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Abstract

The goal of this paper is to present some basic properties of E-

lattices and their connections with hyperstructure theory.
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1 Introduction

The starting point for our discussion is given by the paper [8], where there is

introduced the category of E–lattices and there are made some elementary

constructions in this category. Given a nonvoid set L and a map ε : L → L,
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we denote by Ker ε the kernel of ε (i.e. Ker ε = {(a, b) ∈ L × L | ε(a) =

ε(b)}), by Im ε the image of ε (i.e. Im ε = {ε(a) | a ∈ L}) and by Fix ε the

set consisting of all fixed points of ε (i.e. Fix ε = {a ∈ L | ε(a) = a}). We

say that L is an E–lattice (relative to ε) if there exist two binary operations

∧ε,∨ε on L which satisfy the following properties:

a) a∧ε (b∧ε c) = (a∧ε b)∧ε c, a∨ε (b∨ε c) = (a∨ε b)∨ε c, for all a, b, c ∈ L;

b) a ∧ε b = b ∧ε a, a ∨ε b = b ∨ε a, for all a, b ∈ L;

c) a ∧ε a = a ∨ε a = ε(a), for any a ∈ L;

d) a ∧ε (a ∨ε b) = a ∨ε (a ∧ε b) = ε(a), for all a, b ∈ L.

Clearly, in an E–lattice L (relative to ε) the map ε is idempotent and

Im ε = Fix ε. Moreover, for any a, b ∈ L, we have:

a ∧ε ε(a) = a ∨ε ε(a) = ε(a),

a ∧ε ε(b) = ε(a) ∧ε b = ε(a) ∧ε ε(b) = ε(a ∧ε b),

a ∨ε ε(b) = ε(a) ∨ε b = ε(a) ∨ε ε(b) = ε(a ∨ε b).

Also, note that the set Fix ε is closed under the binary operations ∧ε,∨ε and,

denoting by ∧,∨ the restrictions of ∧ε,∨ε to Fix ε, we have that (Fix ε,∧,∨)

is a lattice. The connection between the E–lattice concept and the lattice

concept is very powerful. So, if (L,∧ε,∨ε) is an E–lattice and ∼ is an equi-

valence relation on L such that ∼ ⊆ Ker ε, then the factor set L/∼ is a

lattice isomorphic to the lattice Fix ε. Conversely, if L is a nonvoid set and

∼ is an equivalence relation on L having the property that the factor set
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L/ ∼ is a lattice, then the set L can be endowed with a E–lattice structure

(relative to a map ε : L → L) such that ∼ ⊆ Ker ε and L/∼ ∼= Fix ε.

If (L,∧ε,∨ε) is an E–lattice and for every x ∈ L we denote by [x] the

equivalence class of x modulo Ker ε (i.e. [x] = {y ∈ L | ε(x) = ε(y)}), then

we have a ∧ε b ∈ [ε(a)∧ ε(b)] and a ∨ε b ∈ [ε(a)∨ ε(b)], for all a, b ∈ L. We

say that L is a canonical E–lattice if a ∧ε b, a ∨ε b ∈ Fix ε, for all a, b ∈ L.

Three fundamental types of canonical E–lattices have been identified, as

follows:

– let (L,∧,∨) be a lattice, ε be an idempotent endomorphism of L and

define a ∧ε b = ε(a∧b), a ∨ε b = ε(a∨ b), for every a, b ∈ L; then (L,∧ε,∨ε)

is a canonical E–lattice, called a canonical E–lattice of type 1;

– let (L,∧,∨) be a lattice, ε : L → L be an idempotent map such that

Fix ε is a sublattice of L and define a ∧ε b = ε(a)∧(b), a ∨ε b = ε(a)∨(b), for

every a, b ∈ L; then (L,∧ε,∨ε) is a canonical E–lattice, called a canonical

E–lattice of type 2;

– let L be a set, ε : L → L be an idempotent map such that Fix ε is

a lattice (we denote by ∧,∨ its binary operations) and define a ∧ε b =

ε(a) ∧ ε(b), a ∨ε b = ε(a) ∨ ε(b), for every a, b ∈ L; then (L,∧ε,∨ε) is a

canonical E–lattice, called a canonical E–lattice of type 3.

The above constructions furnish us many examples of canonical E–

lattices. Mention also that any canonical E–lattice is isomorphic to a canon-

ical E–lattice of type 3 (see [8], Section 2, Proposition 2).

Let (L1,∧ε1 ,∨ε1) and (L2,∧ε2 ,∨ε2) be two E–lattices. According to [8],

a map f : L1 → L2 is called an E–lattice homomorphism if:

a) f ◦ ε1 = ε2 ◦ f ;
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b) for all a, b ∈ L1, we have:

i) f(a ∧ε1 b) = f(a) ∧ε2 f(b);

ii) f(a ∨ε1 b) = f(a) ∨ε2 f(b).

Moreover, if f is one-to-one and onto, then we say that it is an E–lattice iso-

morphism. E–lattice homomorphisms (respectively E–lattice isomorphisms)

of an E–lattice into itself are called E–lattice endomorphisms (respectively

E–lattice automorphisms). The most significant results concerning to E–

lattice homomorphisms / isomorphisms have been obtained in the particular

case of subgroup E–lattices (see [9]).

Most of our notation is standard and will usually not be repeated here.

Basic definitions and results on lattices can be found in [1] and [4]. For

hyperstructure theory notions we refer the reader to [3].

2 Basic properties of E–lattices

In this section we investigate some properties of E–lattices, as modularity,

distributivity or complementation. We shall prove that they are strongly

connected to the similar properties of lattices.

In order to introduce the modularity for E–lattices, we need to extend

at this situation the notion of ordering relation. Let (L,∧ε,∨ε) be an E–

lattice. A binary relation ≤ε on L is called an E-ordering relation (relative
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to ε) if, for all a, b ∈ L, we have:

a) ε(a)≤ε ε(a);

b) a≤ε b and b≤ε a imply that a = b;

c) a≤ε b and b≤ε c imply that a≤ε c.

In a natural way, on L we define the following two E-ordering relations:

− a≤′ε b iff a ∧ε b = a;

− a≤′′ε b iff a ∨ε b = b.

These are not equivalent (a≤′ε b implies that a ∨ε b = ε(b) and a≤′′ε b implies

that a ∧ε b = ε(a)). Moreover, we have

a≤′ε b iff a ∈ Fix ε and a ≤ ε(b)

and

a≤′′ε b iff b ∈ Fix ε and ε(a) ≤ b,

where ≤ is the ordering relation associated to the lattice Fix ε.

Definition 1 We say that an E–lattice (L,∧ε,∨ε) is ∧ε-modular if a≤′ε b

implies that a ∨ε (b ∧ε c) = b∧ε (a ∨ε c), and ∨ε-modular if a≤′′ε b implies

that a ∨ε (b ∧ε c) = b ∧ε (a ∨ε c).

The following result shows that the above two concepts are equivalent

and, moreover, the modularity of an E–lattice (L,∧ε,∨ε) can be reduced to

the modularity of the lattice Fix ε.
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Proposition 1 For an E–lattice (L,∧ε,∨ε), the next conditions are equiv-

alent:

a) L is ∧ε-modular.

b) L is ∨ε-modular.

c) The lattice Fix ε is modular.

Proof. a) ⇐⇒ c) Suppose that L is ∧ε-modular and let a, b, c ∈ Fix ε

such that a ≤ b. Then a ∧ε b = ε(a) ∧ε ε(b) = ε(a) ∧ ε(b) = ε(a) = a

and so a≤′ε b. It obtains that a ∨ε (b ∧ε c) = b ∧ε (a ∨ε c), which means

a ∨ (b ∧ c) = b ∧ (a ∨ c) in the lattice Fix ε.

Conversely, assume that Fix ε is modular and let a, b, c be three elements

of L satisfying a≤′ε b. Then a ∈ Fix ε and a ≤ ε(b). This last relation implies

that a∨ (ε(b)∧ε(c)) = ε(b)∧ (a∨ε(c)). Since a is a fixed point, the previous

equality is equivalent to a ∨ε (b ∧ε c) = b ∧ε (a ∨ε c) and hence L is

∧ε-modular.

b) ⇐⇒ c) Similarly with a) ⇐⇒ c).

Note that each of the following well-known conditions (which for lattices

are equivalent to the modularity – see, for example, Chapter IV of [4]):

(1) a ∧ε (b ∨ε c) = a ∧ε {[b ∧ε (a ∨ε c)] ∨ε c}, for all a, b, c ∈ L,

(2) a ∧ε [b ∨ε (a ∧ε c)] = (a ∧ε b) ∨ε (a ∧ε c), for all a, b, c ∈ L,

(3) x ∧ε a = x ∧ε b, x ∨ε a = x ∨ε b and a≤′ε b (or a≤′′ε b) imply that

a = b,

(4) L does not contain five distinct elements x, a, b, c, y satisfying a ∧ε c =

b ∧ε c = x, a ∨ε c = b ∨ε c = y and a≤′ε b (or a≤′′ε b)
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assures the modularity of the E–lattice (L,∧ε,∨ε), but not conversely.

Our next aim is to study the concept of distributivity for E–lattice.

Definition 2 We say that an E–lattice (L,∧ε,∨ε) is ∧ε-distributive if a ∧ε

(b ∨ε c) = (a ∧ε b) ∨ε (a ∧ε c), for all a, b, c ∈ L, and ∨ε-distributive if

a ∨ε (b ∧ε c) = (a ∨ε b) ∧ε (a ∨ε c), for all a, b, c ∈ L.

The above two types of distributivity of an E–lattice are not equivalent,

as shows the following example.

Example 1 Let L be the set consisting of all natural divisors of 72 and

ε : L → L be the map defined by ε(1) = 1, ε(2) = ε(4) = ε(8) = 2,

ε(3) = ε(9) = 3, ε(6) = ε(12) = ε(18) = ε(24) = ε(36) = ε(72) = 6. On L

we introduce an E–lattice structure, by defining two binary operations ∧ε,∨ε

in the next manner:

– if two elements a, b of L are contained in distinct classes of equivalence

modulo Ker ε, put a ∧ε b = ε(a)∧ ε(b) and a ∨ε b = ε(a)∨ ε(b) (note

that in this case the binary operations ∧ and ∨ on Fix ε are G.C.D.

and L.C.M., respectively);

– 4 ∧ε 8 = 4 ∨ε 8 = 2;

– 12 ∧ε 18 = 12 ∧ε 24 = 12 ∧ε 72 = 36, 12 ∧ε 36 = 6

18 ∧ε 24 = 18 ∧ε 36 = 18 ∧ε 72 = 6

24 ∧ε 36 = 24 ∧ε 72 = 6

36 ∧ε 72 = 6

12 ∨ε 18 = 12 ∨ε 24 = 36, 12 ∨ε 36 = 12 ∨ε 72 = 6
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18 ∨ε 24 = 72, 18 ∨ε 36 = 18 ∨ε 72 = 6

24 ∨ε 36 = 24 ∨ε 72 = 6

36 ∨ε 72 = 6.

By a direct calculation, it is easy to see that L is ∨ε -distributive. On the

other hand, we have 12 ∧ε (18 ∨ε 24) 6= (12 ∧ε 18) ∨ε (12 ∧ε 24) and

therefore L is not ∧ε-distributive.

In the previous example, remark that the lattice Fix ε = {1, 2, 3, 6} is

distributive and so the distributivity of the lattice Fix ε does not imply that

of the E–lattice L. Clearly, the converse implication holds, i.e. any ∧ε-

distributive (or ∨ε-distributive) E–lattice has a distributive lattice of fixed

points. Mention also that these two properties are equivalent for canonical

E–lattices and that both ∧ε-distributivity and ∨ε-distributivity of an E–

lattice imply its modularity.

Into an E–lattice (L,∧ε,∨ε), each of the following well-known conditions

(which for lattices are equivalent to the distributivity – see, for example,

Chapter II of [4]):

(1) (a ∧ε b) ∨ε (b ∧ε c) ∨ε (c ∧ε a) = (a ∨ε b) ∧ε (b ∨ε c) ∧ε (c ∨ε a),

for all a, b, c ∈ L,

(2) x ∧ε a = x ∧ε b and x ∨ε a = x ∨ε b imply that a = b,

(3) L is modular and it does not contain five distinct elements x, a, b, c, y

satisfying a ∧ε b = b ∧ε c = c ∧ε a = x and a ∨ε b = b ∨ε c = c ∨ε a = y

assures the distributivity of the lattice Fix ε, but not the ∧ε-distributivity

or the ∨ε-distributivity of L.
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Next we shall indicate some sufficient condition for an E–lattice in order

to have its distributivity. Let (L,∧ε,∨ε) be an E–lattice and {ai | i ∈ I}
be a set of representatives for the equivalence classes modulo Ker ε. A

nonvoid subset L′ of L is called an E-sublattice of L if ε(L′) ⊆ L′ and L′ is

closed under the binary operations ∧ε,∨ε (note that Fix ε, as well as every

equivalence class modulo Ker ε are E-sublattice of L). For any two distinct

elements x, y ∈ [ai] \ {ai} (i ∈ I), the E-sublattice 〈x, y〉 of L generated by

x and y can have one of the following forms:

〈x, y〉 = L′0 = {ai, x, y}, where x ∧ε y = x ∨ε y = ai,

〈x, y〉 = L′1 = {ai, x, y, x ∧ε y}, where x ∨ε y = ai,

〈x, y〉 = L′2 = {ai, x, y, x ∨ε y}, where x ∧ε y = ai,

〈x, y〉 = L′3 = {ai, x, y, x ∧ε y, x ∨ε y}.

Obviously, all E–lattices L′i, i = 0, 3, are included in the class [ai] and

each of them possesses an E-sublattice of type L′0. Then the following two

conditions are equivalent:

i) [ai] does not contain an E-sublattice of type L′0, for any i ∈ I.

ii) |[ai]| ≤ 2, for any i ∈ I.

Assume now that the E–lattice L satisfies the above conditions and it has

a fully ordered lattice of fixed points. Since Fix ε is distributive, for any

a, b, c ∈ L, both a ∧ε (b ∨ε c) and (a ∧ε b) ∨ε (a ∧ε c) (respectively

a ∨ε (b ∧ε c) and (a ∨ε b) ∧ε (a ∨ε c)) are contained in the same equivalence

class modulo Ker ε. Clearly, if one of the elements a, b, c is a fixed point,

then the equalities a ∧ε (b ∨ε c) = (a ∧ε b) ∨ε (a ∧ε c) and a ∨ε (b ∧ε
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c) = (a ∨ε b) ∧ε (a ∨ε c) hold. Let us consider that a, b, c /∈ Fix ε and

a ∧ε (b ∨ε c) 6= (a ∧ε b) ∨ε (a ∧ε c) (the other situation can be treated in

a similar way). Put a ∈ [ai] = {ai, a}, b ∈ [aj] = {aj, b}, c ∈ [ak] = {ak, c}
and suppose ai ≤ aj ≤ ak. Then a ∧ε (b ∨ε c), (a ∧ε b) ∨ε (a ∧ε c) ∈ [ai]

and so we have the next two cases:

Case 1. a ∧ε (b ∨ε c) = ai and (a ∧ε b) ∨ε (a ∧ε c) = a

Since a is not a fixed point, the same property is verified by a ∧ε b and

a ∧ε c. But a ∧ε b, a ∧ε c ∈ [ai] and therefore a ∧ε b = a ∧ε c = a. This

implies that a ∈ Fix ε, a contradiction.

Case 2. a ∧ε (b ∨ε c) = a and (a ∧ε b) ∨ε (a ∧ε c) = ai

Because a /∈ Fix ε, we have b ∨ε c /∈ Fix ε and thus b ∨ε c = c. This equality

shows that b≤′′ε c. Hence c ∈ Fix ε, a contradiction.

Mention that the study of the other five situations of ordering between

ai, aj and ak is analogous to the above. Therefore we have proved the next

proposition.

Proposition 2 Let (L,∧ε,∨ε) be an E–lattice satisfying the previous equiv-

alent conditions i), ii) and having a fully ordered lattice of fixed points. Then

L is both ∧ε-distributive and ∨ε-distributive.

Finally, we present some results concerning to the concept of comple-

mentation for E–lattices. Since on an E–lattice we have two E-ordering

relations, it is natural to introduce two different types of initial (respec-

tively final) elements. Let (L,∧ε,∨ε) be an E–lattice. An element a0 ∈ L
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is called ∧ε-initial if a0≤′ε a, for all a ∈ L, and ∨ε-initial if a0≤′′ε a, for

all a ∈ L. By duality, an element a1 ∈ L is called ∧ε-final if a≤′ε a1, for

all a ∈ L, and ∨ε-final if a≤′′ε a1, for all a ∈ L. The notions of ∨ε-initial

element or ∧ε-final element of an E–lattice (L,∧ε,∨ε) lead to the trivial

case L = Fix ε and so we shall consider only the other situations. For two

elements a0, a1 ∈ L, we have that

a0 is ∧ε-initial in L iff a0 is an initial element of Fix ε

and

a1 is ∨ε-final in L iff a1 is a final element of Fix ε.

Remark also that, under the hypothesis of their existence, we have the

uniqueness of a ∧ε-initial element or of a ∨ε-final element of an E–lattice.

In the following, by a bounded E–lattice we shall understand an E–lattice

having both a ∧ε-initial element (denoted usually by a0) and a ∨ε-final

element (denoted usually by a1).

Definition 3 Let (L,∧ε,∨ε) be a bounded E–lattice and a ∈ L. An element

ā ∈ L is called an E-complement of a if a ∧ε ā = a0 and a ∨ε ā = a1. We

say that L is E-complemented if every element of L has an E-complement.

First of all, we show that the E-complementation of an E–lattice is equiv-

alent to the complementation of its lattice of fixed points.

Proposition 3 Let (L,∧ε,∨ε) be a bounded E–lattice. Then L is E-complemented

if and only if Fix ε is a complemented lattice.
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Proof. Suppose that L is E-complemented. If ā is an E-complement of

a ∈ L, then, by applying ε to the equalities a ∧ε ā = a0 and a ∨ε ā = a1,

it obtains that ε(ā) is a complement of ε(a) in Fix ε (and an E-complement

of a in L, too). Since Fix ε = Im ε, it results that Fix ε is complemented.

Conversely, assume that Fix ε is a complemented lattice and let a ∈ L.

Then a complement of ε(a) in Fix ε is also an E-complement of a in L.

Hence L is E-complemented.

Corollary 1 A bounded E–lattice (L,∧ε,∨ε) is uniquely E-complemented if

and only if L = Fix ε and Fix ε is a uniquely complemented lattice.

Proof. Suppose that L is uniquely E-complemented, that is, every element

of L possesses a unique E-complement. Let a be an element of L and ā ∈ L

such that a ∧ε ā = a0 and a ∨ε ā = a1. Then ε(a) ∧ε ā = a0 and ε(a) ∨ε ā =

a1.

Since ā has a unique E-complement, it follows that ε(a) = a and so

L = Fix ε. In this case the concepts of E-complement and complement

coincide, therefore Fix ε is a uniquely complemented lattice. The converse

implication is obvious.

As we have already seen, if an element a of a bounded E–lattice L pos-

sesses an E-complement, this is not unique in general. Let Ca be the set

of all E-complements of a. Then we can easily verify that the following

relations hold: Ca ⊆ Cε(a), and ε(Cε(a)) = ε(Ca) ⊆ Ca. With the supple-

mentary assumption that L is ∧ε-distributive (respectively ∨ε-distributive),

it obtains that Ca is closed under the binary operation ∨ε (respectively
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∧ε). Thus, for a bounded E–lattice L which is both ∧ε-distributive and

∨ε-distributive, Ca is an E–sublattice of L. Because the ∧ε-distributivity or

the ∨ε-distributivity of L implies the distributivity of the lattice Fix ε, we

also have

(1) Ca ⊆ [ā] ⊆ Cε(a),

where ā is an arbitrary E-complement of a. Note that if a is a fixed point,

then Ca = Cε(a) and hence

(2) Ca = [ā].

It is well-known that an element of a distributive lattice can have only one

complement. This uniqueness fails for E-complements, as shows the equa-

lity (2).

3 Links to hyperstructure theory

There are well-known the connections between the lattice theory and the

hyperstructure theory (for example, see Chapter 4 of [3]). In this way,

many properties of lattices (as modularity, distributivity, ... and so on) can

be characterized by properties of some hyperstructures associated to them.

Since E–lattices constitute generalizations of lattices, it is natural to study

their links with hyperstructures. The first steps of this study represent the

main purpose of the present section.

Let (L,∧ε,∨ε) be an E–lattice, P∗(L) be the set of all nonempty subsets

of L and, for every a ∈ L, denote by [a] the equivalence class of a modulo
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Ker ε. The simplest hyperoperations which can be defined on L are the

following:

∧ε,∨ε : L× L → P∗(L)

a∧ε b = [a∧ε b], a∨ε b = [a∨ε b], for all a, b ∈ L.

These are associative and commutative, therefore (L,∧ε) and (L,∨ε) are

commutative semihypergroups. Note also that if (L1,∧ε1 ,∨ε1), (L2,∧ε2 ,∨ε2)

are two E–lattices and f : L1 → L2 is an E–lattice homomorphism, then

f is a semihypergroup homomorphism both from (L1,∧ε1) to (L2,∧ε2) and

from (L1,∨ε1) to (L2,∨ε2).

On the other hand, ∧ε and ∨ε verify the conditions in the definition of

a new concept, which extends that of hyperlattice.

Definition 4 Let L be a nonvoid set and ∧,∨ be two hyperoperations on L.

We say that (L,∧,∨) is a generalized hyperlattice if, for any (a, b, c) ∈ L3,

the following conditions are satisfied:

a) a ∈ (a∧a) ∩ (a∨a);

b) a∧b = b∧a, a∨b = b∨a;

c) a∧(b∧c) = (a∧b)∧c, a∨(b∨c) = (a∨b)∨c;

d) a ∈ [a∧(a∨b)] ∩ [a∨(a∧b)];

e) a ∈ a∨b ⇐⇒ b ∈ a∧b.

By a direct calculation, it is easy to prove the next proposition.

Proposition 4 Let (L,∧ε,∨ε) be an E–lattice and ∧ε,∨ε be the above hy-

peroperations on L. Then (L,∧ε,∨ε) is a generalized hyperlattice.
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Another remarkable hyperoperation on the E–lattice (L,∧ε,∨ε) can be

constructed by using ∧ε and ∨ε in the next manner:

∗ : L× L → P∗(L)

a ∗ b = (a∧ε b) ∪ (a∨ε b), for all a, b ∈ L.

Clearly, the hyperoperation ∗ is commutative. We also have:

a ∗ a = [a], for every a ∈ L.

Other usual properties of ∗ are equivalent to some properties of the E–lattice

L, as show the following results.

Proposition 5 Let (L,∧ε,∨ε) be an E–lattice and ∗ be the previous hyper-

operation on L. Then the following conditions are equivalent:

a) (L, ∗) is a semihypergroup.

b) (L, ∗) is a quasihypergroup.

c) The lattice Fix ε is fully ordered.

Proof. a) =⇒ c) Suppose that ∗ is associative and let a, b be two arbitrary

elements of L. Then a ∗ (a ∗ b) = (a ∗ a) ∗ b, which means:

⋃

x∈[a∧ε b]∪[a∨ε b]

([a ∧ε x] ∪ [a ∨ε x]) =
⋃

x∈[a]

([x ∧ε b] ∪ [x ∨ε b]).

Take y ∈
⋃

x∈[a∧ε b]

[a ∨ε x]. Then y ∈ [a ∨ε x], for some x ∈ [a ∧ε b], and so

ε(y) = ε(a)∨ε(x) = ε(a) ∨ (ε(a)∧ε(b)) = ε(a). If y ∈
⋃

x∈[a]

[x ∧ε b] it obtains
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ε(y) = ε(a)∧ ε(b) and if y ∈
⋃

x∈[a]

[x ∨ε b] it obtains ε(y) = ε(a)∨ ε(b). Thus

ε(a) = ε(a) ∧ ε(b) or ε(a) = ε(a) ∨ ε(b), which imply that ε(a) ≤ ε(b) or

ε(b) ≤ ε(a). Hence Fix ε is fully ordered.

c) =⇒ a) Suppose Fix ε to be fully ordered and let a, b ∈ L. We have to

prove that a ∗ (b ∗ c) = (a ∗ b) ∗ c, i.e.:

(3)
⋃

x∈[b∧ε c]∪[b∨ε c]

([a ∧ε x] ∪ [a ∨ε x]) =
⋃

x∈[a∧ε b]∪[a∨ε b]

([x ∧ε c] ∪ [x ∨ε c]).

It is easy to see that the next equalities hold:

(4)



⋃

x∈[b∧ε c]

[a ∧ε x] =
⋃

x∈[a∧ε b]

[x ∧ε c] = [a ∧ε b ∧ε c],

⋃

x∈[b∨ε c]

[a ∨ε x] =
⋃

x∈[a∨ε b]

[x ∨ε c] = [a ∨ε b ∨ε c],

⋃

x∈[b∧ε c]

[a ∨ε x] = [a ∨ε (b ∧ε c)],
⋃

x∈[b∨ε c]

[a ∧ε x] = [a ∧ε (b ∨ε c)],

⋃

x∈[a∧ε b]

[x ∨ε c] = [(a ∧ε b) ∨ε c)],
⋃

x∈[a∨ε b]

[x ∧ε c] = [(a ∨ε b) ∧ε c)].

Assume that ε(a) ≤ ε(b) ≤ ε(c) (the other five cases of ordering between

ε(a), ε(b) and ε(c) may be treated in a similar way). Then the equalities (4)

become:
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(4)′





⋃

x∈[b∧ε c]

[a ∧ε x] =
⋃

x∈[a∧ε b]

[x ∧ε c] = [a],

⋃

x∈[b∨ε c]

[a ∨ε x] =
⋃

x∈[a∨ε b]

[x ∨ε c] = [c],

⋃

x∈[b∧ε c]

[a ∨ε x] = [b],
⋃

x∈[b∨ε c]

[a ∧ε x] = [a],

⋃

x∈[a∧ε b]

[x ∨ε c] = [c],
⋃

x∈[a∨ε b]

[x ∧ε c] = [b].

These imply that the both sides of (3) are equal to [a] ∪ [b] ∪ [c] and so (3)

holds.

b) =⇒ c) Suppose that (L, ∗) is a quasihypergroup, that is, it satisfies

the reproductive law:

a ∗ L = L ∗ a = L, for every a ∈ L.

Let a, b ∈ L. Then b ∈ a ∗ L, therefore there exists x ∈ L such that

b ∈ a ∗ x. It results b ∈ [a ∧ε x] or b ∈ [a ∨ε x] and thus ε(b) = ε(a) ∧ ε(x)

or ε(b) = ε(a) ∨ ε(x). So ε(b) ≤ ε(a) or ε(a) ≤ ε(b), which show that Fix ε

is fully ordered.

c) =⇒ b) Let a and b be two elements of L. Because Fix ε is fully ordered,

we have ε(b) ≤ ε(a) or ε(a) ≤ ε(b), i.e. ε(b) = ε(a) ∧ ε(b) = ε(a ∧ε b) or

ε(b) = ε(a)∨ ε(b) = ε(a ∨ε b). It obtains b ∈ [a ∧ε b] or b ∈ [a ∨ε b] and so

b ∈ a ∗ b. Hence L = a ∗ L and our proof is finished.

By Proposition 3.3, we get immediately the next corollary.

Corollary 2 Under the hypothesis of Proposition 3.3, we have that (L, ∗)
is a hypergroup if and only if the lattice Fix ε is fully ordered.



32 M. Tărnăuceanu

As we have seen in the proof of Proposition 3.3, if Fix ε is fully ordered,

then {a, b} ⊆ a ∗ b, for all a, b ∈ L. This shows that any element in L is an

identity of (L, ∗). Also, remark that (L, ∗) contains a scalar iff |L| = 1.

Moreover, the assumption that Fix ε is fully ordered leads us to the

conclusion that the hypergroup (L, ∗) is of a special type.

Proposition 6 Let (L,∧ε,∨ε) be an E–lattice having a fully ordered lattice

of fixed points. Then (L, ∗) is a join space.

Proof. We must prove that, for any (a, b, c, d) ∈ L4, a/b ∩ c/d 6= ∅ implies

that a ∗ d∩ b ∗ c 6= ∅. Let x ∈ a/b∩ c/d. Then a ∈ x ∗ b and c ∈ x ∗ d, which

mean a ∈ [x ∧ε b]∪ [x ∨ε b] and c ∈ [x ∧ε d]∪ [x ∨ε d]. We distinguish the

next four cases.

Case 1. a ∈ [x ∧ε b] and c ∈ [x ∧ε d]

It obtains ε(a) = ε(x) ∧ ε(b) and ε(c) = ε(x) ∧ ε(d), therefore ε(a) ∧ ε(d) =

(ε(x) ∧ ε(b)) ∧ ε(d) = ε(b) ∧ (ε(x) ∧ ε(d)) = ε(b) ∧ ε(c). This shows that

[a ∧ε d] = [b ∧ε c] and so:

(5) [a ∧ε d] ∩ [b ∧ε c] 6= ∅.

Case 2. a ∈ [x ∨ε b] and c ∈ [x ∨ε d]

Dually to Case 1, we obtain:

(6) [a ∨ε d] ∩ [b ∨ε c] 6= ∅.

Case 3. a ∈ [x ∧ε b] and c ∈ [x ∨ε d]
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We have ε(a) = ε(x)∧ε(b) and ε(c) = ε(x)∨ε(d). Assume that ε(d) ≤ ε(b).

Then ε(a) ∨ ε(d) = (ε(x) ∧ ε(b)) ∨ ε(d) = (ε(x) ∨ ε(d)) ∧ (ε(b) ∨ ε(d)) =

ε(c) ∧ (ε(b) ∨ ε(d)) = ε(c) ∧ ε(b), which implies that [a ∧ε d] = [b ∧ε c].

Thus:

(7) [a ∨ε d] ∩ [b ∧ε c] 6= ∅.

Now, let us assume that ε(b) ≤ ε(d). Because ε(x) belongs to the interval

[ε(a), ε(c)] of the lattice Fix ε and ε(a) ≤ ε(b) ≤ ε(d) ≤ ε(c), we have the

following three situations:

i) ε(x) ∈ [ε(a), ε(b)]

Then ε(a) = ε(x) and ε(c) = ε(d). It results ε(a)∨ ε(d) = ε(c) = ε(b)∨ ε(c),

and therefore [a ∨ε d] = [b ∨ε c] and:

(8) [a ∨ε d] ∩ [b ∨ε c] 6= ∅.

ii) ε(x) ∈ [ε(b), ε(d)]

Then ε(a) = ε(b) and ε(c) = ε(d). Clearly, we have [a ∧ε d] = [b ∧ε c] (and

also [a ∨ε d] = [b ∨ε c]), which shows that:

(9) [a ∧ε d] ∩ [b ∧ε c] 6= ∅ (and also [a ∨ε d] ∩ [b ∨ε c] 6= ∅).

iii) ε(x) ∈ [ε(d), ε(c)]

Then ε(a) = ε(b) and ε(c) = ε(x). It results ε(a)∧ ε(d) = ε(a) = ε(b)∧ ε(c),

and therefore [a ∧ε d] = [b ∧ε c] and:

(10) [a ∧ε d] ∩ [b ∧ε c] 6= ∅.
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Case 4. a ∈ [x ∨ε b] and c ∈ [x ∧ε d]

Dually to Case 3, we obtain the next relations:

[a ∧ε d] ∩ [b ∨ε c] 6= ∅,

[a ∨ε d] ∩ [b ∨ε c] 6= ∅,

[a ∨ε d] ∩ [b ∨ε c] 6= ∅ (and also [a ∧ε d] ∩ [b ∧ε c] 6= ∅),

[a ∧ε d] ∩ [b ∧ε c] 6= ∅.

Since a ∗ d∩ b ∗ c = ([a ∧ε d]∪ [a ∨ε d])∩ ([b ∧ε c]∪ [b ∨ε c]) = ([a ∧ε d]∩
[b ∧ε c]) ∪ ([a ∧ε d] ∩ [b ∨ε c]) ∪ ([a ∨ε d] ∩ [b ∧ε c]) ∪ ([a ∨ε d] ∩ [b ∨ε c]),

the above relations show that in all cases we have a ∗ d ∩ b ∗ c 6= ∅. Hence,

(L, ∗) is a join space.

For every element a of the previous join space (L, ∗), we have a ∗ a = [a]

and a/a = L. We infer that (L, ∗) is geometric iff |L| = 1.

If (L,∧,∨) is a lattice which possesses an initial element, then, introdu-

cing on L the hyperoperation

a ◦ b = {x ∈ L | a ∧ b ≤ x},

we obtain that (L, ◦) is a commutative hypergroup. This construction can

be generalized to E–lattices. So, let (L,∧ε,∨ε) be an E–lattice having a ∧ε-

initial element and, corresponding with the two E-ordering relations ≤′ε,≤′′ε
on L, we define

a ◦′ b = {x ∈ L | a ∧ε b≤′ε x} and a ◦′′ b = {x ∈ L | a ∧ε b≤′′ε x},

for all a, b ∈ L. Mention that ◦′′ is a hyperoperation on L (we have ε(a ∧ε

b) ∈ a ◦′′ b and so the set a ◦′′ b is nonempty), in contrast with ◦′, which is
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not necessarily well-defined (without some additional assumptions the set

a ◦′ b can be empty). Under the above hypothesis, we obtain the following

result.

Proposition 7 a) If L is a canonical E–lattice, then (L, ◦′) is a com-

mutative hypergroup.

b) (L, ◦′′) is a commutative hypergroup if and only if L = Fix ε.

Proof. a) Let a, b, c ∈ L. Then

a ◦′ (b ◦′ c) = a ◦′ {x ∈ L | b ∧ε c≤′ε x} =

=
⋃
x∈L

b∧ε c≤′ε x

a ◦′ x =
⋃
x∈L

b∧ε c≤′ε x

{y ∈ L | a ∧ε x≤′ε y}

and

(a ◦′ b) ◦′ c = {x ∈ L | a ∧ε b≤′ε x} ◦′ c =

=
⋃
x∈L

a∧ε b≤′ε x

x ◦′ c =
⋃
x∈L

a∧ε b≤′ε x

{y ∈ L | x ∧ε c≤′ε y}.

Take y ∈ a ◦′ (b ◦′ c). Then there exists an element x ∈ L such that b∧ε c≤′ε x

and a ∧ε x≤′ε y. It results a ∧ε b ∧ε c ≤ ε(y) and therefore, putting

x1 = a ∧ε b, we have a ∧ε b≤′ε x1 and x1 ∧ε c≤′ε y. These imply that y ∈
(a ◦′ b) ◦′ c, so a ◦′ (b ◦′ c) ⊆ (a ◦′ b) ◦′ c. The converse inclusion is analogous.

Then ◦′ is associative. Clearly, if a0 is a ∧ε-initial element of L, then we have

b ∈ a ◦′ a0, for all a, b ∈ L, which shows that (L, ◦′) satisfies the reproductive

law. Hence (L, ◦′) is a hypergroup.
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b) If (L, ◦′′) is a hypergroup, then, for each a ∈ L, there is an element

x ∈ L such that a ∈ a ◦′′ x. It follows a ∧ε x≤′′ε a, which implies that

a ∈ Fix ε. Hence L = Fix ε. The converse is obvious.

A well-known result of J.C. Varlet (see [10]) states that if (L,∧,∨) is a

lattice and ¤ is the hyperoperation on L defined by:

a¤ b = {x ∈ L | a ∧ b ≤ x ≤ a ∨ b}, for all a, b ∈ L,

then the lattice L is distributive iff (L, ¤) is a join space. This can be

naturally extended to the case of canonical E–lattices in the next manner.

Proposition 8 Let (L,∧ε,∨ε) be a canonical E–lattice and ¤ be the hyper-

operation on L defined by:

a¤ b = {x ∈ L | a ∧ε b ≤ ε(x) ≤ a ∨ε b}, for all a, b ∈ L.

Then the E–lattice L is ∧ε-distributive (or ∨ε-distributive) if and only if

(L,¤) is a join space.

We finish our paper by mentioning that other algebraic structures (as

fuzzy sets or rough sets) can be possibly connected to E–lattices and inves-

tigated by using this method.
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