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Abstract

A class of Salagean-type harmonic univalent functions is defined
and investigated. Coefficient conditions, extreme points, distortion

bounds, convex combination and radii of convexity for this class, are

obtained.
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1 Introduction

Let Sy denote the family of functions f = h+ g that are harmonic univalent
and sense preserving in the unit disk U = {z : |2| < 1} for which f(0) =
f-(0) =1 = 0. Then for f = h+ g € Sy we may express the analytic

functions h and ¢ as

(1) h(z) =z + Zakzk, g(z) = Zbkzk, |by| < 1.
k=2 k=1
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The class Sy was introduced by Clunie and Sheil-Small [1].

Subclasses of harmonic univalent functions have been studied by many
authors and in particular Salagean-type harmonic functions have been in-
vestigated in [2, 4].

For f = h + g given by (1), Jahangiri et al. [2] defined the modified

Salagean operator of f as

(2) D™ f(z) = D™h(z) + (=1)" D™g(2)

where D™h(z) =z 4+ Y po, k™agz® and D™g(z) = >0 k™bg2".

In this paper we introduce a new class Gg(m,n,~y) of harmonic functions
that includes the class in [3] for specific values of m and n. For 0 <y < 1,
areal, m € N;n € Ny, m > n and z € U, Gg(m,n,~) is the family of

harmonic functions f of the form (1) such that

(3 refeon T8 el >

where D™ f is defined by (2).
Let Gg(m,n,v) denote the subclass of Gg(m,n,v) consisting of har-

monic functions f,, = h + g, such that h and g,, are of the form
(4)  h(z)=z-— Zakzk, Gm(2) = (—=1)™! Z brz®;  ag, by > 0.
k=2 k=1

We note that when m = 1 and n = 0, Gz(m,n,7) reduces to the class
Ga(y) 3]

Here we obtain coefficient condition, extreme points, distortion bounds,
convolution conditions and convex combinations for Gg(m,n,~) following
the techniques in [4]. We also note that, a being real, when o = 0, the class
Gp(m,n,~) coincides with the class Sy (m, n; 3)studied in [4] with 8 = 122

2 Main Results

We begin with a sufficient coefficient condition for functions in Gg(m,n, ).
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Theorem 1. Let f = h+g be so that h and g are given by (1). Furthermore,

(5) o] | <2

i {ka — k(1 +7) aul + 2™ — (1) k(1 4 )
1— 1—
k=1

where ap =1, m € N, n € Nog, m >n and 0 < v < 1. Then f is sense

preserving, harmonic univalent in U and f € Gg(m,n,).

Proof. If z; # 2z, then on using (5), we have

‘f(zl — f(2) >
—h(Zg) -
> bi(ef - 25)
‘9(21) — g(22) _ k=1
> 1-— =1- =
h(Zl) — h(ZQ
21 — ZQ Zak — 22
k=2
— 2k™ — (—1)" k(1 +
Zk‘bﬂ ( 1)_ ( 7)|bk|
> 1-—g—— 21 = 2k E™(1 ) =0
S
k=2
which proves univalence. Also f is sense preserving in U since
> 2k™ — k™ (1 + )
/ k—1
Gz >1—2ﬁmn| 1T
2km — (=D)" k" (1 +9) - k-1 /
> bl > k|b > .
2 T x| > ; okl 2]" = g'(2)]

According to the condition (3) we only need to show that if (5) holds, then

(14 e®)Dmf() — coDnf(2)) . A(2)
%{ D (2) }‘R

where z =7re??, 0 <0 <271, 0<r<land 0<~vy<1.

“Biz) =
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Note that A(z) = (1 + € *)D™f(z) — e**D"f(z) and B(z) = D" f(z).
Using the fact that Re w > ~ if and only if |1 — v+ w| > |1 + v — w]| it
suffices to show that
(6) [A(2) + (1 =) B(2)| = |A(2) = (1 +7)B(2)| = 0.
Substituting for A(z) and B(z) in the left side of (6) we obtain

(1+ €)D" f(2) — D" f(2) + (1 = 7)D" f(2)]
—|(1+)D"f(2) = (1 + €)D" f(2) — D" f(2))]

o0

2=z + > (k™ + (1= 7)k") + (k™ — k)] ap2*

—(=D)" Y[R (r = 1) = (1)) (R = (1)) by

vz — Z (K™ — (L4 7)k™) + (k™ — k)] ax2"

HD YT [ = (S (R — (1) ] BE

> (2= )|2| = (2K — kNl — DT k" — (=1) 2k b=
k=2 k=1

—l2] =Y 2k = 2+ )R anl[2F =D IR (247) = (=)™ "2k b |2]*
k=2 k=1
( ee}
2(1—7)lz] =2 [2k™ — k" — k"][ax||2[*
=2 if m —n is odd
=2 [2K™ + K" (1 +7)][bel]2]*
_ k=1
2(1—y)lzl =2 [2K™ — k" — k"][ax]|2[*
=2 if m — n is even

—2 3 (2K — KL+ )bl

\ k=1
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> 2 {1 —y - [Z 2K™ — K"(1+7)|ag] + Y 26™ — (=1)™ k(1 + 7)|bk|] }

k=2 k=1

> 0, on using equation (5).
The harmonic univalent functions

(7)
s —

= 1—7 r e 1
£ 2k — (14 7)k £ 2 — (=1)m k(1 + )

where m € N, n € No, m > n and Y o, |zg| + > oo, |yx] = 1, show that
the coefficient bound given by (5) is sharp.

We now show that the condition (5) is also necessary for functions f,, =

h + G, where h and g, are given by (4).

Theorem 2. Let f,, = h + G, be given by (4). Then f,, € Gg(m,n,v) if
and only if the coefficient condition (5) holds.

Proof. Since Gz(m,n,vy) C Gg(m,n,v), we only need to prove the “only
if” part of the theorem. For functions f,, of the form (4), the inequality (3)

with f = f,, is equivalent to

;

(1= )z = 5 [(k™ = vk") + e (k™ — k)2
+(_1)2m—1k§1[km _ ,y(_l)m—nk.n + ez’a(km _ (_1)m—nk,n)}bk2k

_ R k _1\Ym+n—1 R sk
z kizizknakz +(-1) kizilk:nbkz

(8) >0

which must hold for all values of z in U. Upon choosing the values of z on




34 K.G. Subramanian, T.V. Sudharsan, B. A. Stephen and J.M. Jahangiri

the positive real axis where 0 < z = r < 1 we must have

L=y =) [2k™ = (L4 )k apr®™ = "[2k™ = (=1)" k(1 + )Jbpr* !
k=1
1— Z kpaprt — (=1)™™" Z K, bprF 1
k=2 k=1
(9) >0

If the condition (5) does not hold, then the numerator in (9) is negative
for r sufficiently close to 1. Thus there exists zop = 7o in (0,1) for which
the quotient in (9) is negative. This contradicts the required condition for

fm € Gg(m,n,v) and the proof is complete.

Theorem 3. Let f,, be given by (4). Then f,, € Gg(m,n,v) if and only if

fm(z) = Z(xkhk(z)—i-ykgmk(z)) where hy(2) = z, hg(z) = Z—Wf‘(lﬂ)zk,
k=1

(k=2,3,...) and g, (2) = 2+ ()" gty 25 (k= 1,2.3,..)

x>0,y >0, 21 =1— Z(a:k +yr) > 0. In particular the extreme points
k=2

of Gg(m,n,v) are {hi} and {gm, }

Proof. Suppose

[e.e]

= R - k
fm( 321 Tl (2) + Y G, ( 321 Tk, + Yr)z 52 ka—k"(l—i—’y)xkz

o0

- 1—n _k
DY e e A
= 2km — (=1)m k(1 + )
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Then
53%@—%%1+7)( 1—7v x)
m o __ n k
— 1—7 2k k™ (14 7)
Z — 2k — (—1)m ke (Lt )

o0

oo
:=§}w+§:mzﬂ—m1§1
k=2 k=1

and so f,, € Gg(m,n,~).
Conversely if f,, € clcoGg(m,n,~) then

l—y 11—~
< d b <
W=k gLy 0 RS opm — (Ch)ymrkn(1 1 9)

Set x = 27 W g, (k=2,3,...) and y, = 27NNy,
(k=1,2,...).

Then by Theorem 2, 0 < ), < 1 (1{7—23 .)and 0 < gy < 1,(k =
1,2,...). We define z; = 1 — Zxk — Zyk and again by Theorem

k=2 k=1
x1 > 0. Consequently we obtain f,(z)

as required.

We now obtain the distortion bounds for functions in G gz(m,n, 7).

Theorem 4. Let f,, be given by (4) and f,, € Gg(m,n,~). Then for
|z| = r <1 we have

1 1 2 (=DM 4), ) o
o) < 0+ 5 (G i — gt )

and

)] = (L—by)r— 1( L= —2‘<‘1>m”<””>bl)r2.

on oam— n+1l __ (1 +'7) 2m—n+1 _ (1 + /7)

35
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Proof. We prove the first inequality. The proof of the second is similar.
Let f,, € Gg(m,n,v). We have

|[fm(2)| <
< (Q4b)r+ > (e +b)rt < (L+b)r+ Y (ak + b)r’
k=2 k=2
B 1- 2" (2m M — (1 49)) 2
— (1+bl)r+2(2m — 1+7 2 T (ag, + bg)r
(1—y)r?
< (T4by)r+ on(2m=n+1 — (1 4 7))
3 {%m k:"(l +7) o 2 (—ll)i‘;k”(1+v)bk]
k=2
1 1—19 2—- (=m0 +), ] o
s (bt g L%1Hl o T

The bounds given in Theorem 4 for the functions f = h + g of the form
(4) also hold for functions of the form (1) if the coefficient condition (5)
is satisfied. The upper bound given for f € Gg(m,n,~) is sharp and the
equality occurs for the function
o1 1—+ 2—(=1)""(1+7)
2)=z+ ||z + — —
B =2t bt o | =) ~ - (e y)
L

b| < :

R VI )
The following covering result is a consequence of the second inequality

|b1| 22’

in Theorem 4.
Theorem 5. Let f,, of the form (4) be so that f,, € Gg(m,n,~). Then

gmtl _gn — 1 — (2" — 1
w:w| < ( n_
2m+1 _ (1 + ,-Y)Qn
_2m+1 _ 2n _ 2 + (_1>mfn _ ,Y(Qn _ (_1)mfn)
2m+1 _ (1 +,y)2n

bl} C fm(U)
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We now consider the convolution of two harmonic functions

2)=2z— Z apz® + (=1)m 1 Z brZ" and
k=2 k=1
oo

—z—ZAkz—l— Z

k=1
as

(fm x En)(2) = [fm(z )*Fm()
(10) = Z_ZakAkZ —I— m IZkakZ

With this definition, we show that the class Gg(m,n,v) is closed under

convolution.

Theorem 6. For 0 < < ~v < 1 let f,, € Gg(m,n,v) and F,, €
Gr(m.n,B). Then fu % Fn € Gg(m,n,~) C Gp(m,n, f).

Let fin(2) =2 = oy arpz” + (=1)™1 377 bpz* be in Gg(m,n,~) and
Fo(z) = 2= 00, Apzb + (=1)™"1 5722 | Biz" be in G (m,n, 3). Then the
convolution f,, * F, is given by (10). We wish to show that the coefficients
of f,. x F,, satisfy the required condition given in Theorem 2. For F), €
Gg(m,n,3) we note that A, < 1 and By < 1. Now for the convolution
function f,, * F}, we obtain

=2k — k"(1 + ) 2™ — (=)™ k" (1 + B)
s -
k=2

- i 2k —k"(1+0) Z 2™ — ()" K" (1+ ),

b By,

>~ k k
k=2 -5 k=1 1-p
2 2k™ — (1 4 ~)k™ 2 2k™ — (=)™ k(1 +

< Z 1( 7) ak+z ( 1) ( 7)bk§1
k=2 7 k=1 -7

since 0 < f < v < 1 and f,, € Gg(m,n,v). Therefore f,, x F,, €
Ga(m,n,v) C Gg(m,n, ).
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Now we show that Gg(m,n,v) is closed under convex combination of
its members.

Theorem 7. The class Gg(m,n,~) is closed under convex combination.

Proof. Fori=1,2,3,.... Let f,,, € Gg(m,n,~), where f,,. is given by

m._z—Zamz + (=)™ lzbm

Then by (5)
(11) Z [2k — L)k Qg+ 2K~ (_11)_71{; (1 +7)bk,i:| <2
k=1

For iolti =1, 0 <t¢; <1 the convex combination of f,,, may be written as
1=

gtifmi(z)zz—z<;:tam>z + (-1 1Z(th,ﬁ>

Then by (11)
2| 26™ — BT+ 7) 2k™ — (— )m (14 5)
tiam + t bkz

= [2k™ — k(1 + 2k™ — (—1)m—nkn(1
[ (L+9), 2" = (=) ( +v>bm]}
I—x I—7

I
S

which is the required coefficient condition.

Theorem 8. If f,, € Gg(m,n,~) then f,, is convez in the disc

, (1—7)(1—b) o
|2 < min { K[1—~— (2 — (=1)" (1 +))b] } ’

k=2,3,...
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Proof. Let f,, € Gg(m,n,v) and let r, 0 < r < 1, be fixed. Then
1 fu(rz) € Gg(m,n,~) and we have

[e.9]

Z ak—l—bk

ap +

> (ka K'(1+7)  2k™ — (=)™ "k"(1+7) ) k1
Z bk kr
- =7

k=2
<1l-b

1

: k—1 1—b ; (1—)(1—=b1) ol
if kr®=t < EChmaE,, or r< min {k[l—w—(2—(—1)m*”(1+7))b1}} :
-

k=23,...
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