. Let (z') converges to x in Y in the 2-norm. Then
|zt — z,ul|ly — 0asi— oo for every u'.
Using (2), we get
s%p ||Afm)(a:}€ — k), 21]|x — 0 as i — oo for every z; € X.
Hence for any basis {by, b, ...,bg} of X, we have

sup max{[|Af,) (z} — 2x), billx : {=1,2,...,d} = 0asi— ooc.
k

Thus it follows that

2" — z||oo — 0 as i — oco.

Hence (z') converges to z in the derived norm.

Conversely assume (z") converges to x in the derived norm. Then we have

2" — z||oo — 0 as i — oco.



80 H. Dutta

Hence using (7), we get

supmax{HAfm)(:U}; —xk),billx :1=1,2,...,d} — 0 asi— oc.
k
Therefore
sup ||A‘(9m)(x}f — ), bl|x — 0asi— oo, foreachl=1,...,d.
k

Let y be any element of Y. Then
2" — 2, ylly = Sup 1A (@) = 20), 21llx
Since {b1,...,bq} is a basis for X, z; can be written as
z1 = a1by + -+ + agby for some aq,...,a4 € R.

Now
" —z,ylly = Sup 1A (), — @), 21llx
< o] sup |AL (@ = @), billx + - - + |l sup |AL,) (@) — k), bal x,

for each 7 in N.

Thus it follows that
|z — z,y|ly — 0 as i — oo for every y € Y.
Hence (2') converges to x in Y in the 2-norm.

Corollary 2 Let Y be any one of the spaces Z(||., .|, Al for Z = co,c and
loo. Then Y is complete with respect to the 2-norm if and only if it is complete

with respect to the derived norm.

Summarizing remark 1, corollary 1 and corollary 2, we have the following

result:
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Theorem 6 The spaces Z(||.,.||,Afm)), for Z = co,c and Lo are normed

spaces and their topology agree with that generated by the derived norm ||.||sc-

Remark 2 We get similar results as those of Theorem 8, Corollary 1, The-
orem 4, Theorem 5, Corollary 2 and Theorem 6 for the spaces Z(||.,.||, A%,),

for Z = ¢y, c and Ly also.

A 2-norm ||.,.||; on a vector space X is said to be equivalent to a 2-norm
I|.,-]l2 on X if there are positive numbers A and B such that for all z,y € X
we have

Allz, yll2 < ||z, ylly < Bllz, yll2-

This concept is motivated by the fact that equivalent norms on X define the

same topology for X.

Remark 3 [t is obvious that any sequence x € Z(||., .||,A?m)) if and only if
x € Z(|.,\,As,), for Z = co,c and L. Also it is clear that the two 2-norms

., -ly and ||., .||z defined by (2)and (3) are equivalent.

Let X and Y be linear 2-normed spaces and f : X — Y a mapping. We

call f an 2-isometry if
21 = y1, 22 — w2l = [[f(z1) = f(y1), fz2) = Fy2)ll,
for all 1, x2,y1,y2 € X.

Theorem 7 For Z = cy,c and {o, the spaces Z(||., .||, Asm)) and Z(||., .||, A%,)

are 2-isometric with the spaces Z(||.,.||).

Proof. Let us consider the mapping

F: 2] Ady) = Z(|- ). defined by
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Fa =y = (Af,zk), for each x = (zy) € Z(||., [, Afp))-

Then clearly F'is linear. Since F' is linear, to show F' is a 2-isometry, it is

enough to show that
IF(z"), F(z?) |l = ||t 2 |ly, for every z',a? € Z(||.. ||, A,,)-
Now using the definition of 2-norm (2), without loss of generality we can write

2, 22|y = sup 1AL 2k 21llx = [ F (), F(z?)]1,

where ||.,.||1 is a 2-norm on Z(||.,.||), which can be obtained from (2) by taking
s =0.
In view of remark 3, we can define same mapping on the spaces Z(||., .||, A?,)

and completes the proof.
For the next Theorem let Y to be any one of the spaces Z(||., .||, Afm)), for

Z = cg,c and f.

Theorem 8 (Fixed Point Theorem) Let Y be a 2-Banach space under the
2-norm (2), and T be a contractive mapping of Y into itself, that is, there

exists a constant C € (0,1) such that
1Ty = Tz' 2%y < Clly' =24, 2%y,
for all y*, 24, 2% in Y. Then T has a unique fized point in Y.

Proof. If we can show that T is also contractive with respect to derived norm,
then we are done by corollary 2 and the fixed point theorem for Banach spaces.

Now by hypothesis

| Tyt — T2 22|y < Oyt — 24, 22|y, for all 4!, 21, 2% € V-
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This implies that
Sup | A (Tt = T54).wlx < Csup [ A7 (k= =), Lx, for every s € X.
Then for a basis {eg,...,eq} of X, we get

sup A Tk = Toh), el < Csup A (0 — o), sl

for all y',2' in Y andi=1,....,d.
Thus

1Tys; — Tzilloo < Cligs; — 2lloo-

That is T is contractive with respect to derived norm. This completes the

proof.

Remark 4 We get the fixed point theorem for the spaces Z(||.,.||, As,), for Z

= cp,c and £ as above.
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