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On some analytic functions with negative

coefficients

Mugur Acu

Abstract

We will study some classes of analytic functions with negative

coefficients introduced by using a modified Sălăgean operator.
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1 Introduction and preliminaries

Let H(U) be the set of functions which are regular in the unit disc U ,

A = {f ∈ H(U) : f(0) = f ′(0)− 1 = 0}

and S = {f ∈ A : f is univalent in U}.
In [7] the subfamily T of S consisting of functions f of the form

(1) f(z) = z −
∞∑

j=2

ajz
j, aj ≥ 0, j = 2, 3, ..., z ∈ U
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was introduced.

Let Dn be the Sălăgean differential operator (see [6]) Dn : A → A,

n ∈ N, defined as:

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z))

Let n ∈ N and λ ≥ 0. Let denote with Dn
λ the Al-Oboudi operator (see

[4]) defined by

Dn
λ : A → A ,

D0
λf(z) = f(z) , D1

λf(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z) ,

Dn
λf(z) = Dλ

(
Dn−1

λ f(z)
)

.

Definition 1. [3] Let β, λ ∈ R, β ≥ 0, λ ≥ 0 and f(z) = z +
∞∑

j=2

ajz
j. We

denote by Dβ
λ the linear operator defined by

Dβ
λ : A → A ,

Dβ
λf(z) = z +

∞∑
j=2

(1 + (j − 1)λ)β ajz
j .

Theorem 1. [6] If f(z) = z −
∞∑

j=2

ajz
j, aj ≥ 0, j = 2, 3, ..., z ∈ U then

the next assertions are equivalent:

(i)
∞∑

j=2

jaj ≤ 1

(ii) f ∈ T

(iii) f ∈ T ∗, where T ∗ = T
⋂

S∗ and S∗ is the well-known class of

starlike functions.
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Definition 2. [6] Let α ∈ [0, 1) and n ∈ N, then

Sn(α) =

{
f ∈ A : Re

Dn+1f(z)

Dnf(z)
> α, z ∈ U

}

is the set of n-starlike functions of order α.

Definition 3. [5] Let α ∈ [0, 1), β ∈ (0, 1] and let n ∈ N; we define the

class Tn(α, β) of n-starlike functions of order α and type β with negative

coefficients by

Tn(α, β) = {f ∈ A : |Jn(f, α; z)| < β, z ∈ U},

where

Jn(f, α; z) =

Dn+1f(z)

Dnf(z)
− 1

Dn+1f(z)

Dnf(z)
+ 1− 2α

, z ∈ U

Remark 1. The class Tn(α, 1) is the class of n-starlike functions of order

α with negative coefficients i.e. Tn(α, 1) = T
⋂

Sn(α).

Theorem 2. [5] Let α ∈ [0, 1), β ∈ (0, 1] and n ∈ N. The function f of

the form (1) is in Tn(α, β) if and only if

∞∑
j=2

jn[j − 1 + β(j + 1− 2α)]aj ≤ 2β(1− α)

Remark 2. From Remark 1 and Theorem 2, for f(z) of the form (1), we

have f ∈ Tn(α, 1) = Tn(α) iff

∞∑
j=2

jn(j − α)aj ≤ 1− α, where α ∈ [0, 1)
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We denote by f ∗ g the modified Hadamard product of two functions

f(z), g(z) ∈ T , f(z) = z −
∞∑

j=2

ajz
j, (aj ≥ 0, j = 2, 3, ...) and g(z) =

z −
∞∑

j=2

bjz
j, (bj ≥ 0, j=2,3,...), is defined by

(f ∗ g)(z) = z −
∞∑

j=2

ajbjz
j.

We say that an analytic function f is subordinate to an analytic function

g if f(z) = g(w(z)), z ∈ U , for some analytic function w with w(0) = 0 and

|w(z)| < 1(z ∈ U). We denote the subordination relation by f ≺ g.

2 Main results

Definition 4. [1] , [2] Let f ∈ T , f(z) = z−
∞∑

j=2

ajz
j, aj ≥ 0, j = 2, 3, ...,

z ∈ U .

We say that f is in the class TLβ(α) if:

Re
Dβ+1

λ f(z)

Dβ
λf(z)

> α, α ∈ [0, 1), λ ≥ 0, β ≥ 0, z ∈ U.

We say that f is in the class T cLβ(α) if:

Re
Dβ+2

λ f(z)

Dβ+1
λ f(z)

> α, α ∈ [0, 1), λ ≥ 0, β ≥ 0, z ∈ U.

Remark 3. We observe that both classes may also be defined, by using the

subordination relation, such that:

TLβ(α) =

{
f ∈ T :

Dβ+1
λ f(z)

Dβ
λf(z)

− α ≺ 1 + z

1− z
, α ∈ [0, 1), λ ≥ 0, β ≥ 0, z ∈ U

}
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and

T cLβ(α) =

{
f ∈ T :

Dβ+2
λ f(z)

Dβ+1
λ f(z)

− α ≺ 1 + z

1− z
, α ∈ [0, 1), λ ≥ 0, β ≥ 0, z ∈ U

}
.

Theorem 3. [1] , [2] Let α ∈ [0, 1), λ ≥ 0 and β ≥ 0.

The function f ∈ T of the form (1) is in the class TLβ(α) iff

(2)
∞∑

j=2

[(1 + (j − 1)λ)β(1 + (j − 1)λ− α)]aj < 1− α.

The function f ∈ T of the form (1) is in the class T cLβ(α) iff

(3)
∞∑

j=2

[(1 + (j − 1)λ)β+1(1 + (j − 1)λ− α)]aj < 1− α.

Proof. Let f ∈ TLβ(α), with α ∈ [0, 1), λ ≥ 0 and β ≥ 0 . We have

Re
Dβ+1

λ f(z)

Dβ
λf(z)

> α.

If we take z ∈ [0, 1), β ≥ 0, λ ≥ 0, we have (see Definition 1.1):

(4)

1−
∞∑

j=2

(1 + (j − 1)λ)β+1ajz
j−1

1−
∞∑

j=2

(1 + (j − 1)λ)βajz
j−1

> α.

From the above we obtain:

1−
∞∑

j=2

(1 + (j − 1)λ)β+1ajz
j−1 > α−

∞∑
j=2

(1 + (j − 1)λ)βαajz
j−1,

∞∑
j=2

(1 + (j − 1)λ)β(1 + (j − 1)λ− α)ajz
j−1 < 1− α.
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Letting z → 1− along the real axis we have:

∞∑
j=2

(1 + (j − 1)λ)β(1 + (j − 1)λ− α)aj < 1− α.

Conversely, let take f ∈ T for which the relation (2) hold.

The condition Re
Dβ+1

λ f(z)

Dβ
λf(z)

> α is equivalent with

(5) α−Re

(
Dβ+1

λ f(z)

Dβ
λf(z)

− 1

)
< 1 .

We have

α−Re

(
Dβ+1

λ f(z)

Dβ
λf(z)

− 1

)
≤ α +

∣∣∣∣∣
Dβ+1

λ f(z)

Dβ
λf(z)

− 1

∣∣∣∣∣

= α +

∣∣∣∣∣
Dβ+1

λ f(z)−Dβ
λf(z)

Dβ
λf(z)

∣∣∣∣∣ = α +

∣∣∣∣∣∣∣∣∣∣

∞∑
j=2

(1 + (j − 1)λ)βaj[(j − 1)λ]zj−1

1−
∞∑

j=2

[1 + (j − 1)λ]βajz
j−1

∣∣∣∣∣∣∣∣∣∣

≤ α+

∞∑
j=2

[1 + (j − 1)λ]βaj|1− j|λ|z|j−1

1−
∞∑

j=2

[1 + (j − 1)λ]βaj|z|j−1

= α+

∞∑
j=2

[1 + (j − 1)λ]βaj(j − 1)λ|z|j−1

1−
∞∑

j=2

[1 + (j − 1)λ]βaj|z|j−1

< α+

∞∑
j=2

[1 + (j − 1)λ]βaj(j − 1)λ

1−
∞∑

j=2

[1 + (j − 1)λ]βaj

=

α +
∞∑

j=2

[1 + (j − 1)λ]βaj[(j − 1)λ− α]

1−
∞∑

j=2

[1 + (j − 1)λ]βaj

< 1.

Thus

α +
∞∑

j=2

[1 + (j − 1)λ]βaj[(j − 1)λ + 1− α] < 1,
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which is the condition (2).

The proof of the second part of the theorem is similarly with the above

one, so it is omitted.

Remark 4. Using the conditions (2) and (3) it is easy to prove that

TLβ+1(α) ⊆ TLβ(α)

and

T cLβ+1(α) ⊆ T cLβ(α),

where β ≥ 0, α ∈ [0, 1) and λ ≥ 0.

Theorem 4. [1] , [2] If f(z) = z−
∞∑

j=2

ajz
j ∈ TLβ(α), (aj ≥ 0, j = 2, 3, ...),

g(z) = z−
∞∑

j=2

bjz
j ∈ TLβ(α), (bj ≥ 0, j = 2, 3, ...), α ∈ [0, 1), λ ≥ 0, β ≥ 0,

then f(z) ∗ g(z) ∈ TLβ(α).

If f(z) = z −
∞∑

j=2

ajz
j ∈ T cLβ(α), (aj ≥ 0, j = 2, 3, ...),

g(z) = z −
∞∑

j=2

bjz
j ∈ T cLβ(α), (bj ≥ 0, j = 2, 3, ...), α ∈ [0, 1), λ ≥ 0,

β ≥ 0, then f(z) ∗ g(z) ∈ T cLβ(α).

Proof. We have

∞∑
j=2

[1 + (j − 1)λ]β[(j − 1)λ + 1− α]aj < 1− α

and ∞∑
j=2

[1 + (j − 1)λ]β[(j − 1)λ + 1− α]bj < 1− α.

We know that f(z) ∗ g(z) = z −
∞∑

j=2

ajbjz
j. From g(z) ∈ T , by using

Theorem 1 , we have
∞∑

j=2

jbj ≤ 1. We notice that bj < 1, j = 2, 3, ... .
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Thus,

∞∑
j=2

[1+(j−1)λ]β[(j−1)λ+1−α]ajbj <

∞∑
j=2

[1+(j−1)λ]β[(j−1)λ+1−α]aj < 1−α.

This means that f(z) ∗ g(z) ∈ TLβ(α), β ≥ 0, α ∈ [0, 1) and λ ≥ 0.

The proof of the second part of the theorem is similarly with the above

one, so it is omitted.

Theorem 5. [1] , [2] Let f1(z) = z and

fj(z) = z − 1− α

(1 + (j − 1)λ)β(1− α + (j − 1)λ)
zj, j = 2, 3, ...

Then f ∈ TLβ(α) iff it can be expressed in the form f(z) =
∞∑

j=1

λjfj(z),

where λj ≥ 0 and
∞∑

j=1

λj = 1.

Let f1(z) = z and

fj(z) = z − 1− α

(1 + (j − 1)λ)β+1(1− α + (j − 1)λ)
zj, j = 2, 3, ...

Then f ∈ T cLβ(α) iff it can be expressed in the form f(z) =
∞∑

j=1

λjfj(z),

where λj ≥ 0 and
∞∑

j=1

λj = 1.

Proof. Let f(z) =
∞∑

j=1

λjfj(z), λj ≥ 0, j=1,2, ... , with
∞∑

j=1

λj = 1. We

obtain

f(z) =
∞∑

j=1

λjfj(z) = λ1z+
∞∑

j=2

λj

(
z − 1− α

[1 + (j − 1)λ]β[1− α + (j − 1)λ]
zj

)

=
∞∑

j=1

λjz −
∞∑

j=2

λj
1− α

[1 + (j − 1)λ]β[1− α + (j − 1)λ]
zj
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= z −
∞∑

j=2

λj
1− α

[1 + (j − 1)λ]β[1− α + (j − 1)λ]
zj.

We have
∞∑

j=2

[1 + (j − 1)λ]β[1− α + (j − 1)λ]λj
1− α

[1 + (j − 1)λ]β[1− α + (j − 1)λ]

= (1− α)
∞∑

j=2

λj = (1− α)(
∞∑

j=1

λj − λ1) < 1− α

which is the condition (2) for f(z) =
∞∑

j=1

λjfj(z). Thus f(z) ∈ TLβ(α).

Conversely, we suppose that f(z) ∈ TLβ(α), f(z) = z −
∞∑

j=2

ajz
j, aj ≥ 0

and we take λj =
[1 + (j − 1)λ]β[1− α + (j − 1)λ]

1− α
aj ≥ 0, j=2,3, ... , with

λ1 = 1−
∞∑

j=2

λj.

Using the condition (2), we obtain

∞∑
j=2

λj =
1

1− α

∞∑
j=2

[1 + (j − 1)λ]β[1− α + (j − 1)λ]aj <
1

1− α
(1− α) = 1.

Then f(z) =
∞∑

j=1

λjfj, where λj ≥ 0, j=1,2, ... and
∞∑

j=1

λj = 1. This

completes our proof.

The proof of the second part of the theorem is similarly with the above

one, so it is omitted.

Corollary 1. [1] , [2] The extreme points of TLβ(α) are f1(z) = z and

fj(z) = z − 1− α

(1 + (j − 1)λ)β(1− α + (j − 1)λ)
zj, j = 2, 3, ... .

The extreme points of T cLβ(α) are f1(z) = z and

fj(z) = z − 1− α

(1 + (j − 1)λ)β+1(1− α + (j − 1)λ)
zj, j = 2, 3, ... .
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Remark 5. We notice that in the particulary case, obtained for λ = 1 and

β ∈ N, we find similarly results for the class Tn(α) of the n-starlike functions

of order α with negative coefficients (inclusive the necessary and sufficiently

condition presented in Remark 2) and for the class T c
n(α) of the n-convex

functions of order α with negative coefficients .
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