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Abstract

The aim of this paper is presenting the evolution of the results

regarding the boundeness of Cesàro operators.
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1 Introduction

In this section we will be concerned with Jacobi series and Pollard′s result

on uniform boundness of the partial sum operators of the Fourier expansion

in Jacobi series.

Let α and β be two values with α, β > −1. The Jacobi weight w(α,β) is

the function defined by w(α,β)(x) = (1− x)α(1 + x)β for x ∈ [−1, 1].

The Jacobi polynomials

pj(x) = p
(α,β)
j (x) = γ

(α,β)
j (x) + ... + δ

(α,β)
j x0, j ∈ N
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are the unique polynomials of precise degree j, with leading coefficients

γ
(α,β)
j > 0, fullfilling the orthonormal condition

1∫

−1

pj(x)pk(x)w(α,β)(x)dx =

{
0, if j 6= k

1, if j = k
, , k ∈ N

Let f : [−1, 1] → R be a function such that the Fourier coefficients

cj(f) := c
(α,β)
j (f) :=

1∫

−1

f(x)pj(x)w(α,β)(x)dx, j ∈ N(1)

exist.

The Jacobi series ∑
cj(f)pj(2)

is the formal Fourier expansion of f in Jacobi polynomials.

The main concern is the convergence of the Jacobi series (2). To inves-

tigate the convergence, we define the partial sums of the Fourier expansion

of f :

s
(α,β)
k (f) :=

k∑
j=0

cj(f)pj, k ∈ N.

We are interested in Banach spaces B of functions f : [−1, 1] → R, for

which s
(α,β)
k f convergences to f , i.e.

||f − s
(α,β)
k f ||B → 0 as k →∞(3)

for all f ∈ B, where || · ||B denotes the norm of B. The convergence (3)

is ensured if Π = B and the partial sum operators as s
(α,β)
k , k ∈ N, are

uniformly bounded in B, namely

||s(α,β)
k f ||B ≤ C||f ||B
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for all k ∈ N and f ∈ B (Π is space of algebraic polynomials).

One of the first results on uniform boundness was found in 1947 by

Pollard [7]. Pollard determined a simple condition under which the partial

sum operators of the Legendre series, which is the Jacobi series in the case

α = β = 0, are uniformly bounded in B = Lp[−1, 1]. The precise results is

stated in the following theorem.

Theorem 1. (Pollard, 1947). If 4
3 < p < 4, then the Legendre Fourier

operators sn := s
(α,β)
n are uniformly bounded Lp[−1, 1] i.e.,

||snf ||p ≤ Cp||f ||p
for all n ∈ N and f ∈ Lp[−1, 1] with a positive constant Cp being indepen-

dent of f and n.

Then, in 1949, Pollard [8] generalized his result to include the Jacobi

spaces Lp

w(α,β) [−1, 1] with α, β ≥ −1
2. Here Lp

w(α,β) [−1, 1], 1 ≤ p ≤ ∞ de-

notes the space of all measurable functions f : [−1, 1] → R for which the

weighted norm

||f ||Lp

w(α,β) [−1, 1] :=




1∫

−1

|f(x)|pw(α,β)(x)dx




1/p

(4)

is finite.

Theorem 2. (Pollard 1949) Let

M̃(α, β) := 2 max





α + 1

α +
3

2

,
β + 1

β +
3

2





and

m̃(α, β) := 2 min





α + 1

α +
1

2

,
β + 1

β +
1

2




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Suppose α, β ≥ −1
2 , then for values p with M̃(α, β) < p < m̃(α, β) the

Fourier projection operators s
(α,β)
n are uniformly bounded in Lp

w(α,β) [−1, 1]

i.e.

||s(α,β)
n f ||Lp

w(α,β)[−1,1] ≤ C||f ||Lp
w(α,β)[−1,1]

holds for all f ∈ Lp

w(α,β) [−1, 1] and n ∈ N with a positive constant C =

C(α, β, p) being independent of f and n.

Twenty years after Pollard′s results, Muckenhoupt [6] published in 1969

a theorem in which Pollard′s results is included. Muckenhoupt gave a

comprehensive answer to the question as to when the Fourier projection

operators s
(α,β)
n are uniformly bounded in B = {f |wa,b(f) ∈ Lp[−1, 1]}

Muckenhoupt′s results reads as follows.

Theorem 3. (Muckenhoupt, 1969) Assume that α, β > −1, 1 < p < ∞
and a, b ∈ R such that

∣∣∣∣
α

2
+

1

2
− 1

p
− a

∣∣∣∣ < min

{
1

4
,
α

2
+

1

2

}
(5)

∣∣∣∣
β

2
+

1

2
− 1

p
− b

∣∣∣∣ < min

{
1

4
,
β

2
+

1

2

}
(6)

Then

||w(a,b)s(α,β)
n f ||p ≤ C||w(a,b)f ||p

for all n ∈ N and f with w(a,b)f ∈ Lp[−1, 1], where C = C(α, β, a, b, p) is a

positive constant being independent of f and n.
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2 Boundness of Cesàro means operators

If the expansion of a function f in a Jacobi series fails to converge, we are

then led to consider the Cesàro means (of first order)

σ(α,β)
n (f) :=

1

n

n∑

k=1

s(α,β)
n f, n ∈ N,

where f : [−1, 1] →→ R is assumed to be a function such that the Fourier

coefficients (1) exists.

We main concern refers to Banach spaces B, consisting of functions

f : [−1, 1] → R, such that the Cesàro operators σ
(α,β)
n , n ∈ N, are uniformly

bounded in B, i.e.,

||σ(α,β)
n f ||B ≤ C||f ||B

for all n ∈ N and f ∈ B.

One of the first results in this sense was found in 1963 by Askey and

Hirshmann [1]. They proved, in the case α = β = 0, the uniform boundness

of the Cesàro operators in B = Lp[−1, 1].

Theorem 4. (Askey & Hirschmann, 1963) If 1 ≤ p ≤ ∞, then the Legen-

dre Cesàro operators σn := σ
(0,0)
n are uniformly bounded in Lp[−1, 1], i.e.,

||σnf ||p ≤ Cp||f ||p

for all n ∈ N and f ∈ Lp[−1, 1] with a positive constant Cp being indepen-

dent of f and n.

In 1994 Lubinsky and Totik [5] observed that for α, β > 0 the Cesàro

operators σ
(α,β)
n are uniformly bounded in B =



f |w

 
α
2

,
β
2

!
f ∈ Lp[−1, 1]





where the weight of B has halved indices α and β.
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Theorem 5. (Lubinsky & Totik, 1994) Let α, β > 0 and 1 ≤ p ≤ ∞. Then

||w
 
α
2

,
β
2

!
σ(α,β)

n f ||p ≤ C||w
 
α
2

,
β
2

!
f ||p(7)

holds for all n ∈ N and f with w

 
α
2

,
β
2

!
f ∈ Lp[−1, 1], where C = C(α, β)

is a positive constant being independent of f and n.

For proving Theorem 5, Lubinsky and Totik modified a method which

goes back to G. Freud [4]. The method is based on a decomposition of the

Cesàro operator σ
(α,β)
n . They essentially considered the case p = ∞. For

this purpose, Lubinsky and Totik introduced the following modified Jacobi

weight

w(α,β)
n (x) :=

(√
1− x +

1

n

)2α (√
1 + x +

1

n

)2β

with x ∈ [−1, 1] and n ∈ N. They proved

||w

 
α
2

,
β
2

!
n σ(α,β)

n f ||∞ ≤ C||w
 
α
2

,
β
2

!
f ||∞(8)

for all n ∈ N and f with w

 
α
2

,
β
2

!
f ∈ Lp[−1, 1]. It should be noted that

w

 
α
2

,
β
2

!
(x) ≤ w

 
α
2

,
β
2

!
n (x) for x ∈ [−1, 1], since α, β > 0. Thus (8) is

sharped than (7) with p = ∞. Then Lubinsky and Totik obtained the case

p = 1 from (8) by the duality principle. Finally, by simple application of

Riesz and Thorin′s interpolation principle, they proved the estimate

||w

 
α
2

,
β
2

!
n σ(α,β)

n f ||p ≤ C||w
 
α
2

,
β
2

!
f ||p,

from which (7) follows, since α, β > 0.
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Lubinsky and Totik′s result was the starting point for investigation of

M. Felton [3]. He determine conditions under which the Cesàro operators

σ
(α,β)
n are uniformly bounded in B =

{
f |w(α,β)f ∈ Lp[−1, 1]

}
. He determine

conditions for a and b such that the uniform estimate

||w(a,b)σ(α,β)
n f ||p ≤ C||w(a,b)f ||p

holds true. This will be Lubinsky and Totik′s results if a = α
2 , b =

β
2

and α, β > 0. In 2004 M. Felton obtain a results which is similar to

Muckenhount′s Theorem 3.

Theorem 6. (see [3]). Let α, β ≥ −1
2 , 1 ≤ p ≤ ∞ and let a, b ∈ R such

that σ
(α,β)
n : B → B with B = {f |w(a,b)f ∈ Lp[−1, 1]} and

∣∣∣∣
α

2
+

1

4
− 1

2p
− a

∣∣∣∣ <
1

2
and

∣∣∣∣
β

2
+

1

4
− 1

2p
− b

∣∣∣∣ <
1

2

Then

||w(a,b)σ(α,β)
n f ||p ≤ C||w(a,b)f ||p

is valid for all f ∈ B and n ∈ N, where C = C(α, β, a, b, p) is a positive

constant being independent of f and n.

3 Cesàro Means and Riesz Means

In this section we introduce Riesz means as they as are defined in [3]. Riesz

means are closely related to Cesàro means. The section ends with the

result that Riesz means are uniformly bounded for appropiate choices of

parameters.

Let B := Lp

w(a,b) [−1, 1] be a fixed Jacobi space with a, b > −1 and

1 ≤ p ≤ ∞. Moreover, let α, β > −1 and pj = p
(α,β)
j , j ∈ N∗, be the

corresponding orthonormal Jacobi polynomials.
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(Let w(α,β)(x) = (1 − x)α(1 + x)β, x ∈ [−1, 1], be a Jacobi weight with

α, β > −1. The Jacobi polynomials

pn(x) = p(α,β)
n (x) = γ(α,β)

n xn + ... + δ(α,β)
n x0, n ∈ N∗,

are the unique polynomials of precise degree n, with leading coefficients

γ
(α,β)
n > 0, fulfilling the orthonormal condition

1∫

−1

pn(x)pm(x)w(α,β)(x)dx =

{
0, if n 6= m

1, if n = m
,n, m ∈ N∗).

Is known that B = Lp

w(a,b) [−1, 1] ⊂ L1
w(α,β) [−1, 1] (see [3]).

Then the Fourier coefficients ck(f) = c
(α,β)
k (f) and the partial sums

skf = s
(α,β)
k f =

k∑
j=0

cj(f)pj(9)

are defined for all f ∈ B. Let P (D) = P (α,β)(D) be the Jacobi differential

operator

P (α,β)(D) := (w(α,β))−1 d

dx
w(α+1,β+1) d

dx
,

with both α and β are greater than -1.

Since the eigenfunction of P (D) are the orthonormal Jacobi polynomi-

als pn, (9) can be understood as the partial sum of the expansion in the

eigenfunctions of P (D).

Let σ̃nf = σ̃n
(α,β)f be the Cesàro means of f ∈ B defined by

σ̃nf :=
1

n

n−1∑

k=0

skf, n ∈ N.(10)

Thus, in (10), we add up from k = 0 to k = n − 1. Hence σ̃nf ∈ Πn−1

(space of algebraic polynomials of degree at most n − 1). If we put (9) in

(10), a rearrangement of the sum immediately gives

σ̃nf =
n∑

k=0

(
1− k

n

)
ck(f)pk, n ∈ N(11)
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The eigenvalues of P (D) are −λ(n) with

λ(n) := λ(α,β)(n) := n(n + α + β + 1), n ∈ N∗(12)

that is

P (D)pn = −λ(n)pn (see [3]).

Definition 1. Riesz means Rn = R
(α,β)
n are defined as

Rnf :=
n∑

k=0

(
1− λ(k)

λ(n)

)
ck(f)pk, n ∈ N(13)

for f ∈ B.

Thus Riesz means are defined in a similar way as the Cesàro means,

except that the term
(
1− k

n

)
in (11) is replaced by

(
1− λ(k)

λ(n)

)
to ob-

tain (13). Riesz means Rnf are polynomials of degree at most n − 1, i.e.,

Rnf inΠn−1.

The following lemma shows that Riesz means can be represented via

Cesàro means. The proof of the following lemma follows Totik′s idea.

Lemma 1. Let Rn = R
(α,β)
n and σ̃n = σ̃n

(α,β) be the Riesz and Cesàro

means (13) and (11) respectively. Moreover, let λ(n) = λ(α,β)(n) as they

are in (12). Then

Rn =

(
1− n(n + 1)

λ(n)

)
σ̃n − 2

λ(n)

n∑

k=1

kσ̃k

for k ∈ N.

Proof. From

n−1∑

k=0

(2k + 2 + α + β)skf =
n−1∑

k=0

k∑
j=0

(2k + 2 + α + β)cj(f)pk =
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=
n−1∑
j=0

{
n−1∑

k=j

(2k + 2 + α + β)

}
cj(f)pk =

=
n−1∑
j=0

(n + α + β + 1 + j)(n− j)︸ ︷︷ ︸
λ(n)− λ(j)

cj(f)pk =

= λ(n)
n−1∑
j=0

(
1− λ(j)

λ(n)

)
cj(f)pk

are the definition of Rn in (13) we obtain

n−1∑

k=0

(2k + 2 + α + β)sk = λ(n)Rn(14)

Now
n−1∑
k=0

(k + 1)σ̃k+1 =
n−1∑
k=0

k∑
j=0

sj =
n−1∑
j=0

n−1∑
k=j

sj =
n−1∑
j=0

(n− j)sj yields

n−1∑

k=0

(2n− 2k)sk = 2
n∑

k=1

kσ̃k(15)

Addition of (14) and (15) gives

(2n + 2 + α + β)
n−1∑

k=0︸︷︷︸
sk

nfσn

= λ(n)Rn + 2
n∑

k=1

kσ̃k

and hence

(λ(n) + n(n + 1))σ̃n = λ(n)Rn + 2
n∑

k=1

kσ̃k,

which proves the statement of lemma 1.

Theorem 7. Let α, β ≥ −1
2 and B = Lp

w(a,b) [−1, 1] with a, b > −1 and

1 ≤ p ≤ ∞ such that




π ⊂ B ⊂ L1
w(α,β) [−1, 1]∣∣∣α2 + 1

4 − 1
2p − a

p

∣∣∣ ,
∣∣∣β2 + 1

4 − 1
2p − b

p

∣∣∣ < 1
2 if 1 ≤ p < ∞∣∣∣α2 + 1

4 − a
∣∣∣ ,

∣∣∣β2 + 1
4 − b

∣∣∣ < 1
2 if p = ∞

(16)
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Then Riesz means R
(α,β)
n , defined in (13), are uniformly bounded in B,

i.e.,

||R(α,β)
n f ||B ≤ C||f ||B

for all f ∈ B and n ∈ N with a positive constant C = C(α, β, a, b, p) being

independent of f and n.

Proof. The inclusions π ⊂ B ⊂ L1
w(α,β) [−1, 1] in (16) ensure that the rule

of assignment σ̃n
(α,β) : B → B is satisfied. Since α, β ≥ −1

2 and (16) is

fulfilled, it follows from Theorem 5.7 ([3]) that he Cesàro operators σ̃n
(α,β)

are uniformly bounded in B, i.e.,

||σ̃n
(α,β)f ||B ≤ C||f ||B

for f ∈ B and n ∈ N with C = C(α, β, a, b, p) > 0. from Lemma 1 we

therefore obtain

||R(α,β)
n f ||B ≤ C

{
1 +

λ(n + 1)

λ(α,β)(n)
+

2

λ(α,β)(n)

n∑

k=1

k

}
||f ||B ≤

≤ C

{
1 + 2

n + 1

n + 1 + α + β

}
||f ||B ≤ 5C||f ||B

for f ∈ B and n ∈ N.

Problem. Are these calcules still valid for the case in which the Cesàro

means are replaced with generalized Cesàro means?
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