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On modified Noor iterations for strongly
pseudocontractive mappings1
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Abstract

In this paper, we analyze a three-step iterative scheme for three
strongly pseudocontractive mappings in a uniformly smooth Banach
space. Our results can be viewed as an extension of three-step and
two-step iterative schemes of Glowinski and Le Tallec [3], Noor [12-
15] and Ishikawa [7], Liu [10] and Xu [20].
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1 Introduction

Form now onward, we assume that E is a real uniformly smooth Banach

space and K be a nonempty closed convex subset of E. Let J denote the

normalized duality mapping from E to 2E∗ defined by

J(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 and ||f ∗|| = ||x||},
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where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized

duality pairing. It is well known that if E is uniformly smooth, then J is

single-valued and is uniformly continuous on bounded subsets of E. We

shall denote the single-valued duality map by j.

Definition 1. A map T : E → E is called strongly accretive if there exists a

constant 0 < k < 1 such that, for each x, y ∈ E, there is a j(x−y) ∈ J(x−y)

satisfying

(1) 〈Tx− Ty, j(x− y)〉 ≥ k||x− y||2.

Definition 2. An operator T with domain D(T ) and range R(T ) in E is

called strongly pseudocontractive if for all x, y ∈ D(T ), there exist j(x−y) ∈
J(x− y) and a constant 0 < k < 1 such that

(2) 〈Tx− Ty, j(x− y)〉 ≤ (1− k)||x− y||2.

It is known that T is strongly pseudocontractive if and only if (I − T )

is strongly accretive.

The concept of accretive mapping was at first introduced independently

by Browder [2] and Kato [9] in 1967. An early fundamental result in the

theory of accretive mapping, due to Browder, states that the initial value

problem
du(t)

dt
+ Tu(t) = 0, u(0) = u0

is solvable if T is locally Lipschitzian and accretive on E.

In recent year, much attention has been given to solve the nonlinear op-

erator equations in Banach spaces by using the two-step and the one-step

iterative schemes, see [2-10, 20]. Noor [12-13] has suggested and analyzed

three-step iterative methods for finding the approximate solutions of the

variational inclusions (inequalities) in a Hilbert space by using the tech-

niques of updating the solution and the auxiliary principle. These three-

step schemes are similar to those of the so-called θ-schemes of Glowinski and
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Le Tallec [3] for finding a zero of the sum of two (more) maximal mono-

tone operators, which they have suggested by using the Lagrange multi-

plier method. Glowinski and Le Tallec [3] used these three-step iterative

schemes for solving elastoviscoplasticity, liquid crystal and eigen-value prob-

lems. They have shown that the three-step approximations perform better

than the two-step and one-step iterative methods. Haubruge et all [6] have

studied the convergence analysis of the three-step schemes of Glowinski and

Le Tallec [3] and applied these three-step iterations to obtain new splitting

type algorithms for solving variational inequalities, separable convex pro-

gramming and minimization of a sum of convex functions. They have also

proved that three-step iterations lead also to highly parallelized algorithms

under certain conditions. It has been shown in [6, 12-13] that three-step

schemes are a natural generalization of the splitting methods for solving

partial differential equations (inclusions). For the applications of the split-

ting and decomposition methods, see [ 1, 3, 6, 12-14] and the references

therein. Thus we conclude that three-step schemes play an important and

significant part in solving various problems, which arise in pure and applied

sciences.

In 2002, Noor, Rassias and Huang [15] suggested the following three-step

iteration process for solving the nonlinear equations Tu = 0.

Let E is a real normed space and K be a nonempty closed convex subset

of E.

Algorithm NRH. Let T : K → K be a mapping. For a given x0 ∈ K,

compute the sequence {xn}∞n=0 by the iterative schemes

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 0,(3)

which is called the three-step iterative process, where {αn}∞n=0 , {βn}∞n=0

and {γn}∞n=0 are three real sequences in [0,1] satisfying some certain condi-

tions.
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If γn = 0 and βn = 0, then Algorithm NRH reduces to:

Algorithm M. For a given x0 ∈ K, compute the sequence {xn}∞n=0 by

the iterative scheme

(4) xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

which is called the Mann iterative process, see [11].

For γn = 0, Algorithm NRH becomes:

Algorithm I. Let K be a nonempty convex subset of E and let T : K →
K be a mapping. For any given x0 ∈ K, compute the sequence {xn}∞n=0 by

the iterative schemes

xn+1 = (1− αn)xn + αnTyn, n ≥ 0,

yn = (1− βn)xn + βnTxn, n ≥ 0,(5)

which is called the two-step Ishikawa iterative process, and {αn}∞n=0 and

{βn}∞n=0 are two real sequences in [0,1] satisfying some certain conditions.

These facts motivated us to introduce and analyze a class of three-step it-

erative scheme for three strongly pseudocontractive mappings . This scheme

defined as follows.

Algorithm A. Let T1, T2, T3 : K → K be three given mappings. For

a given x0 ∈ K, compute the sequence {xn}∞n=0 by the iterative scheme

xn+1 = (1− αn)xn + αnT1yn,

yn = (1− βn)xn + βnT2zn,

zn = (1− γn)xn + γnT3xn, n ≥ 0,(6)

which is called the modified three-step iterative process, where {αn}∞n=0 ,

{βn}∞n=0 and {γn}∞n=0 are three real sequences in [0,1] satisfying some certain

conditions.

It may be noted that the iteration schemes (3-5) may be viewed as the

special case of (6).

In this paper, we establish the strong convergence for a modified three-

step iterative scheme for three strongly pseudocontractive mappings in a
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uniformly smooth Banach space. Our results can be viewed as an extension

of three-step and two-step iterative schemes of Glowinski and Le Tallec [3],

Noor [12-15] and Ishikawa [7], Liu [10] and Xu [20]. We also study the

convergence analysis of the iterative method.

2 Main Results

We will use the following results.

Lemma 1. [19] Let E be a real uniformly smooth Banach space and let

J : E → 2E be the normalized duality mapping. Then for any x, y ∈ E, we

have

(7) ||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉, for all j(x + y) ∈ J(x + y).

Lemma 2. [2] E is a uniformly smooth Banach space if and only if J is

single valued and uniformly continuous on any bounded subset of E.

The following lemma is proved in [17].

Lemma 3. If there exists a positive integer N such that for all n ≥ N,

n ∈ N,

ρn+1 ≤ (1− αn)ρn + bn,

then

lim
n→∞

ρn = 0,

where αn ∈ [0, 1),
∑∞

n=0 αn = ∞, and bn = o(αn).

Theorem 1. Let E be a real uniformly smooth Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, T3 be strongly pseudocon-

tractive self maps of K with Ti(K) bounded; i = 1, 2, 3. Let {xn}∞n=0 be the

sequence defined by

xn+1 = (1− αn)xn + αnT1yn,

yn = (1− βn)xn + βnT2zn,

zn = (1− γn)xn + γnT3xn, n ≥ 0,(8)
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where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] sat-

isfying the conditions:

(9) lim
n→∞

αn = 0 = lim
n→∞

βn = lim
n→∞

γn and
∞∑

n=0

αn = ∞.

If F (T1)∩F (T1)∩F (T1) 6= ϕ, then the sequence {xn}∞n=0 converges strongly

to the common fixed point of T1, T2, T3.

Proof. Since each Ti; i = 1, 2, 3 is strongly pseudocontractive, then there

exists ki ∈ (0, 1); i = 1, 2, 3 such that

〈Tix− Tiy, j(x− y)〉 ≤ (1− ki)||x− y||2, i = 1, 2, 3.

Let k = min
1≤i≤N

{ki}. Then

〈Tix− Tiy, j(x− y)〉 ≤ (1− k)||x− y||2, i = 1, 2, 3.

Let p ∈ F := F (T1)∩F (T2)∩F (T3).We will show that p is the unique fixed

point of F . Let p ∈ F (T1). Suppose there exists q1 ∈ F (T1). Then

||p− q1||2 = 〈p− q1, j(p− q1)〉 = 〈T1p− T1q1, j(p− q1)〉 ≤ (1− k)||p− q1||2.

Since k ∈ (0, 1), it follows that ||p− q1||2 ≤ 0, which implies p = q1. Hence

F (T1) = {p}. Similarly we can prove that p is the unique fixed point of T2

and T3 respectively. Thus p ∈ F.

Since each Ti; i = 1, 2, 3 has bounded range, we set

M1 = ||x0 − p||+ sup
x,y∈K

||Tix− Tiy||; i = 1, 2, 3.

Obviously M1 < ∞.

It is clear that ||x0 − p|| ≤ M1. Let ||xn − p|| ≤ M1. Next we will prove

that ||xn+1 − p|| ≤ M1.
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Consider

||xn+1 − p|| = ||(1− αn)xn + αnT1yn − p||
= ||(1− αn)(xn − p) + αn(T1yn − p)||
≤ (1− αn)||xn − p||+ αn||T1yn − p||
≤ (1− αn)M1 + M1αn = M1.

So, from the above discussion, we can conclude that the sequence {xn−
p}∞n=0 is bounded.

Let M2 = sup
n≥0

||xn − p||.
Since

||xn − yn|| = ||xn − (1− βn)xn − βnT2zn||
= βn||xn − T2zn||
≤ βn||xn − p||+ βn||T2zn − p|| ≤ βnM2 + βnM1

= (M2 + M1)βn −→ 0, as n →∞,

implies {xn−yn}∞n=0 is bounded. Let M3 = sup
n≥0

||xn−yn||. Since ||yn−p|| ≤
||xn−p||+ ||xn−yn||, so {yn−p}∞n=0 is also bounded. Let M4 = sup

n≥0
||yn−p||.

In a similar way, we can prove that the sequence {||zn− p||}∞n=0 is bounded.

Let M5 = sup
n≥0

||zn − p||.
Denote M = M1 + M2 + M4 + M5. Obviously M < ∞.

From Lemma 1 for all n ≥ 0, and by taking An = 〈T3xn− p, j(zn− p)−
j(xn − p)〉, we have

||zn − p||2 = ||(1− γn)xn + γnT3xn − p||2(10)

= ||(1− γn)(xn − p) + γn(T3xn − p)||2
≤ (1− γn)2||xn − p||2 + 2γn〈T3xn − p, j(zn − p)〉
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= (1− γn)2||xn − p||2 + 2γn〈T3xn − p, j(xn − p)

− j(xn − p) + j(zn − p)〉
= (1−γn)2||xn−p||2+2γn〈T3xn−p, j(xn−p)〉+2γnAn

≤ (1−γn)2||xn−p||2+2γn(1−k)||xn−p||2 + 2γnAn

= [1 + γn(γn − 2k)]||xn − p||2 + 2γnAn.

Now by lim
n→∞

γn = 0, there exists a natural number n0 ∈ N such that for all

n ≥ n0, we have γn ≤ 2k. From (10), we get

(11) ||zn − p||2 ≤ ||xn − p||2 + 2γnAn.

CLAIM 1: lim
n→∞

An = 0.

Indeed, from Lemma 2, since E is uniformly smooth Banach space, J

is single valued and uniformly continuous on any bounded subset of E.

Observe that

(zn − p)− (xn − p) = zn − xn

= (1− γn)xn + γnT3xn − xn

= γn(T3xn − xn),

so as n →∞, we have

||(zn − p)− (xn − p)|| = ‖xn − T3xn‖
≤ γn (||xn − p||+ ||T3xn − p||)
≤ Mγn + Mγn = 2Mγn −→ 0.

Since we have shown that the sequences {xn − p}∞n=0 and {zn − p}∞n=0 are

all bounded sets, it follows that as n →∞,

||j(zn − p)− j(xn − p)|| −→ 0,

and hence,

An = 〈T3xn − p, j(zn − p)− j(xn − p)〉 −→ 0.
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Also from Lemma 1 for all n ≥ 0, and by taking Bn = 〈T2zn−p, j(yn−p)−
j(zn − p)〉, we have

||yn − p||2 = ||(1− βn)xn + βnT2zn − p||2
= ||(1− βn)(xn − p) + βn(T2zn − p)||2
≤ (1− βn)2||xn − p||2 + 2βn〈T2zn − p, j(yn − p)〉
= (1− βn)2||xn − p||2

+2βn〈T2zn − p, j(zn − p)− j(zn − p) + j(yn − p)〉
= (1− βn)2||xn − p||2

+2βn〈T2zn − p, j(zn − p)〉+ 2βnBn

≤ (1− βn)2||xn − p||2 + 2βn(1− k)||zn − p||2 + 2βnBn.(12)

Substituting (11) in (12), we get

||yn − p||2 ≤ (1− βn)2||xn − p||2
+2βn(1− k)

[||xn − p||2 + 2γnAn

]
+ 2βnBn

=
[
(1− βn)2 + 2βn(1− k)

] ||xn − p||2
+4(1− k)βnγnAn + 2βnBn

= [1 + βn(βn − 2k)]||xn − p||2(13)

+4(1− k)βnγnAn + 2βnBn.

Now by lim
n→∞

βn = 0, implies there exists a natural number n0 ∈ N such that

for all n ≥ n0, we have βn ≤ 2k. From (13), we get

(14) ||yn − p||2 ≤ ||xn − p||2 + 4(1− k)βnγnAn + 2βnBn.

CLAIM 2: lim
n→∞

Bn = 0.

Indeed, from Lemma 2, since E is uniformly smooth Banach space, J

is single valued and uniformly continuous on any bounded subset of E.
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Observe that

(yn − p)− (zn − p) = yn − zn

= (1− βn)xn + βnT2zn − (1− γn)xn − γnT3xn

= βn(T2zn − xn) + γn(xn − T3xn),

so as n →∞, we have

||(yn − p)− (zn − p)|| = ‖βn(T2zn − xn) + γn(xn − T3xn)‖
≤ βn ‖T2zn − xn‖+ γn ‖xn − T3xn‖
≤ βn (‖T2zn − p‖+ ‖xn − p‖)

+γn (‖xn − p‖+ ‖T3xn − p‖)
≤ 2Mβn + 2Mγn = 2M(βn + γn) −→ 0.

Since we have shown that the sequences {yn − p}∞n=0 and {zn − p}∞n=0 are

all bounded sets, it follows that as n →∞,

||j(yn − p)− j(zn − p)|| −→ 0,

and hence,

Bn = 〈T2zn − p, j(yn − p)− j(zn − p)〉 → 0.

Thus, from Lemma 1 for all n ≥ 0, and by taking Cn = 〈T1yn − p, j(xn+1 −
p)− j(yn − p)〉, we obtain

‖xn+1 − p‖2 = ||(1− αn)xn + αnT1yn − p||2
= ||(1− αn)(xn − p) + αn(T1yn − p)||2
≤ (1− αn)2||xn − p||2 + 2αn〈T1yn − p, j(xn+1 − p)〉
= (1− αn)2||xn − p||2

+2αn〈T1yn − p, j(yn − p)− j(yn − p) + j(xn+1 − p)〉
= (1− αn)2||xn − p||2 + 2αn〈T1yn − p, j(yn − p)〉

+2αnCn

≤ (1− αn)2||xn − p||2 + 2αn(1− k)||yn − p||2 + 2αnCn.(15)
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Substituting (14) in (15), we obtain

‖xn+1 − p‖2 ≤ (1− αn)2||xn − p||2
+2αn(1− k)

[||xn − p||2 + 4(1− k)βnγnAn + 2βnBn

]

+2αnCn

=
[
(1− αn)2 + 2αn(1− k)

] ||xn − p||2
+8(1− k)2αnβnγnAn + 4(1− k)αnβnBn + 2αnCn

= [1 + αn(αn − 2k)]||xn − p||2
+8(1− k)2αnβnγnAn + 4(1− k)αnβnBn + 2αnCn.(16)

Now by lim
n→∞

αn = 0, implies there exists a natural number n0 ∈ N such that

for all n ≥ n0, we have αn ≤ k. From (16), we get

‖xn+1 − p‖2 ≤ (1− kαn)||xn − p||2 + 8(1− k)2αnβnγnAn

+4(1− k)αnβnBn + 2αnCn

= (1− kαn)||xn − p||2 + δnαn;(17)

δn = 4(1− k)βn[2(1− k)γnAn + Bn] + 2Cn.

CLAIM 3: lim
n→∞

Cn = 0.

Indeed, from Lemma 2, since E is uniformly smooth Banach space, J

is single valued and uniformly continuous on any bounded subset of E.

Observe that

(xn+1 − p)− (yn − p) = xn+1 − yn

= (1− αn)xn + αnT1yn − (1− βn)xn − βnT2zn

= αn(T1yn − xn) + βn(xn − T2zn),
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so as n →∞, we have

||(xn+1 − p)− (yn − p)|| = ‖αn(T1yn − xn) + βn(xn − T2zn)‖
≤ αn ‖T1yn − xn‖+ βn ‖xn − T2zn‖
≤ αn (‖T1yn − p‖+ ‖xn − p‖)

+βn (‖xn − p‖+ ‖T2zn − p‖)
≤ 2Mαn + 2Mβn = 2M(αn + βn) −→ 0.

Since we have shown that the sequences {xn+1− p}∞n=0 and {yn− p}∞n=0 are

all bounded sets, it follows that as n →∞,

||j(xn+1 − p)− j(yn − p)|| −→ 0,

and hence,

Cn = 〈T1yn − p, j(xn+1 − p)− j(yn − p)〉 −→ 0.

Now applying Lemma 3 on (17), we obtain that

lim
n→∞

||xn − p|| = 0,

completing the proof.

As a special case of theorem 1, the following corollary can be deduced

by taking T1 = T2 = T3.

Corollary 1. Let E be a real uniformly smooth Banach space and K be

a nonempty closed convex subset of E. Let T be strongly pseudocontractive

self map of K with T (K) bounded. Let {xn}∞n=0 be the sequence defined by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 0,(18)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] sat-

isfying the conditions:

(19) lim
n→∞

αn = 0 = lim
n→∞

βn = lim
n→∞

γn and
∞∑

n=0

αn = ∞.
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Then the sequence {xn}∞n=0 converges strongly to the unique fixed point p of

T.

Remark 1. Corollary 1 is the theorem 2.1 of [15] due to Noor, Rassias and

Huang.
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