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We present a conjecture for the power-law exponent in the
asymptotic number of types of plane curves as the number of
self-intersections goes to infinity. In view of the description
of prime alternating links as flype equivalence classes of plane
curves, a similar conjecture is made for the asymptotic number
of prime alternating knots.

The rationale leading to these conjectures is given by quan-
tum field theory. Plane curves are viewed as configurations of
loops on random planar lattices, that are in turn interpreted as
a model of two-dimensional quantum gravity with matter. The
identification of the universality class of this model yields the
conjecture.

Since approximate counting or sampling planar curves with
more than a few dozens of intersections is an open problem,
direct confrontation with numerical data yields no convincing
indication on the correctness of our conjectures. However, our
physical approach yields a more general conjecture about con-
nected systems of curves. We take advantage of this to design
an original and feasible numerical test, based on recent perfect
samplers for large planar maps. The numerical data strongly
support our identification with a conformal field theory recently
described by Read and Saleur.

1. INTRODUCTION.

Our motivation for this work is the enumeration of topo-
logical equivalence classes of smooth open and closed
curves in the plane (see Figure 1; precise definitions are
given in Section 2.1). The problem of characterizing
closed curves was considered already by Gauss and has
generated many works since then: see [Rosenstiehl 99]
and references therein. Our interest here is in the num-
bers ap and αp of such open and closed curves with p self-
intersections, and more precisely we shall consider the
asymptotic properties of ap and αp when p goes to infin-
ity. The numbers ap were given up to p = 10 in [Gusein-
Zade and Duzhin 98] and have been recently computed
up to p = 22 by transfer matrix methods [Jacobsen and
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FIGURE 1. An open plane curve and the associated closed
curve.

Zinn-Justin 02]. Asymptotically, as p goes to infinity,
one expects the relation ap ∼ 4αp to hold (see below);
we therefore concentrate on the numbers ap.

In the present paper we propose a physical reinter-
pretation of the numbers ap that leads to the following
conjecture, and we present numerical results that support
it.

Conjecture 1.1. There exist constants τ and c such that

αp ∼
p→∞

1
4

ap ∼
p→∞ c τp · pγ−2,

where

γ = −1 +
√

13
6

.= −0.76759... (1–1)

From the data of [Jacobsen and Zinn-Justin 02] one
has the numerical estimate: τ

.= 11.4. But the main point
in Conjecture 1.1, lies not so much in the existence of τ ,
as in the explicit value of γ. It should indeed be observed
that γ, rather than τ , is the interesting information in the
asymptotic of ap. Observe for instance that the value of
γ is left unchanged if one redefines the size of a closed
curve as the number p′ = 2p of arcs between crossings.
More generally, as discussed in Section 8., the exponent γ

determines the branching behavior of generic large curves
under the uniform distribution, and is universal in the
sense that the same value is expected in the asymptotic
of related families of objects like prime self-intersecting
curves or alternating knots.

Conjecture 1.1 is similar in nature to the conjecture of
Di Francesco, Golinelli, and Guitter on the asymptotic
behavior of the number of plane meanders [di Francesco
00]. The two problems do not fall into the same univer-
sality class (in particular the predictions for the exponent
γ are different in the two problems). However, our ap-
proach to design a numerical test is applicable also to the
meander problem.

The rest of the paper is organized as follows. Pre-
cise definitions are given and a more general family of

drawings is introduced that play an important role in
the identification of the associated physical model (Sec-
tion 2). The physical background leading to the con-
jecture is then discussed (Section 3) and a numerically
testable quantity is proposed (Section 4). The sampling
method is briefly presented (Section 5) before the analy-
sis of numerical data (Section 6). We conclude with some
variants and corollaries of the conjecture (Section 8).

2. PLANE CURVES AND COLORED PLANAR MAPS

2.1 Plane Curves and Doodles

For p a positive integer, let Ap be the set of equivalence
classes of self-intersecting loops γ in the plane, that is:

(i) γ is a smooth mapping S1 → R
2;

(ii) there are p points of self-intersection, all of which
are regular crossings;

(iii) two loops γ and γ′ are equivalent if there exists
an orientation preserving homeomorphism h of the
plane such that γ′(S1) = h(γ(S1)).

Similarly let Ap be the set of equivalence classes of
self-intersecting open curves γ in the plane:

(i) γ is a smooth mapping [0, 1] → R
2 and γ(0) and γ(1)

belong to the infinite component of R
2 \ γ((0, 1));

(ii) there are p points of self-intersection, all of which
are regular crossings;

(iii) two open curves are equivalent if there exists an ori-
entation preserving homeomorphism h of the plane
such that γ′([0, 1]) = h(γ([0, 1])) and γ′(i) = h(γ(i))
for i = 0, 1.

Observe that, unlike closed curves, open curves are ori-
ented from the initial point γ(0) to the final point γ(1).
Moreover a unique closed curve is obtained from an open
curve by connecting the final point to the initial one in
counterclockwise direction around the curve. These def-
initions are illustrated by Figure 1.

In order to study the families Ap and Ap and to ob-
tain Conjecture 1.1 we introduce a more general class of
drawings, that we call doodles. For given positive inte-
gers p and k, let Ak,p be the set of equivalence classes of
(k + 1)-uples Γ = (γ0, γ1, . . . , γk) of curves drawn on the
plane such that:

(i) the curve γ0 is an open curve of the plane, γ0 is a
smooth mapping [0, 1] → R

2, and γ0(0) and γ0(1)
belong to the infinite component of R

2 \ (γ0((0, 1))∪⋃
i γi(S1));
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FIGURE 2. A doodle and the associated rooted planar map.

(ii) for i ≥ 1, each γi is a loop, that is a smooth map
S1 → R

2;

(iii) there are p points of intersection (including possibly
self-intersections) of these curves, all of which are
regular crossings;

(iv) the union of the curves is connected;

(v) two doodles Γ = (γ0, . . . , γk) and Γ′ = (γ′
0, . . . , γ

′
k)

are equivalent if there exists an orientation pre-
serving homeomorphism h of the plane such that
γ′
0([0, 1]) ∪ ⋃

i γ′
i(S

1) = h(γ0([0, 1]) ∪ ⋃
i γi(S1)) and

γ′
0(x) = h(γ0(x)), for x = 0, 1.

In other terms, a doodle is made of an open curve inter-
secting a set of loops, that are considered up to continu-
ous deformations of the plane. An example of a doodle
is given in Figure 2 (left-hand side).

2.2 Colored Planar Maps

An equivalent presentation of doodles is in terms of
rooted planar maps [Tutte 63, Tutte 71]. A planar map
is a proper embedding of a connected graph in the plane
considered up to homeomorphisms of the plane. It is 4-
regular if all vertices have degree four. It is rooted if one
root edge is marked on the infinite face and oriented in
counterclockwise direction. Equivalently the root edge
can be cut into an in- and an out-going half-edge (also
called legs) in the infinite face. There is an immediate
one-to-one correspondence between doodles with p cross-
ings and 4-regular planar maps with p vertices and two
legs. This correspondence is illustrated in Figure 2.

We shall consider the number ak,p = card Ak,p of doo-
dles with p crossings and k loops and, more specifically,
we shall consider the asymptotic properties of ak,p as p

(and possibly k) goes to infinity. It turns out to be con-
venient to introduce the generating function ap(n) as k

varies:

ap(n) =
∞∑

k=0

ak,p nk. (2–1)

The requirement that a doodle is connected implies that
it cannot contain more loops than crossings so that ap(n)

is a polynomial in the (formal) variable1 n. For real val-
ued n, ap(n) can be understood as a weighted summation
over all doodles with p crossings, and, more specifically
for n a positive integer, ap(n) can be interpreted as the
number of colored doodles in which each loop has been
drawn using a color taken from a set of n distinct colors.

On the one hand, in the special case k = 0, a0,p = ap

gives by definition the number of open self-intersecting
plane curves. Observe that ap is also given by n = 0
since ap(0) = a0,p. On the other hand, the generating
functions of the ap(n) for other values of n, namely n =
1, 2,−2, have been computed exactly (see, respectively,
[Tutte 63, Zinn-Justin 00, Zinn-Justin 03]). We elaborate
now on the case n = 1 since it will play a crucial role in
what follows.

The number ap(1) counts the number of doodles with
p crossings irrespective of the number of loops k. In terms
of maps, ap(1) is the number of rooted 4-regular planar
maps with p vertices. The number of such planar maps
is known [Brézin et al. 78, Tutte 63], from which one can
compute the asymptotics:

ap(1) = 2
3p (2p)!

p!(p + 2)!
∼

p→∞
2√
π

12pp−5/2. (2–2)

Observe in this case the power-law exponent −5/2, which
is universal for rooted planar maps in the sense that
it is observed for a variety of families of rooted planar
maps (see [Gao 93]). As opposed to this, the exponen-
tial growth factor 12 is specific to the family of rooted
4-regular planar maps.

There is a physical interpretation of the power-law be-
havior p−5/2: it is given by two-dimensional gravity. This
explanation begs to be generalized to any n, and we shall
explore such a possibility now.

3. TWO-DIMENSIONAL QUANTUM GRAVITY AND
ASYMPTOTIC COMBINATORICS

The purpose of this section is to give the rationale be-
hind our conjectures. We place the discussion at a rather
informal level that we hope achieves a double purpose.
On the one hand it should give an understanding of the
path leading to our conjectures to a reader with zero-
knowledge in quantum field theory (QFT), and on the
other hand it should convince an expert in this (quan-
tum) field. In our defense, let us observe that filling in
more details would require a complete course on QFT,

1The subsequent interpretation in terms of colored doodles and
the strong tradition in the physics literature are our (admittedly
poor) excuses for the use of n to denote a formal variable.
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with the result of not getting much closer to a mathe-
matical proof.

3.1 From Planar Maps to Two-Dimensional
Quantum Gravity

The main idea of the physical interpretation of the num-
bers ap(1) is to consider planar maps as discretized ran-
dom surfaces (with the topology of the sphere). As the
number of vertices of the map grows large, the details of
the discretization can be assimilated to the fluctuations
of the metric on the sphere. To make this idea more
precise, let us describe a way to associate a metric on
the sphere to a given 4-regular map m: to each vertex of
m associate a unit square and identify the sides of these
squares according to the edges of m (arbitrary number
of corners of squares get identified); the result is by con-
struction a metric space with the topology of a sphere.
Upon taking a 4-regular map uniformly at random in the
set of map with p edges, a random metric sphere with
area p is obtained.

Now, physics tells us that the metric is the dynami-
cal field of general relativity, i.e., gravity, and that these
types of fluctuations in the metric are characteristic of a
quantum theory. In our case it means that, as p becomes
large, the discrete nature of the maps can be ignored and
there exists a scaling limit, the properties of which are
described by two-dimensional euclidian quantum gravity.
In particular, any parameter of random planar maps that
makes sense in the scaling should converge to its con-
tinuum analog. A fundamental parameter of this kind
turns out to be precisely the number of (unrooted) pla-
nar maps. It is expected to scale to the partition function
Zg(A) of two-dimensional quantum gravity with spher-
ical topology at fixed area A, through a relation of the
form

1
p
ap(1) ∼

p→∞ Zg(A), with A proportional to p. (3–1)

(Here the factor 1/p is due to the fact that the parti-
tion function does not take the rooting into account.)
The only thing we want to retain from Zg(A) is that
the power law dependance of its large area asymptotic
takes the form A−7/2, in accordance with Formula (2–2).
(Trying to give here a precise description of the partition
function Zg would carry us too far away, and anyway the
arguments in this section are nonrigourous.)

In the case n = 1, this is the whole physical picture: a
fluctuating but empty two-dimensional spacetime—there
is no matter in it. What happens when n �= 1? As al-
ready discussed, an appealing image is to consider that

one must “decorate” the planar map by coloring each
curve γi with n colors. Alternatively, the physicist’s
view would be to consider that we have put a statisti-
cal lattice model (of crossing loops) on a random lat-
tice (the planar map). This fits perfectly with the pre-
vious interpretation of the planar map as a fluctuating
two-dimensional spacetime. As we learn from physics, in
the limit of large size, adding a statistical lattice model
amounts to coupling matter to quantum gravity. Matter
is described by a quantum field theory (QFT) living on
the two-dimensional spacetime. The parameters of the
lattice model that survive in the scaling limit are recov-
ered in the critical (long distance) behavior of this QFT,
which in turn is described by a conformal field theory
(CFT). Then, provided we can find a CFT describing
the lattice model corresponding to a given n �= 1, the
analog of Expression (3–1) holds with the partition func-
tion Zg+CFT(n)(A) of this CFT coupled to gravity: in the
large size limit,

1
p
ap(n) ∼

p→∞ Zg+CFT(n)(A). (3–2)

In this picture, the only thing we need to know about
the CFT that describes the scaling limit of our model is
its central charge c, which roughly counts its number of
degrees of freedom. Indeed, the study of CFT coupled to
gravity was performed in [David 89, Distler and Kawai
89, Knizhnik et al. 88], resulting in the following funda-
mental prediction: the partition function Zg+CFT(A) of
gravity dressed with matter has a power-law dependence
on the area of the form Aγ−3 where the critical exponent
γ depends only on the central charge of the underlying
CFT via (for c < 1),

γ =
c − 1 − √

(1 − c)(25 − c)
12

. (3–3)

Returning to our asymptotic enumeration problem
(not forgetting the extra factor p which comes from the
marked edge), we find

ap(n) ∼
p→∞ eσ p + (γ − 2) log p + κ, (3–4)

where σ, κ are unspecified “non-universal” parameters,
whereas the “universal” exponent γ is given by Equa-
tion (3–3) with the central charge c of the a priori un-
known underlying CFT(n). The absence of matter, that
is the case n = 1, corresponds to a CFT with central
charge c = 0: one recovers γ − 2 = −5/2 as expected
from Expression (2–2). In general, all parameters in Ex-
pression (3–4) are functions of n; assuming furthermore
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that their dependence on n is smooth in a neighborhood
of n = 1, one can recover by Legendre transform of σ(n)
the asymptotics of ak,p as k and p tend to infinity with
the ratio k/p fixed. Observe finally that the knowledge
of the CFT could give more information. For instance,
the irrelevant operators of the CFT control subleading
corrections to Expression (3–4).

3.2 The Identification of Two Candidate Models

We now come to the issue of the determination of the
CFT for an arbitrary n. An observation made in [Zinn-
Justin 01], based on a matrix integral formulation, is that
this CFT must have an O(n) symmetry (for n positive
integer—for generic n this symmetry becomes rather for-
mal and cannot be realized as a unitary action of a com-
pact group on the Hilbert space). There exists a well-
known statistical model with O(n) symmetry, a model
of (dense) non-crossing loops [Nienhuis et al. 82], whose
continuum limit for |n| < 2 is described by a CFT with
central charge

cI = 1 − 6(
√

g − 1/
√

g)2, n = −2 cos(πg), 0 < g < 1.

(3–5)
In [Zinn-Justin 01] it was speculated that there is no
phase transition between the model of noncrossing loops,
which we call model I, and our model of crossing loops,
and therefore the central charge is the same and given
by Expression (3–5). If this were the case, the study
of irrelevant operators of this CFT would allow, more-
over, to predict that subleading corrections to Expression
(3–4) have power-law behavior for all |n| < 2 with expo-
nents depending continuously on n.

However, another scenario is possible. In [Read and
Saleur 01], it was suggested that O(n) models, for n < 2,
possess in general a low temperature phase with sponta-
neous symmetry breaking of the O(n) symmetry into a
subgroup O(n − 1). This is a well-known mechanism2

in QFT (see e.g., [Zinn-Justin 96, Chapters 14 and 30]),
which produces Goldstone bosons living on the homoge-
neous space O(n)/O(n − 1) = Sn−1. In the low energy
limit the bosons become free and the central charge is
simply the dimension of the target space Sn−1:

cII = n − 1 n < 2. (3–6)

For generic real n (n < 2) this is only meaningful in the
sense of analytic continuation, but we assume it can be
done and call it model II. This CFT possess a marginally

2The Mermin-Wagner theorem, which forbids spontaneous sym-
metry breaking of a continuous symmetry in two dimensions, only
applies to an integer greater than or equal to 2.

irrelevant operator, leading to main corrections to leading
behavior of Expression (3–4) of logarithmic type i.e., in

1
log p , log log p

(log p)2 etc.
It was furthermore argued in [Read and Saleur 01]

that the critical phase of model II is generic in the
sense that the low-energy CFT is not destroyed by
small perturbations—the most relevant O(n)-invariant
perturbation is the action itself, which corresponds to
a marginally irrelevant operator for n < 2. On the con-
trary, the model I of noncrossing loops is unstable to per-
turbation by crossings; some numerical work on regular
lattices (at n = 0) [Jacobsen et al. 03] tends to suggest
that it flows towards model II.

Note that both Expressions (3–5) and Equation (3–6)
supply the correct value c = 0 for n = 1 and c = 1 for
the limiting case n = 2.3 Of course, in no way do we
claim that these are the only possible scenarios which fit
with known results—one might have a plateau of non-
critical behavior (c = 0) around n = 1, for instance; or
two-dimensional quantum gravity universality arguments
might not apply at all in some regions of n—but they
seem the most likely candidates and therefore it is im-
portant to find a numerically accessible quantity which
at least discriminates between the two conjectures.

4. THE GENERAL CONJECTURES AND
A TESTABLE PARAMETER

The physical reinterpretation of doodles as a model on
random planar lattices has led us to postulate that the
weighted summation over doodles satisfies

ap(n) ∼ c0(n) τ(n)p · pγ(n)−2,

with the critical exponent γ(n) given in terms of the cen-
tral charge c(n) by

γ(n) =
c(n) − 1 − √

(1 − c(n))(25 − c(n))
12

.

Moreover we have presented two concurrent models
which fix the value of c(n). Since negative values of n cre-
ate additional technical difficulties (appearance of com-
plex singularities in the generating function, see [Zinn-
Justin 03]), we formulate the conjectures in the restricted
range 0 ≤ n < 2.

Conjecture 4.1. (Model I.) Colored doodles are in the
universality class of dense noncrossing loops, so that for

3Actually, the two resulting c = 1 theories are not identical: the
one from model I seems to be the wrong one, although this is a
subtle point on which we do not dwell here.
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0 ≤ n < 2, n = −2 cos(πg), 1/2 ≤ g < 1,

c(n) = 1 − 6(
√

g − 1/
√

g)2.

Conjecture 4.2. (Model II.) Colored doodles are in the
universality class of models with spontaneously broken
O(n) symmetry, so that for 0 ≤ n < 2,

c(n) = n − 1.

Observe that Conjecture 4.2 implies Conjecture 1.1
for n = 0, while Conjecture 4.1 would give c(0) =
1 − 6(

√
2 − 1/

√
2)2 = −2 and γ(0) = −1. According

to the discussion of the previous section, Conjecture 4.2
appears more convincing. In order to get a numerical
confirmation, we look for a way to discriminate between
the two.

Since the model at n = 1 is much easier to manipulate,
we look for such a quantity at n = 1. Of course the known
value of the exponent γ(1) is a natural candidate but as
already mentioned both conjectures agree on this: we
propose instead the derivative of the exponent at n = 1,

γ′ ≡ d

dn |n=1
γ(n). (4–1)

The reason that it can easily be computed numerically is
that it appears in the expansion of the average number
of loops 〈k〉p for a uniformly distributed random planar
map with p vertices. Indeed one easily finds

〈k〉p =
d

dn |n=1
log ap(n) =

p→∞σ′p + γ′ log p + κ′ + o(1).

(4–2)
Here we have assumed Expression (3–4) to be uniform
with smoothly varying constants σ(n), γ(n), κ(n) in some
neighborhood of n = 1, and written σ′ ≡ d

dn |n=1
σ(n),

κ′ ≡ d
dn |n=1

κ(n).
Conjectures 4.1 and 4.2 provide the following predic-

tions for γ′:

γ′ =

{
3
√

3
4π = 0.413 . . . in CFT I
3
10 = 0.3 in CFT II.

(4–3)

The quantity 〈k〉p is not known theoretically, so that
we cannot immediately conclude in either direction.
However, it is possible to estimate it numerically using
random sampling.

5. SAMPLING RANDOM PLANAR MAPS

In this section we present the algorithm we use to sample
a random map from the uniform distribution on rooted 4-
regular planar maps with p vertices. The problem of sam-
pling random planar maps with various constraints under
the uniform distribution was first approached in mathe-
matical physics using Markov chain methods [Kazakov et
al. 85, Ambjørn et al. 94]. However, these methods re-
quire a large and unknown number of iterations, and only
approximate the uniform distribution. Another approach
was proposed based on the original recursive decompo-
sitions of Tutte [Tutte 63] but has quadratic complexity
[Agishtein and Migdal 91], and is limited as well to p of
order a few thousands.

We use here a more efficient method that was pro-
posed in [Schaeffer 97, Schaeffer 99] along with a new
derivation of Tutte’s formulas. The algorithm, which we
outline here in the case of 4-regular maps, requires only
O(p) operations to generate a map with p vertices and
manipulates only integers bounded by O(p). Moreover
maps are sampled exactly from the uniform distribution.
The only limitation thus lies in the space occupied by
the generated map. In practice we were able to generate
maps with up to 100 million vertices, with a generation
speed of a million vertices per second.

The algorithm relies on a correspondence between
rooted 4-regular planar maps and a family of trees that
we now define. A blossom tree is a planted plane tree
such that

• vertices of degree one are of two types: buds and
leaves;

• each inner vertex has degree four and is incident to
exactly one bud;

• the root is a leaf.

An example of a blossom tree is shown in Figure 3. By
definition, a blossom tree with p inner vertices has p + 2
leaves (including the root) and p buds. Observe that re-
moving the buds of a blossom tree gives a planted com-
plete binary tree with p inner vertices, and that con-
versely 3p blossom trees can be constructed out of a given
binary tree with p inner vertices. Since the number of bi-
nary trees with p inner vertices is well known to be the
Catalan number 1

p+1

(
2p
p

)
, the number of blossom trees is

seen to be

3p · 1
p + 1

(
2p

p

)
.

Let us define the closure of a blossom tree. An exam-
ple is shown in Figure 3. Buds and leaves of a blossom
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FIGURE 3. A blossom tree and its closure. Buds are represented by arrows. Dashed edges connect pairs of matched buds
and leaves.

tree with p inner vertices form in the infinite face a cyclic
sequence with p buds and p + 2 leaves. In this sequence
each pair of consecutive bud and leaf (in counterclock-
wise order around the infinite face) are merged to form
an edge enclosing a finite face containing no unmatched
bud or leaf. Matched buds and leaves are eliminated
from the sequence of buds and leaves in the infinite face
and the matching process can be repeated until there are
no more buds available. Two leaves then remain in the
infinite face.

Proposition 5.1. [Schaeffer 97] Closure defines a (p +
2)-to-2 correspondence between blossom trees and rooted
four-regular planar maps. In particular the number of
rooted four-regular planar maps is

2
p + 2

· 3p

p + 1

(
2p

p

)
.

Random sampling of a rooted 4-regular maps with p ver-
tices.
Step 1. Generate a random complete binary tree T1 ac-
cording to the uniform distribution on complete binary
trees with p inner vertices. (This is done in linear time
using e.g., prefix codes [Wilf 89].)
Step 2. Convert T1 into a random blossom tree T2 from
the uniform distribution on blossom trees with p inner
vertices: independantly add a bud on each vertex in a
uniformly chosen position among the three possibilities.
Step 3. Use a stack (a.k.a. a last-in-first-out waiting line)
to realise the closure of T2 in linear time: Perform a
counterclockwise traversal of the infinite face until p buds
and leaves have been matched; when a bud is met, put
b into the stack; when a leaf � is met and the stack is
non empty, remove the last bud entered in the stack and
match it with �.
Step 4. Choose uniformly the root between the two re-
maining leaves.

This proposition implies that, to generate a random
map according to the uniform distribution on rooted 4-
regular planar maps with p vertices, one can generate
a blossom tree according to the uniform distribution on
blossom trees and apply closure. A synopsis of the sam-
pling algorithm is given; an implementation is available
on the web page of Giles Schaeffer.

6. SIMULATION RESULTS

The algorithm described in the previous section allows us
to generate random rooted 4-regular planar maps with
p vertices and two legs, with uniform probability. One
can compute various quantities related to the map thus
generated and then average over a sample of maps, as
in Monte Carlo simulations. Here the main quantity
of interest is the number of loops of the map. If we
generate N maps of size p so that the ith map has
kp,i loops, 1 ≤ i ≤ N , then 1

N

∑N
i=1 kp,i has an ex-

pected value of 〈k〉p and a variance of 1
N 〈〈k2〉〉p, where

〈k〉p = d
dn |n=1

log ap(n) and 〈〈k2〉〉p = d2

dn2 |n=1
log ap(n)

(the latter can of course itself be estimated as the ex-
pected value of 1

N−1

∑N
i=1 k2

p,i − 1
N(N−1) (

∑n
i=1 kp,i)2).

According to Expression (3–4), both 〈k〉p and 〈〈k2〉〉p
are of order p for large p. However, we are interested
in corrections to the leading behavior of 〈k〉p which are
of order log p, see Equation (4–2), so that we need to keep
the absolute error small. This implies that the size of the
sample N should scale like p, or that the computation
time grows quadratically as a function of p.

In practice we have produced data for p = 2� with
� ≤ 24, the sample size being of the order of up to 107. To
ensure a good sampling we used the “Mersenne twister”
pseudo-random generator [Matsumoto and Nishimura
98], which is both fast and unbiased. The last few values
of � are only given to show where the statistical error
begins to grow large due to limited memory and compu-
tation time. Let us call k� the numerical value found for
〈k〉p=2� . The results obtained are shown in Table 1.
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� 1 2 3 4 5 6
k� 0.1111(0) 0.3228(0) 0.6605(0) 1.2120(0) 2.1640(1) 3.8970(1)
� 7 8 9 10 11 12
k� 7.1764(1) 13.5372(1) 26.0524(2) 50.8704(2) 100.2890(3) 198.9060(6)
� 13 14 15 16 17 18
k� 395.916(1) 789.716(2) 1577.089(4) 3151.607(7) 6300.44(1) 12597.83(2)
� 19 20 21 22 23 24
k� 25192.45(3) 50381.35(5) 100759.0(1) 201514.3(2) 403023.8(4) 806043.2(7)

TABLE 1. Numerical values k� of the average number of loops of maps with p = 2� vertices. The error (standard deviation)
on the last digit is given in parentheses.

�min 2 3 4 5 6 7
σ′ 0.04804410 0.04804398 0.04804388 0.04804382 0.04804377 0.04804374
γ′ 0.2952 0.3018 0.3071 0.3113 0.3148 0.3175
κ′ -0.364 -0.408 -0.445 -0.475 -0.501 -0.522
χ2 18273 8067.63 3414.53 1384.07 522.297 187.471

�min 8 9 10 11 12 13
σ′ 0.04804371 0.04804370 0.04804369 0.04804368 0.04804368 0.04804367
γ′ 0.3196 0.3213 0.3226 0.3236 0.3246 0.3266
κ′ -0.539 -0.553 -0.563 -0.572 -0.582 -0.600
χ2 64.4297 24.3678 12.7841 9.30634 8.00342 6.30457

�min 14 15 16 17 18 19
σ′ 0.04804366 0.04804365 0.04804364 0.04804364 0.04804363 0.04804365
γ′ 0.3289 0.3340 0.3440 0.3392 0.3700 0.3129
κ′ -0.624 -0.680 -0.795 -0.737 -1.13 -0.373
χ2 5.69736 4.72577 3.66152 3.58534 2.8422 2.24532

TABLE 2. Fits for the k�. χ2 is the minimized weighted sum of squared errors.

First, as a rough check of the asymptotic behavior, let
us define u� = 2k� − k�+1. If Equation (4–2) is correct,
then u� must display an affine behavior as a function of
�: u� = (� − 1)γ′ log 2 + κ′ + O(1/�). Indeed, as one can
see in Figure 4, this is the case.

By comparison with the proposed asymptote it seems
clear that γ′ is close to 0.3. To make this statement

2.5 5 7.5 10 12.5 15

-1

1

2

3

4

5

FIGURE 4. The set of points u� = 2k�−k�+1 as a function
of log p = log 2 · � with their error bars, as well as a
proposed asymptote of slope 0.3.

more precise, one can try to fit the set of the k� to
σ′p + γ′ log p + κ′, where � ranges from � = �min to
� = �max = 24 and �min is varied. The results are re-
ported in Table 2. Unfortunately the confidence level
remains fairly low until �min becomes so high that sta-
tistical error is huge, which tends to indicate strong cor-
rections to the proposed fit.

It is important to understand that if Conjecture 4.1
were true, then the corrections to asymptotic behavior
would be power-law—starting with p−1/2. This means
that the procedure used in Table 2 should converge
quickly to the correct values of σ′, γ′, and κ′ (to check this
we have performed a similar analysis with a model of non-
crossing loops on random planar maps and obtained fast
convergence with high accuracy—2 digits on γ′). Here,
the range of values of γ′ seems to be 0.29–0.34, far from
the value predicted by Conjecture 4.1. It is therefore
our view that the numerical data render Conjecture 4.1
extremely unlikely.

On the other hand, the value 0.3 predicted by Conjec-
ture 4.2 remains possible. The fluctuations observed even
for very high p would be caused by the logarithmic cor-
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rections present in Model II due to the marginally irrele-
vant operator, as mentioned in Section 3.2. This operator
is expected to induce a correction in 1/ log p (which is in
principle computable exactly, using quantum field theory
techniques, since it is universal; progress on this will be
reported elsewhere), plus higher corrections, all of which
remain significant in our range of data. This would also
explain why it is so hard to extract useful information
from the first few (exact) values of ap(n) given in [Jacob-
sen and Zinn-Justin 02, Jacobsen and Zinn-Justin 01].

In conclusion, and in view of the theoretical as well as
numerical evidence, our belief is that Conjecture 4.2 is
indeed correct.

7. VARIANTS AND COROLLARIES

First, observe that planar maps have in general no sym-
metries. More precisely the fraction of planar maps with
p edges that have a nontrivial automorphism group goes
to zero exponentially fast under very mild assumptions
on the family considered [Richmond and Wormald 95]. If
this (very plausible) property holds, then a typical closed
curve will be obtained by closing d different open curves,
where d is the degree of the outer face. But the average
degree of faces in any fixed 4-regular planar map is four.
Thus, the relation ap ∼ 4αp.

Second, let us give a property illustrating the impor-
tance of the critical exponent γ as opposed to the ac-
tual value of τ . A closed plane curve C is said to be
α-separable, for 0 < α ≤ 1 a constant, if there exist two
simple points x and y of C such that Γ\{x, y} is not con-
nected and both connected components contain at least
pα crossings. The pair (x, y) is called a cut of C. In
other terms, C is α-separable if it is obtained by gluing
the endpoints of two big enough open plane curves (up
to homeomorphisms of the sphere).

Corollary 7.1. Assume Conjecture 1.1 is valid, and con-
sider a uniform random closed plane curve Γp with p

crossings. The probability that Γp is 1-separable decays at
least like pγ .= p−0.77. More generally, if α > 1/(1−γ) =
(7−√

13)/6 .= 0.56, the probability that Γp is α-separable
goes to zero as p goes to infinity.

For comparison, γ = −1/2 and 1/(1 − γ) = 2/3 for
doodles, which are thus easier to separate.

Indeed let us compute the expected number of inequiv-
alent cuts of a closed plane curve with p crossings. When
considered up to homeomorphisms of the sphere, close

plane curves with a marked cut are in one-to-one corre-
spondence with pairs of open plane curves. Hence, with
a factor p for the choice of infinite face,

p ·
p−q∑
p′=q

ap′ap−p′

αp
< cst · p ·

p−q∑
p′=q

(p′)γ−2(p − p′)γ−2

pγ−2

= O(pqγ−1). (7–1)

In particular if q � p1/(1−γ) this expectation goes to zero
as p goes to infinity.

It is typical that in the computation of probabilistic
quantities, like in Equation (7–1), the exponential growth
factors cancel, leading to behaviors that are driven by
polynomial exponents. This explains the interest in
these critical exponents and gives probabilistic meaning
to their apparent universality. As a final illustration of
this point let us present two variants of Conjecture 1.1:
(Definitions of prime self-intersecting curves and alter-
nating knots can be found in [Jacobsen and Zinn-Justin
02, Kunz-Jacques and Schaeffer 01].)

Conjecture 7.2. The number α′
p of closed prime self-

intersecting curves with p crossings and the number α′′
p of

prime alternating knots with p crossings lie in the same
universality class as closed self-intersecting curves: there
are constants τ ′, τ ′′, c′, c′′ such that

α′
p ∼ c′ τ ′p · pγ−2, α′′

p ∼ c′′ τ ′′p · pγ−3,

where γ is given in Conjecture 1.1.

Observe that knot diagrams are naturally considered
up to homeomorphisms of the sphere [Jacobsen and Zinn-
Justin 02, Kunz-Jacques and Schaeffer 01], while we have
considered plane curves up to homeomorphisms of the
plane. This explains the discrepancy of a factor p in
Conjecture 7.2 for α′′

p , since one of the p + 2 faces of
a spherical diagram must be selected to puncture the
sphere and put the diagram in the plane.

8. CONCLUSION

We have given arguments supporting Conjecture 1.1 for
the asymptotic number of plane curves with a large num-
ber of self-intersections, as well as the more general Con-
jecture 4.2. The numerical results provided in Section 6
support Conjecture 1.1 only indirectly since they are re-
lated to another specialization of Conjecture 4.2 (deriva-
tive at n = 1 versus n = 0). However, the alternative
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proposal is not compatible with either of these new nu-
merical results (as is the case of Conjecture 4.1) or earlier
ones.

Our method to test the conjecture could be applied to
other models like open curves with endpoints that are not
constrained to stay in the infinite face, or the meanders
studied by Di Francesco et al.

Acknowledgements
The second author would like to thank J. Jacobsen for point-
ing out references [Jacobsen et al. 03] and [Read and Saleur
01].

REFERENCES

[Agishtein and Migdal 91] M. E. Agishtein and A.A. Migdal.
“Geometry of a Two-Dimensional Quantum Gravity:
Numerical Study.” Nucl. Phys. B 350 (1991), 690–728.

[Ambjørn et al. 94] J. Ambjørn, P. Bia�las, Z. Burda, J. Ju-
rkiewicz, and B. Petersson. “Effective Sampling of Ran-
dom Surfaces by Baby Universe Surgery.” Phys. Lett. B
325 (1994), 337–346.
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