General Mathematics, Vol. 16, Nr. 2 (2008), 77-84

On supra α open sets and $S\alpha$ -continuous functions¹

R. Devi, S. Sampathkumar and M. Caldas

Abstract

In this paper we introduce and investigate a new class of sets and functions between topological spaces called supra α -open sets and $s\alpha$ -continuous functions respectively.

2000 Mathematics Subject Classification: 03E72, 54A40 Key words and phrases: supra α -open set, $s\alpha$ -continuous functions, supra topological spaces.

1 Introduction

In 1983, A.S. Mashhour et al. [2] introduced the supra topological spaces and studied s-continuous functions and s^{*}-continuous functions. In 1987, M. E. Abd El-Monsef et al. [3] introduced the fuzzy supra topological spaces and studied fuzzy supra-continuous functions and obtained some properties and characterizations. In 1996, Keun [4] introduced fuzzy scontinuous, fuzzy s-open and fuzzy s-closed maps and established a number of characterizations. Now, we introduce the concept of supra α -open set, s α -continuous and investigate some of the basic properties for this class of functions.

¹Received 4 July, 2007

Accepted for publication (in revised form) 12 December, 2007

2 Preliminaries

All topological space considered in this paper lack any separation axioms unless explicitly stated. The topology of a space is denoted by τ and (X, τ) will be replaced by X if there is no chance for confusion. For a subset A of (X, τ) , the closure and the interior of A in X with respect to τ are denoted by cl(A) and int(A) respectively. The complement of A is denoted by X - A.

Definition 1. [2] A subfamily τ^* of X is said to be a supra topology on X if,

(1) $X, \phi \in \tau^*$

(2) if $A_i \in \tau^*$ for all $i \in J$, then $\cup A_i \in \tau^*$

 (X, τ^*) is called a supra topological space. The elements of τ^* are called supra open sets in (X, τ^*) and complement of a supra open set is called a supra closed set.

Definition 2. [2] The supra closure o a set A is denoted by supra cl(A)and defined as supra $cl(A) = \cap \{B : B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set A is denoted by supra int(A), and defined as supra $int(A) = \cup \{B : B \text{ is a } \tau \text{ supra open and } A \supseteq B\}$.

Definition 3. [2] Let (X, τ) be a topological space and τ^* be a supra topology on X. We call τ^* a supra topology associated with τ if $\tau \subset \tau^*$.

Definition 4. [2] Let (X, τ) and (Y, σ) be two topological spaces. Let τ^* and σ^* are associated supra topologies with τ and σ respectively. Let $f: X \to Y$ be a map from X into Y, then f is a s-continuous function if the inverse image of each open set in Y is supra open in (X, τ^*) .

Definition 5. [1] Let (X, τ^*) be a supra topological space. A set A is called supra semiopen set if $A \subseteq supra \ cl(supra \ int(A))$.

3 Basic properties of supra α -open sets

In this section we introduce one new class of sets.

Definition 6. Let (X, τ^*) be a supra topological space. A set A is called supra α -open set if $A \subseteq$ supra int(supra cl((A))).

Theorem 3.1. Every supra open set is supra α -open set.

Proof. Let A be a supra open set in (X, τ^*) . Since, $A \subseteq supra cl(A)$, then $supra int(A) \subseteq supra int(supra cl(supra int(A)))$. Hence

 $A \subseteq supra int(supra cl(supra int(A))).$

The converse of the above theorem need not be true. This is shown by the following example.

Example 3.1. Let (X, τ^*) be a supra topological space. Where $X = \{a, b, c\}$ and $\tau^* = \{X, \phi, \{a\}\}$. Here, $\{a, b\}$ is a supra α -open set, but not a supra open.

Theorem 3.2. Every supra α -open set is supra semiopen set.

Proof. Let A be a supra α -open set in (X, τ^*) . Therefore, $A \subseteq supra int$ (supra cl(supra int(A))). It is obvious that, supra int(supra cl(supra int(A))) $\subseteq supra cl(supra int(A))$. Hence $A \subseteq supra cl(supra int(A))$.

The reverse claim in the Theorem 3.2 in not usually true.

Example 3.2. Let (X, τ^*) be a supra topological space. Where $X = \{a, b, c\}$ and $\tau^* = \{X, \phi, \{a\}\}$. Here, $\{b, c\}$ is a supra semiopen set, but not a supra α -open.

Theorem 3.3. (i) Finite union of supra α -open sets is always a supra α -open set.

(ii) Finite intersection of supra α -open sets may fail to be a supra α -open set.

Proof. (i) Let A and B be two supra α -open sets. Then

 $A \subseteq supraint(supracl(supraint(A)))$ and $B \subseteq supraint(supracl(supracl(supraint(B))))$. By [1] this implies, $A \cup B \subseteq supraint(supracl(supraint(A \cup B)))$. Therefore $A \cup B$ is supra α -open set.

(ii) Let (X, τ^*) be a supra topological space. Where $X = \{a, b, c, d\}$ and $\tau^* = \{X, \phi, \{a, b\}, \{b, c\}\}$. Here $\{a, b\}, \{b, c\}$ are supra α -open sets, but their intersection is a not supra α -open set.

Definition 7. Complement of a supra α -open is a supra α -closed set.

Theorem 3.4. (i) Finite intersection of supra α -closed sets is always a supra α -closed set.

(ii) Finite union of supra α -closed set may fail to be supra α -closed set.

Proof. (i) This follows immediately from Theorem 3.5.

(ii) Let (X, τ^*) be supra topological space where $X = \{a, b, c, d\}$ and $\tau^* = \{X, \phi, \{a, b\}, \{b, c\}\}$. Here, $\{c, d\}, \{a, d\}$ are supra α -closed sets, but their union is not a supra α -closed set.

Definition 8. The supra α -closure of a set A is denote by supra $\alpha cl(A)$ and defined as, supra $\alpha cl(A) = \cap \{B : B \text{ is a supra } \alpha \text{-closed set and } A \subseteq B\}$. The supra α - interior of a set is denoted by supra $\alpha int(A)$, and defined as, supra $\alpha int(A) = \cup \{B : B \text{ is a supra } \alpha \text{-open set and } A \supseteq B\}$

Remark 3.1. It is clear that supra α int(A) is a supra α -open set and supra α cl(A) is a supra α -closed set.

Theorem 3.5. (i) $X - supra \alpha int(A) = supra \alpha cl(X - A).$ (ii) $X - supra \alpha cl(A) = supra \alpha int(X - A).$

Proof. (i) and (ii) are clear.

Theorem 3.6. The following statements are true for every A and B. (1) $supra \alpha int(A) \cup supra \alpha int(B) = supra \alpha int(A \cup B)$ (2) $supra \alpha cl(A) \cap supra \alpha cl(B) = supra \alpha cl(A \cap B)$.

Proof. Obvious.

4 S α -continuous functions

Definition 9. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ . We define a function $f : (X, \tau) \to (Y, \sigma)$ to be a s α -continuous function if the inverse image of each open set in Y is $a \tau^*$ supra α -open set of X.

Theorem 4.1. Every continuous function is $s\alpha$ -continuous function.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous function. Therefore $f^{-1}(A)$ is a open set in X for each open set A in Y. But, τ^* is associated with τ . That is $\tau \subset \tau^*$. This implies $f^{-1}(A)$ is a supra open in X. Since supra open is supra α -open, this implies $f^{-1}(A)$ is supra α -open in X. Hence f is a $s\alpha$ -continuous function.

Theorem 4.2. Every s-continuous function is $s\alpha$ -continuous function.

Proof. Obvious.

The converse of Theorems 4.1 and 4.2 may not be true. We can show this by following example.

Example 4.1. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a, b\}\}$ be a topology on X. The supra topology τ^* is defined as follows, $\tau^* = \{\phi, X, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \to (X, \tau)$ where, f(a) = a, f(b) = c and f(c) = b. Since inverse image of $\{a, b\}$ is a supra α -open in X. Then f is a s α -continuous function. But the inverse image of $\{a, b\}$ is not a supra open set. So, f is not s-continuous and continuous function.

Theorem 4.3. Let (X, τ) and (Y, σ) be two topological spaces. Let f be a function from X into Y. Let τ^* be associated supra topology with τ . Then the followings are equivalent.

(1) f is $s\alpha$ -continuous.

- (2) The inverse image of closed set in Y is supra α -closed set in X.
- (3) supra $\alpha cl(f^{-1}(A)) \subseteq f^{-1}(cl(A))$ for every set A in Y.

(4) $f(supra \alpha cl(A)) \subseteq cl(f(A))$ for every set A in X. (5) $f^{-1}(int(B)) \subseteq supra \alpha int(f^{-1}(B))$ for every set B in Y.

Proof. (1) \Rightarrow (2) : Let A be a closed set in Y, then Y - A is open in Y. Thus, $f^{-1}(X - A) = X - f^{-1}(A)$ is supra α -open in X. It follows that $f^{-1}(A)$ is a supra α -closed set of X.

 $(2) \Rightarrow (3)$: Let A be any subset of X. Since cl(A) is closed in Y, then it follows that $f^{-1}(cl(A))$ is supra α -closed in X. Therefore, $f^{-1}(cl(A)) = supra\alpha cl(f^{-1}(cl(A))) \supseteq supra\alpha cl(f^{-1}(A))$.

 $(3) \Rightarrow (4)$: Let A be any subset of X. By (3) we obtain, $f^{-1}(cl(f(A))) \supseteq$ $supra\alpha cl(f^{-1}(f(A))) \supseteq supra\alpha cl(A)$ and hence $f(supra\alpha cl(A)) \subseteq cl(f(A))$. $(4) \Rightarrow (5)$: Let $f(supra\alpha cl(A)) \subseteq cl(f(A))$ for every set A in X. Then $supra\alpha cl(A) \subseteq f^{-1}(cl(f(A))), X - supra\alpha cl(A) \supseteq X - f^{-1}(cl(f(A)))$ and $supra\alpha int(X - A) \supseteq f^{-1}(int(Y - f(A)))$. Then $supra\alpha int(f^{-1}(B)) \supseteq$ $f^{-1}(int(B))$ Therefore $f^{-1}(int(B)) \subseteq supra\alpha int(f^{-1}(B))$, for every B in Y.

$$(5) \Rightarrow (1)$$
: Let A be a open set in Y. Therefore,

 $f^{-1}(int(A)) \subseteq supraaint(f^{-1}(A))$, hence $f^{-1}(A) \subseteq supraaint(f^{-1}(A))$. But by other hand, we know that, $supraaint(f^{-1}(A)) \subseteq f^{-1}(A)$. Then $f^{-1}(A) = supraaint(f^{-1}(A))$. Therefore, $f^{-1}(A)$ is a supra α -open set.

Theorem 4.4. If a map $f : (X, \tau) \to (Y, \sigma)$ is a s α -continuous and $g : (Y, \sigma) \to (Z, \gamma)$ is continuous, then $(g \circ f)$ is s α -continuous.

Proof. Obvious.

Theorem 4.5. Let (X, τ) and (Y, σ) be topological spaces. Let τ^* and σ^* be associated supra topologies with τ and σ respectively. Then $f: (X, \tau) \to$ (Y, σ) is a s α -continuous map, if one of the following holds $(1) f^{-1}(supra\alpha int(A)) \subseteq int(f^{-1}(A))$ for every set A in Y. $(2) cl(f^{-1}(A)) \subseteq f^{-1}(supra\alpha cl(A))$ for every set A in Y. $(3) f(cl(B)) \subseteq supra\alpha cl(f(B))$ for every set B in X. **Proof.** Let A be any open set of Y, if condition (1) is satisfied, then $f^{-1}(supraaint(A)) \subseteq int(f^{-1}(A))$. We get, $f^{-1}(A) \subseteq int(f^{-1}(A))$. Therefore $f^{-1}(A)$ is a supra open set. Every supra open set is supra α -open set. Hence f is s α -continuous function.

If condition (2) is satisfied, then we can easily prove that f is s α -continuous function.

If condition (3) is satisfied, and A is any open set of Y. Then $f^{-1}(A)$ is a set in X and $f(cl(f^{-1}(A))) \subseteq supra\alpha cl(f(f^{-1}(A)))$. This implies $f(cl(f^{-1}(A))) \subseteq supra\alpha cl(A)$. This is nothing but condition (2). Hence f is a $s\alpha$ -continuous function.

References

- [1] R. Devi, K. Muthukumaraswamy and S. Sampathkumar, On fuzzy pairwise s-semicontinuous functions and s-semiopen maps, Calcutta Mathematical Society, (to appear).
- [2] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math. no.4, 14(1983), 502-510.
- [3] M. E. Abd El-Monsef and A. E. Ramadan, On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. no.4, 18(1987), 322-329.
- [4] Won Keun Min, On fuzzy s-continuous functions, Kangweon-Kyungki Math. J. no. 1, 4(1996), 77-82.

R.Devi

Reader, Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-29, Tamilnadu, India. E-mail: rdevicbe@yahoo.com S. Sampathkumar Research Scholar, Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-29, Tamilnadu, India E-mail: sampath.twwi@gmail.com

M. Caldas Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ, Brasil E:mail: gmamccs@vm.uff.br