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On modified Noor iterations for strongly
pseudocontractive mappings!
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Abstract

In this paper, we analyze a three-step iterative scheme for three
strongly pseudocontractive mappings in a uniformly smooth Banach
space. Our results can be viewed as an extension of three-step and
two-step iterative schemes of Glowinski and Le Tallec [3], Noor [12-
15] and Ishikawa [7], Liu [10] and Xu [20].
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1 Introduction

Form now onward, we assume that F is a real uniformly smooth Banach
space and K be a nonempty closed convex subset of . Let J denote the

normalized duality mapping from E to 2% defined by

J@) ={f" € E": (x, ") = |l2[I* and [|f*]] = ll2lI},
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where E* denotes the dual space of E and (-,-) denotes the generalized
duality pairing. It is well known that if E is uniformly smooth, then J is
single-valued and is uniformly continuous on bounded subsets of E. We

shall denote the single-valued duality map by j.

Definition 1. A map T : E — FE is called strongly accretive if there exists a
constant 0 < k < 1 such that, for each x,y € E, thereis a j(x—y) € J(x—y)
satisfying

(1) (Tx — Ty, j(x —y)) > k||l —y|*.

Definition 2. An operator T" with domain D(T) and range R(T) in E is
called strongly pseudocontractive if for all x,y € D(T), there ezist j(v—y) €
J(x —y) and a constant 0 < k < 1 such that

(2) (Tx =Ty, j(z —y)) < (1-k)l|lz —yl]*.

It is known that T is strongly pseudocontractive if and only if (I — T')
is strongly accretive.

The concept of accretive mapping was at first introduced independently
by Browder [2] and Kato [9] in 1967. An early fundamental result in the
theory of accretive mapping, due to Browder, states that the initial value
problem

W) L puy =0, u(0) = up
dt
is solvable if T' is locally Lipschitzian and accretive on F.

In recent year, much attention has been given to solve the nonlinear op-
erator equations in Banach spaces by using the two-step and the one-step
iterative schemes, see [2-10, 20]. Noor [12-13] has suggested and analyzed
three-step iterative methods for finding the approximate solutions of the
variational inclusions (inequalities) in a Hilbert space by using the tech-
niques of updating the solution and the auxiliary principle. These three-

step schemes are similar to those of the so-called #-schemes of Glowinski and
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Le Tallec [3] for finding a zero of the sum of two (more) maximal mono-
tone operators, which they have suggested by using the Lagrange multi-
plier method. Glowinski and Le Tallec [3] used these three-step iterative
schemes for solving elastoviscoplasticity, liquid crystal and eigen-value prob-
lems. They have shown that the three-step approximations perform better
than the two-step and one-step iterative methods. Haubruge et all [6] have
studied the convergence analysis of the three-step schemes of Glowinski and
Le Tallec [3] and applied these three-step iterations to obtain new splitting
type algorithms for solving variational inequalities, separable convex pro-
gramming and minimization of a sum of convex functions. They have also
proved that three-step iterations lead also to highly parallelized algorithms
under certain conditions. It has been shown in [6, 12-13] that three-step
schemes are a natural generalization of the splitting methods for solving
partial differential equations (inclusions). For the applications of the split-
ting and decomposition methods, see [ 1, 3, 6, 12-14] and the references
therein. Thus we conclude that three-step schemes play an important and
significant part in solving various problems, which arise in pure and applied
sciences.

In 2002, Noor, Rassias and Huang [15] suggested the following three-step
iteration process for solving the nonlinear equations Tu = 0.

Let F is a real normed space and K be a nonempty closed convex subset
of E.

Algorithm NRH. Let T': K — K be a mapping. For a given xg € K,

compute the sequence {x,}32, by the iterative schemes

Tp+1 = (1 - an)xn + anTyna
Yn = (1 - ﬁn)xn + ﬁnTZny
(3) Zn = (=)0 + T, n >0,

which is called the three-step iterative process, where {a,}2%, , {8,122,
and {7,}°°, are three real sequences in [0,1] satisfying some certain condi-

tions.
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If v, = 0 and (3, = 0, then Algorithm NRH reduces to:
Algorithm M. For a given zy € K, compute the sequence {z,}>°, by

the iterative scheme
(4) Tor1 = (1 —ap)zn + aTx,,n >0,

which is called the Mann iterative process, see [11].

For ~, = 0, Algorithm NRH becomes:

Algorithm I. Let K be a nonempty convex subset of £ and let T': K —
K be a mapping. For any given xy € K, compute the sequence {x,}>2 , by

the iterative schemes

Tor1 = (1—an)zn, +anTy,,n >0,

which is called the two-step Ishikawa iterative process, and {a,}5%, and
{6,152, are two real sequences in [0,1] satisfying some certain conditions.
These facts motivated us to introduce and analyze a class of three-step it-
erative scheme for three strongly pseudocontractive mappings . This scheme
defined as follows.
Algorithm A. Let 71,715,735 : K — K be three given mappings. For

a given zy € K, compute the sequence {z,}>, by the iterative scheme

Tn+1 = (1 - an)xn + anTIym
Yn = (1 - 671)3;11 + ﬁnTQZm
(6> Zpn = (1 - 7n)xn + 7nT3xn7 n Z 07

which is called the modified three-step iterative process, where {a,}>, ,
{Bn}oy and {7, }o°, are three real sequences in [0,1] satisfying some certain
conditions.

It may be noted that the iteration schemes (3-5) may be viewed as the
special case of (6).

In this paper, we establish the strong convergence for a modified three-

step iterative scheme for three strongly pseudocontractive mappings in a
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uniformly smooth Banach space. Our results can be viewed as an extension
of three-step and two-step iterative schemes of Glowinski and Le Tallec [3],
Noor [12-15] and Ishikawa [7], Liu [10] and Xu [20]. We also study the

convergence analysis of the iterative method.

2 Main Results

We will use the following results.

Lemma 1. [19] Let E be a real uniformly smooth Banach space and let
J 1 E — 2F be the normalized duality mapping. Then for any z,y € E, we

have
(1) e+l <zl +2(y,j(z +y)), foral jlz+y)eJ(x+y).

Lemma 2. [2] E is a uniformly smooth Banach space if and only if J is
single valued and uniformly continuous on any bounded subset of E.

The following lemma is proved in [17].

Lemma 3. If there exists a positive integer N such that for all n > N,

n €N,
Prr1 < (1= an)pn + by,
then
e =

where o, € [0,1), 07 y, = 00, and b, = o).

Theorem 1. Let E be a real uniformly smooth Banach space and K be a
nonempty closed convex subset of E. Let T1,T,, T3 be strongly pseudocon-
tractive self maps of K with T;(K) bounded; i =1, 2, 3. Let {x,}5° be the
sequence defined by

Tp+1 = (1 - an)mn + a/nlenv
Yn = (1 - ﬁn)xn + ﬁnT2Zm
(8) zn = (L—=79)2n + T2, n >0,
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where {a, 1520, {Bn}oy and {7,152, are three real sequences in [0,1] sat-

1sfying the conditions:

9) lim o, = 0= lim G, = lim ~, and Zan = 0.

n=0
If F(TV)NF(TY)NF(Ty) # ¢, then the sequence {x,}>, converges strongly
to the common fixed point of Ty, Ty, T5.

Proof. Since each T;; 1 = 1, 2, 3 is strongly pseudocontractive, then there
exists k; € (0,1); i =1, 2, 3 such that

(Tix — Ty, j(x —y) < (1 —k)|lz —yl)*, i =1, 2, 3.

Let k = min {k;}. Then

1<i<N

Let p € F:= F(T1)NF(T3) N F(T3).We will show that p is the unique fixed
point of F. Let p € F(T}). Suppose there exists ¢; € F(T}). Then

llp— qu2 =P—q,jp—q)) = {Tip—Tiq1,j(p—q)) < (1 = Fk)||]p— C]1H2-
Since k € (0,1), it follows that ||[p — ¢1||* < 0, which implies p = ¢;. Hence
F(Ty) = {p}. Similarly we can prove that p is the unique fixed point of T5
and T3 respectively. Thus p € F.

Since each T;; ¢+ = 1, 2,3 has bounded range, we set

My = |lzo = pl| + sup ||Tiw — Tyll; 1 =1,2,3.
z,yeK
Obviously M; < oc.
It is clear that ||xg — p|| < M. Let ||z, — p|| < M;. Next we will prove
that Hxn+1 —p|| S Ml-
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Consider

2ot —pll = [[(1 = an)zn + anTiy, — pl|
(1 — o) (20 — p) + an(Tiyn — )]
< (I —an)llz, = pll + anl|Tryn — pl|
< (1-an)M; + Ma, = M.

So, from the above discussion, we can conclude that the sequence {x,, —
P}, is bounded.
Let My = supl|z,, — pl|.
n>0

Since

lzn =yl = [lzn — (1 = Bo)an — BuToz]]

= Bullzn — Taz|

< Bullwn = pl| + BullTozn — pl| < BMa + 3, M
(Ms + M;)B, — 0, as n — oo,

implies {z, — ¥, }°°, is bounded. Let M3 = sup||x,, — y,||. Since ||y, —p|| <
n>0
|20 — Dl + |20 —ynl|, 50 {yn—Dp}5°, is also bounded. Let M, = supl||y, —p||.
n>0
In a similar way, we can prove that the sequence {||z, — p||}22, is bounded.
Let M5 = supl|z, — p||.
n>0
Denote M = My + My + My + Ms. Obviously M < oo.

From Lemma 1 for all n > 0, and by taking A, = (T3x, —p, j(z, —p) —
j(x, — p)), we have

(10)  lzo —pl* = (|1 = Wm)an + 1 Tsz, — pl
= |I(1 = 7) (@0 — p) + (T30 — p)||?
S (1 - Vn)szn - p||2 + 27n<T3xn - p,j(zn - p))
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(1= 9)? |20 = plI> + 270 (s — p, j(2n — D)

— J(@n —p) + (20 —p))

= (1) |20 =l + 27 (T30 —p, j (20 —P)) +27An
(1=n)?[[zn =P+ 29 (1= F) |2, —p]* + 27 Ay
(14 (v = 20)] || — pl|* + 27, An.

IN

Now by lim 7, = 0, there exists a natural number ny € N such that for all

n > ng, we have =, < 2k. From (10), we get
(11) |z = pII? < [lzn — pII* + 29m An-

CLAIM 1: lim A, = 0.

Indeed, 7%;)0;1 Lemma 2, since F is uniformly smooth Banach space, J
is single valued and uniformly continuous on any bounded subset of F.
Observe that

(Zn_p)_(mn_p) = Zp — Tn
= (I =)z + W32, — 1y
- /7n<T3xn - l’n),
so as n — 00, we have
[(zn =) = (@n = DIl = [lon — Tazs|

T (|20 = Pl + || T30 — plI)
M~ + M~,, =2M~,, — 0.

IA

IA

Since we have shown that the sequences {x, — p}°, and {z, — p}5°, are

all bounded sets, it follows that as n — oo,
17(zn — p) — J(Tn _p>|| — 0,
and hence,

An = <T3$n _paj(zn _p) —](an _p)> — 0.
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Also from Lemma 1 for all n > 0, and by taking B, = (Tsz, — p, j(yn — p) —
j(za — p), we have

Hyn - pH2 = H(l - ﬁn)xn + ﬂnT2Zn _pH2
||(1 - 571)(%1 - p) + ﬁn(TZZn - p)||2

< (1= Bu)?[lwn — plI® + 280 (Tazn — p, 5 (yn — P))
= (1= 8,)zn —pl?
+208,(Tozn — p, j(2n — P) — § (20 — P) + 1 (Yo — P))
= (1= 3.)%zn —pl”
+26,(Tozn — p, j(20 — p)) + 26, B,
(12) < (1= Bu)|zn — pII? + 26.(1 — K)||20 — plI? + 26, Bn.

Substituting (11) in (12), we get

lyn —plI? < (1= Bo)*|Jzn — pl?
+28,(1 = k) ||z — pII> + 27040 + 26, B,
= [(1=Ba)* +26,(1 = k)] [|&n — pl[?
F4(1 = k) BumAy + 26,8y
(13) = [1+ Ba(Bn — 2k)]l|2n — plI?
+4(1 = §)BoynAn + 26, By

Now by lim (3, = 0, implies there exists a natural number ny € N such that
n—oo

for all n > ng, we have (3, < 2k. From (13), we get
(14) [y = pII* < (|20 — pI* + 4(1 = &) Buyn An + 26, By

CLAIM 2: lim B,, = 0.

n—oo

Indeed, from Lemma 2, since E is uniformly smooth Banach space, J

is single valued and uniformly continuous on any bounded subset of F.
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Observe that
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Wn—D1) = (20 —=D) = Yn— 2n

= ﬂn(TQZn - l‘n) + ’771(1‘71 - T3In)7

so as n — 00, we have

[(yn —p) = (20 — D)

180 (Tozn — @0) + Yau(Tn — Taz)|

Bl Tazn — ol + Yo [|2n — Taz, ||

B (1 To2n — pl| + [l2n — plI)

+%n ([|2n = p|| + | T320 — pl])

OMB, + 2M~, = 2M (B, + ) — 0.

IN A

IN

Since we have shown that the sequences {y, — p}2, and {z, — p}5>, are

all bounded sets, it follows that as n — oo,

and hence,

17y —p) = § (20 — D)l — 0,

Thus, from Lemma 1 for all n > 0, and by taking C,, = (T1y, — p, j(xp11 —
p) = j(yn — p)), we obtain

|zni =2l =

<

(15)

IN

(1 = an)zy + iy, — pl|?

(1 = ) (@0 = p) + an(Tryn — p)II?

(1 = an)?l|zn = plI?* + 200 (Thyn — p, 5(Tn11 — P))
(1= an)?||n — pl?

+200 (1Y — P §(Yn — P) = 3(Yn — P) + 5 (Tp41 — p))
(1 = an)?l|xn = plI? + 200 (Thyn — p, 5 (yn — )
+2a,,C,

(1= an)?||zn = plI* + 200 (1 = )y — pl* + 200, C.
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Substituting (14) in (15), we obtain

lzni —plF < (1—an)’||zn —pl?
20, (1 = k) [||zn = pI* + 4(1 = k) BurmAn + 26,B,]
+2a,C,,
= [(1 = an)® +20,(1 = K)] [Jz, — p||?
+8(1 — k) an By An + 4(1 — k) 3, By, + 20,C,y
= [+ an(an = 28))]z, — pl|?
(16) +8(1 — k) n B An + 4(1 — k) 30 By + 20, C,y.

Now by lim «,, = 0, implies there exists a natural number ny € N such that

n—oo

for all n > ng, we have «,, < k. From (16), we get

|z — 2P < (1= kaw)||zn — plI” + 8(1 = k)*anButnAn
+4(1 — k)an S, By + 22, C,,
(17) = (1= kan)|lzn = plI® + dnawn;

O = 4(1 = k)Ba[2(1 — k)vnAn + Bp] + 2C,.

CLAIM 3: lim C,, = 0.

n—oo

Indeed, from Lemma 2, since E is uniformly smooth Banach space, J
is single valued and uniformly continuous on any bounded subset of E.
Observe that

(Tng1—=P) = (Yn —P) = Tpp1—Yn
= (1—an)z,+ o Ty, — (1 = Bo)zn — BuTaz,
= an(len - xn) + 6n(xn - T2Zn)>
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so as n — 00, we have

[(#nt1 —p) = (Yo = D)l = llan(Tiyn — zn) + Bu(@n — T22,) |
O Hlen - xn“ + ﬁn Hxn - T2Z71H

IN

IN

& (1T1yn — pll + lzn — pll)
+Bn ([[zn = pll + [ 122, — pll)
2Ma,, + 2M 3, = 2M (cv, + 3,) — 0.

IN

Since we have shown that the sequences {z,+1 —p}, and {y, —p}>2, are

all bounded sets, it follows that as n — oo,

i (@nt1 = p) = j (¥ — P — O,
and hence,
Co = (T1yn — 1§ (Tns1 = p) = § (Yo — p)) — 0.
Now applying Lemma 3 on (17), we obtain that
T e il =0
completing the proof.

As a special case of theorem 1, the following corollary can be deduced
by taklng T1 = TQ = T3.

Corollary 1. Let E be a real uniformly smooth Banach space and K be
a nonempty closed convex subset of E. Let T be strongly pseudocontractive
self map of K with T(K) bounded. Let {x,}>, be the sequence defined by

Tor1 = (1—ap)zy, + anTyn,,
(18> Zn = (1 - 'Vn)xn + 'VnTxn7 n > 07

where {a, 1520, {Bn}oy and {1,152, are three real sequences in [0,1] sat-
1sfying the conditions:
(19) lim o, = 0= lim £, = lim 7, and Zan = 00.

n—00 n—00
n=0
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Then the sequence {x,}52, converges strongly to the unique fized point p of

T.

Remark 1. Corollary 1 is the theorem 2.1 of [15] due to Noor, Rassias and
Huang.
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