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We present an explicit sequence of pseudo-Anosov maps φk :
S2k → S2k of surfaces of genus 2k whose growth rates con-
verge to one.

1. INTRODUCTION

In this note, we present an explicit sequence φk of pseudo-
Anosov maps of surfaces of genus 2k whose growth rates
converge to one. This answers a question of Joan Bir-
man, who had previously asked whether such growth
rates are bounded away from one. Norbert A’Campo,
Mladen Bestvina, and Klaus Johannson independently
communicated this question to me. McMullen previously
obtained a similar result using quite different techniques
[McMullen 00].

The growth of the genus is not an artifact of our con-
struction. For a surface S of fixed genus g, the growth
rates of pseudo-Anosov maps of S are clearly bounded
away from one, for the rates are Perron-Frobenius eigen-
values of irreducible integral m × m matrices, with m ≤
6g − 3 [Bestvina and Handel 95]. Finding the smallest
possible growth rate for each genus is an interesting prob-
lem that remains open.

One curious observation, due to Norbert A’Campo, is
that for each k, the mapping torus of φk is the comple-
ment of a w-slalom knot Bk (Figure 1).

In Section 2, we review the part of the theory of train
tracks [Bestvina and Handel 92, Bestvina and Handel 95]
that we use in this paper. Section 3 explains the intu-
ition that led to the result, and Section 4 contains the
statement and proof of the main results (Theorem 4.2
and Corollary 4.3).

The results of this paper grew out of massive com-
puter experiments with my software package XTrain
[Brinkmann 00, Brinkmann and Schleimer 01] in the con-
text of the REU program at the University of Illinois at
Urbana-Champaign.
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FIGURE 1. The knot B3, drawn by Knotscape. For k ≥ 1,
Bk is a knot similar to the one in the picture, but with
2k crossings on top and 2k + 1 crossings at the bottom.

2. TRAIN TRACKS

We present a brief review of train tracks as defined in
[Bestvina and Handel 92]. Let G be a finite graph with-
out vertices of valence one or two, and let f : G → G

be a homotopy equivalence of G that maps vertices to
vertices. The map f is said to be a train track map, if for
every integer n ≥ 1 and every edge e of G, the restriction
of f to the interior of e is an immersion.

If E1, · · · , Em is the collection of edges of G, the tran-
sition matrix of f is the nonnegative m × m matrix M

whose ijth entry is the number of times the f -image of
Ej crosses Ei, regardless of orientation. The matrix M is
said to be irreducible if, for every tuple 1 ≤ i and j ≤ m,
there exists some exponent n > 0 such that the ijth en-
try of Mn is nonzero. If M is irreducible, then it has a
maximal real eigenvalue λ ≥ 1 (see [Seneta 73]). We call
λ the growth rate of f .

The following theorem from [Bestvina and Handel 92]
will be our main tool. Recall that an outer automor-
phism ω of a free group F is called reducible if there are
proper free factors F1, . . . , Fr of F such that ω permutes
the conjugacy classes of the Fis and F1 ∗ · · · ∗Fr is a free

factor of F ; ω is irreducible if it is not reducible. Also,
note that π1G is a finitely generated free group, and that
a homotopy equivalence f : G → G induces an outer au-
tomorphism of π1G.

Theorem 2.1. [Bestvina and Handel 92, Theorem 4.1]
Let ω be an outer automorphism of a finitely generated
free group F . Suppose that each positive power of ω is
irreducible and that there is a nontrivial word s ∈ F

such that ω preserves the conjugacy class of s (up to in-
version). Then ω is geometrically realized by a pseudo-
Anosov homeomorphism φ : S → S of a surface with one
puncture.

Remark 2.2. If f : G → G is a train track map that
induces an outer automorphism ω as in Theorem 2.1,
then the transition matrix of f is irreducible, and the
growth rate of f is the same as the pseudo-Anosov growth
rate of φ.

Moreover, if f : G → G is a train track map such that
all positive powers of its transition matrix M are irre-
ducible, then all positive powers of the induced outer au-
tomorphism ω are irreducible [Bestvina and Handel 92].

Remark 2.3. The proof of Corollary 4.3 uses an explicit
construction of invariant foliations for pseudo-Anosov
maps. This construction is straightforward but too long
to be reviewed in this note; we point the reader to [Bestv-
ina and Handel 95] for details.

3. MOTIVATION

Warning 3.1. The discussion in this section is not sup-
posed to present any rigorous mathematical reasoning.
Rather, the purpose of this section is to explain the ori-
gin of the technical definitions and computations of Sec-
tion 4.

One crucial tool in the development of the intu-
ition behind Theorem 4.2 was XTrain [Brinkmann 00,
Brinkmann and Schleimer 01], a software package that
implements algorithms from [Bestvina and Handel 92,
Bestvina and Handel 95], among others. In particular,
the software allows users to define homeomorphisms of
surfaces with one puncture as a composition of Dehn
twists with respect to the curves shown in Figure 2.
When computing Dehn twists, we adopt the following
convention: we equip the surface with an outward point-
ing normal vector field. When twisting with respect to a
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FIGURE 2. Generators of the mapping class group.

curve c, we turn right whenever we hit c. We denote by
Dc the twist with respect to c.

The software represents a surface homeomorphism φ

of a punctured surface S as a homotopy equivalence f

of a graph G that is embedded in (as well as homotopy
equivalent to) S. There exists a loop σ in G that cor-
responds to a short loop around the puncture of S. In
particular, f preserves the free homotopy class of σ (up
to orientation).

The first ingredient is the observation that a homeo-
morphism of a surface of genus g given by

φg = Dc0 · · ·Dcg−1Dd0 · · ·Ddg−1 (3–1)

can be represented by a train track map of a graph Hg, as
in Figure 3, such that x0 �→ x1, x1 �→ x2, . . . , x2g �→ x−1

0

with σg = x0x1 · · ·x2gx
−1
0 x−1

1 · · ·x−1
2g . Note, in particu-

lar, that this map cyclically permutes the edges of Hg

(up to orientation).
The second ingredient comes from certain PV-

automorphisms ψn [Stallings 82] of a free group F =
〈y0, . . . , yn〉 given by y0 �→ y1, y1 �→ y2, . . . , yn �→ y0y1.
Mathematically, these automorphisms are very different

x0

x1

x2

x2g

...

FIGURE 3. The graph Hg.

from the maps constructed earlier in this section (after
all, PV automorphisms are nongeometric and of exponen-
tial growth, whereas the maps of the previous paragraph
are geometric and periodic).

Superficially, though, these two classes of maps look
strikingly similar. Moreover, the growth rates of the
maps ψn converge to one. These two observations
prompted me to investigate maps that are built from
blocks as in Equation (3–1). Maps of surfaces of genus
2k of the form

φk =Dc0 · · ·Dck−1Dd0 · · ·
Ddk−1(Dck

· · ·Dc2k−1Ddk
· · ·Dd2k−1)

−1

turned out to be pseudo-Anosov with rather small growth
rates. Computer experiments suggested that the growth
rates of these maps converge to one, and the same ex-
periments suggested that train tracks representing these
maps conform to a describable pattern, which gave rise
to Definition 4.1 and Theorem 4.2. Notice how Defini-
tion 4.1 seems reminiscent of both PV automorphisms as
well as homeomorphisms as in Equation (3–1).

4. THE SEQUENCE

Motivated by the discussion of Section 3, we now define
a sequence of surface homeomorphisms.

Definition 4.1. Let k ≥ 1 be an integer, and let the graph
Gk be as in Figure 4. We define a map fk : Gk → Gk by
letting

a �→ ax0y0

b �→ by−1
0 x−1

0

c �→ d

d �→ dy1x0

x0 �→ x1

x1 �→ x2

...

x2k−1 �→ a−1by−1
0

y0 �→ y1

y1 �→ y2

...

y2k−1 �→ c−1b.
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FIGURE 4. The graph Gk.

Finally, let

σk =x0y0x1y1 · · ·x2k−1y2k−1a
−1by−1

0 c−1d

x−1
2k−1b

−1cx−1
2k−2y

−1
2k−1x

−1
2k−3y

−1
2k−2 · · ·x−1

0 y−1
1 d−1a.

We are now ready to state and prove the main result
of this note.

Theorem 4.2. The sequence of maps fk : Gk → Gk is
a sequence of homotopy equivalences induced by pseudo-
Anosov maps φk : S2k → S2k of surfaces of genus 2k with
one puncture. If λk is the pseudo-Anosov growth rate of
φk, then

lim
k→∞

λk = 1.

Proof: A number of tedious but straightforward checks
yield the following facts:

1. The maps fk are train track maps.

2. All positive powers of the transition matrix Mk of
fk are irreducible.

3. The map fk preserves the free homotopy class of the
loop σk.

Hence, by Theorem 2.1 and Remark 2.2, the outer
automorphism induced by fk is induced by a pseudo-
Anosov map φk : Sk → Sk, and a quick computation of

Euler characteristics shows that the genus of Sk is 2k.
Finally, a simple induction shows that the characteristic
polynomial of the transition matrix Mk is of the form

χ(λ) = (λ − 1)2(λ4k+2 − λ4k+1 − 4λ2k+1 − λ + 1).

Solving for the growth rate λk, we obtain

λk = 1 + λ4k+2
k − λ4k+1

k − 4λ2k+1
k . (4–1)

Note that the polynomial χ is palindromic (this is no
surprise, as fk is induced by a surface homeomorphism),
i.e., χ(λ) = λ4k+4χ( 1

λ ). Hence, Equation (4–1) also holds
for λ−1

k :

λ−1
k = 1 + λ

−(4k+2)
k − λ

−(4k+1)
k − 4λ

−(2k+1)
k

≥ 1 − λ
−(4k+1)
k − 4λ

−(2k+1)
k . (4–2)

Recall that λ−1
k < 1. Let 0 < u < 1 be some real

number. We have limk→∞ 1 − u4k+1 − 4u2k+1 = 1,
which implies that u only satisfies Inequality (4–2) for
finitely many values of k. Hence, for any such u, the set
{λk|λ−1

k < u} is finite. This immediately implies that
limk→∞ λ−1

k = 1, hence

lim
k→∞

λk = 1.

Corollary 4.3. The maps φk : S2k → S2k from Theo-
rem 4.2 can be extended to pseudo-Anosov maps of closed
surfaces. The growth rates of the extended maps are the
same as those of the original maps.

Proof: A lengthy but straightforward computation of in-
variant foliations (see Remark 2.3) yields that the four
outer vertices of the graph in Figure 4 give rise to singu-
larities of index 1

2 − k, while the central vertex does not
give rise to any singularity. Hence, the sum of the indices
of all singularities coming from vertices of the graph is
2−4k, which is the Euler characteristic of a closed surface
of genus 2k.

Hence, the foliations have no singularity at the punc-
ture, which implies that the extension of φk to the closed
surface obtained by filling in the puncture is pseudo-
Anosov, with the same growth rate as φk.

5. NOTE ADDED IN PROOF

I have since learned that Robert Penner previously con-
structed an explicit sequence of pseudo-Anosov maps
whose growth rates converge to one [Penner 91]. It is
my hope, however, that the construction in the current
article is sufficiently interesting to stand in its own right.
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