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Matroids in terms of Cayley graphs and
some related results1

A. Sinan Çevik, İ. Naci Cangül

Abstract

The point we try to get across is that the generalization of the coun-

terparts of the matroid theory in Cayley graphs since the matroid theory

frequently simplify the graphs and so Cayley graphs. We will show that,

for a Cayley graph ΓG, the cutset matroid M
∗(ΓG) is the dual of the circuit

matroid M(ΓG). We will also deduce that if Γ∗

G
is an abstract-dual of a

Cayley graph Γ, then M(Γ∗

G
) is isomorphic to (M(ΓG))∗.
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1 Introduction and Preliminaries

1.1 Cayley graphs

Let G be finite group, and let S be a generating set of G. Let V (G,S) be

the vertices and let E(G,S) be the edges sets which are defined by

V (G,S) : The elements of G,

E(G,S) : The elements of the set G × S = {(g, s) : g ∈ G, s ∈ S}

and their inverses.
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Then the graph obtained by the above sets is called Cayley graph of G and

denoted by ΓG. The initial vertex of the edge (g, s) is g and the terminal is

gs. Also the inverse of the edge (g, s) is given by (gs, s−1). In other words,

ι(g, s) = g, τ(g, s) = gs and (g, s)−1 = (gs, s−1).

Therefore the equalities

ι(g, s) = τ((g, s)−1) τ(g, s) = ι((g, s)−1) and ((g, s)−1)−1 = (g, s)

are hold. Since the direction of the edges are different than each other, we

have (g, s) 6= (g, s)−1. These above give us ΓG is actually defined a graph.

Moreover ΓG is connected ([1]).

Similar definitions for Cayley graphs can also be found, for instance, in

[2, 3].

1.2 Matroid theory

There is a close similarity between certain results in graph theory and their

analogues in transversal theory ([4]). In order to do this it is convenient to

introduce the idea of a matroid (see, for instance, [6], [8]) and hence we can

get a close connection between results of graph theory and matroid theory.

A matroid M is a pair (E,B), where E is a non-empty finite set and B is

a non-empty collection of subsets of E (called bases) satisfying the following

properties:

1) no base properly contains another base;

2) if B1 and B2 are bases and if e is any element of B1, then there is an

element f of B2 with the property that (B1−{e})∪{f} is also a base.

By repeatedly using the second property, it is easy to see that any two

bases of a matroid M contain the same number of elements; this number is

called the rank of M .



Matroids in terms of Cayley... 89

A matroid can be associated in a natural way with any graph Γ (of

course with a Cayley graph ΓG) by letting E be the set of edges of Γ and

taking as bases the edges of the spaning forest of Γ. This matroid is called

the circuit matroid of Γ and is denoted by M(Γ).

A subset of E will be called independent if it is contained in some base of

the matroid M . Then the bases of M are the maximal independent sets, that

is those independent sets which are contained in no larger independent set,

and hence that any matroid is uniquely defined by specifying its independent

sets. For any graph Γ (or ΓG), the independent sets of M(Γ) are simply

the edges of Γ which contained no circuit (or the edge-sets of the forests

contained in Γ).

By [6], there is a simple definition of a matroid as follows: A matroid M

is a pair (E,K), where E is a non-empty finite set, and K is a non-empty

collection of subsets of E (called independent sets) satisfying the following

properties:

1)′ any subset of an independent set is independent;

2)′ if I and J are independent sets with |J | > |I|, then there is an element

e contained in J but not in I, such that I ∪ {e} is idependent.

We note that with this definiton, a base is defined to be any maximal inde-

pendent set since, by using the second property repeatedly, one can show

that any independent set can be extended to a base.

If M = (E,K) is a matroid defined in terms of its independent sets, then

a subset of E is said to be dependent if it is not independent. Moreover a

minimal dependent set is called a circuit. We note that if M(Γ) is the circuit

matroid of a graph Γ, then the circuits of M(Γ) are esphecially the circuits

of Γ. Since a subset of E is independent if and only if it contains no circuits,

a definition of a matroid can be given by in terms of its circuits (see [8]).

If M = (E,K) is a matroid defined in terms of its independent sets and if

A is a subset of E, then the size of the largest independent set contained in A

is called the rank of A and is denoted by ρ(A). By [6], since a subset A of E
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is independent if and only if ρ(A) = |A|, a matroid may be defined in terms

of its rank function (see [8] for the details) and denoted by M = (E, ρ).

A loop of a matroid M = (E, ρ) is an element e of E satisfying ρ({e}) =

0. Also a pair of parallel elements of M is a pair {e, f} of elements of E

which are not loops and which satisfy ρ({e, f}) = 1. One can see that if M

is the circuit matroid of a graph Γ, then the loops and parallel elements of

M correspond to loops and multiple edges of Γ.

Let us denote the isomorphism between two matroids. Suppose M1 =

(E1,K1) and M2 = (E2,K2) are two matroids defined in terms of their

independent sets. Then M1 and M2 are said to be isomorphic if there is

a one to one correspondence between the sets E1 and E2 which preserves

independence. In other words, a set of elements of E1 is independent in M1

if and only if the corresponding set of elements of E2 is independent in M2.

In Figure 1, it can be seen an example of the isomorphism between circuit

matroids of three graphs.
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Figure 1

Remark 1.1. By [8], although matroid isomorphisms preserves circuits,

cutsets and the number of edges in a graph, it does not in general preserve

connectedness, the number of vertices or their degrees.
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By [8], for a given any graph Γ, the circuit matroid M(Γ) is not the

only matroid which can be defined on the set of edges of Γ. Because of the

similarity between the properties of circuits and of cutsets in a graph, one

can easily says that a matroid can be constructed by taking the cutsets of

Γ as circuits of the matroid. This construction does in fact define a matroid

and called cutset matroid of Γ, written M ∗(Γ). We note that a set of edges

of Γ is independent if and only if it contains no cutset of Γ. A matroid M

is called cographic if there exists a graph Γ such that M is isomorphic to

M∗(Γ).

If M = (E, ρ) is a matroid defined in terms of its rank function then

we define the dual matroid of M , denoted by M ∗, to be the matroid on E

whose rank function ρ∗ is given by the equality

(1) ρ∗ = |A| + ρ(E − A) − ρ(E),

for A ⊆ E.

Some more examples and applications of matroids (for all definition of

it) can be found, for instance in [6] and [8].

1.3 Main results

Suppose that ΓG is a Cayley graph. Also let M(ΓG) be the corresponding

circuit matroid, M ∗(ΓG) be the corresponding cutset matroid of ΓG, respec-

tively, and (M(ΓG))∗ be the dual of the circuit matroid M(ΓG). Then one

of the main result of this paper is the following.

Theorem 1.2. M ∗(ΓG) = (M(ΓG))∗

By [8], a graph Γ∗ is said to be an abstract-dual of a graph Γ if there is a

one to one correspondence between the edges of Γ and the edges of Γ∗ with

the property that a set of edges of Γ forms a circuit in Γ if and only if the

corresponding set of edges of Γ∗ forms a cutset in Γ∗. For example, Figure

2 shows graph and its abstract-dual, with corresponding edges sharing the

same letter.
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We then have another result as follows.

Theorem 1.3. If Γ∗

G
is an abstract-dual of the Cayley graph ΓG, then

(M(ΓG))∗ ∼= M(Γ∗

G
).

2 Proofs

In this part of the paper we use the same notation as in the previous sections.

By [8], the following lemma shows that the rank function ρ∗, as defined

in (1), is actually the rank function of a matroid on E.

Lemma 2.1. M ∗ = (E, ρ∗) is matroid on E.

Let us denote the bases of a dual matroid of M . In fact the following

proposition asserts that the bases of M ∗ can be described quite simply in

terms of the bases of M .

Proposition 2.2. The bases of M ∗ are precisely the complements of the

bases of M .

Proof. Suppose that B∗ is a base of M ∗. Then our aim is to show that

E − B∗ is a base of M . In fact the converse result is obtained by simply

reversing the argument. Recall that, by Lemma 2.1, ρ∗ is actually the rank

function of a matroid on E.
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By the definition of a base, since B∗ is independent in M ∗, we then get

|B∗| = ρ∗(B∗). Hence we have

ρ(E − B∗) = ρ(E).

Therefore we just need to show that E − B∗ is independent in M . But,

by the equation (1) and the fact ρ∗(B∗) = ρ∗(E), independency of the base

E − B∗ is clear. This gives the result.

Remark 2.3. 1) As a consequence of the above proposition we can say that

every matroid has a dual and this dual is unique. Also the double-dual M ∗∗,

which will not be needed here, is equal to M .

2) We also note that the term “base of M ∗” will be needed in the proof of

Theorem 1.2.

To proof of the first main result in this paper, we further need to state

the following lemmas which proofs can be found in [5] and [8].

Lemma 2.4. If T is any spanning forest of a Cayley graph ΓG then

(i) every cutset of ΓG has an edge in common with T ;

(ii) every circuit of ΓG has an edge in common with the complement of T .

Lemma 2.5. Let E be a set of edges of a Cayley graph ΓG. If E has an

edge in common with any spanning forest of ΓG, then E contains a cutset.

Proof.1.2. We will show that the cutset matroid M ∗(ΓG) of a graph

ΓG is the dual of the circuit matroid M(ΓG).

Since the circuits of M ∗(ΓG) are the cutsets of ΓG, we must check that

C∗ is a circuit of (M(Γ))∗ if and only if C∗ is a cutset of ΓG.

Suppose first that C∗ is a cutset of ΓG. If C∗ is independent in (M(Γ))∗,

then C∗ can be extended to a base B∗ of (M(ΓG))∗. We get that C∗ ∩ (E −

B∗) is empty which is a contradicting the result of Lemma 2.4 since E−B∗

is a spanning forest of ΓG. It follows that C∗ is a dependent set (M(ΓG))∗.

Thus, by the definition, C∗ contains a circuit of (M(ΓG))∗.
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On the other hand, if D∗ is a circuit of (M(ΓG))∗, then D∗ is not con-

tained in any base of (M(ΓG))∗. So that D∗ intersects every base of M(ΓG).

This means that D∗ intersects every spanning forest of ΓG. Thus, by Lemma

2.5, D∗ contains a cutset.

Hence the result.

Before giving the proof of the other theorem, let us define some more

terminology.

We say that a set of elements of a matroid M form a cocircuit of M if

they form a circuit of M ∗. We note that, by the result of Theorem 1.2, we

can say that the cocircuits of the circuit matroid of a Cayley graph ΓG are

precisely the cutsets of ΓG. We also note the redear can find the definitions

of cobase, corank, co-independent of M in [5], [6] and [8].

Proof of Theorem 1.3. Suppose that Γ∗

G
is an abstract-dual of the

Cayley graph ΓG. Then, by the definition, there is a one to one corre-

spondence between the edges of ΓG and the edges of Γ∗

G
with the property

that circuits in ΓG correspond to cutsets in Γ∗

G
and conversely. It follows

from this that the circuits of M(ΓG) correspond to the cocircuits of M(Γ∗

G
).

Thus, by Theorem 1.2, M(Γ∗

G
) is isomorphic to M ∗(ΓG), as required.

3 Applications

The easiest application of the results in Theorems 1.2 and 1.3 is the follow-

ing.

Corollary 3.1. M(Γ∗

G
) ∼= M∗(ΓG).

In view of Theorem 1.2 and by the definition of the term cocircuit we

will prove the anologue for matroids, are obtained from a Cayley graph ΓG,

of Lemma 2.4. Thus, let M be a matroid obtained from ΓG. We then have

Corollary 3.2. Every cocircuit of M intersects every base.
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Proof. Let C∗ be cocircuit of M , and suppose that there exists a base B of

M with the property that C∗∩B is empty. Then C∗ is contained in E−B,

and so C∗ is a circuit of the dual matroid of M which is contained in a base

of this dual matroid. But this makes a contradiction the result.

By applying the above result to the dual matroid of M , we get the

following corollary.

Corollary 3.3. Every circuit of a matroid intersects every cobase.

The details of the definitions, given in the following two paragraphs, can

be found, for instance, in [4], [5], [6], [7] and [8].

A Cayley graph ΓG is called plane Cayley graph if it is drawn in the

plane in such a way that no two edges (or the curves representing) intersect

geometrically except at a vertex to which they are both incident. Moreover

a planar Cayley graph is one which is isomorphic to a plane Cayley graph.

In other words a Cayley graph is planar if it can be embedded in the plane,

and that any such embedding is a plane Cayley graph. For example, in

Figure 3, all three graphs are planar, but only the second and third are

plane.
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Figure 3

Given a plane Cayley graph ΓG, we can define another graph ΓG∗

G
called

the geometric dual of ΓG. The construction is in two steps:

(i) inside each face Fi of ΓG we choose a point vG∗

i
. These points are the

vertices of ΓG∗

G
;

(ii) by corresponding to each edge e of ΓG, we draw a line eG∗ which crosses
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e but no other edge of ΓG, and join the vertices vG∗

i
which lie in the faces

Fi adjoining e. These lines are the edges of ΓG∗

G
.

We remark that, by [1], the Cayley graph ΓG is connected.

After these above paragraphs, we can get the following result as a quick

consequence of Theorem 1.3.

Corollary 3.4. If ΓG∗

G
is a geometric-dual of a connected planar Cayley

graph ΓG, then M(ΓG∗

G
) is isomorphic to (M(ΓG))G∗.

We note that a planar Cayley graph can have several different duals,

whereas a matroid can have only one. The reason for this is if ΓG∗1

G
and ΓG∗2

G

are two duals of ΓG, which are non-isomorphic, then the circuit matroids of

ΓG∗1

G
and ΓG∗2

G
are isomorphic matroids.
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