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Let G be a finite group. By Riemann’s Existence Theorem, braid
orbits of generating systems of G with product 1 correspond to
irreducible families of covers of the Riemann sphere with mon-
odromy group G. Thus, many problems on algebraic curves
require the computation of braid orbits. In this paper, we de-
scribe an implementation of this computation. We discuss sev-
eral applications, including the classification of irreducible fami-
lies of indecomposable rational functions with exceptional mon-
odromy group.

1. INTRODUCTION

Let G be a finite group and σ = (σ1, ..., σr) a tuple of
elements of G with σ1 · · ·σr = 1. The braid orbit of σ is
the smallest set of tuples from G that contains σ and is
closed under the braid operations

(g1, ..., gr)Qi = (g1, . . . , gi+1, g−1
i+1gigi+1 , . . . , gr)

(1–1)
for i = 1, ..., r − 1. Clearly, the unordered collection of
conjugacy classes C1, ..., Cr represented by the elements
of the tuple is an invariant of the braid orbit. This paper
describes a package of programs written in [GAP4 00]
for the computation of all braid orbits associated with
given classes C1, ..., Cr. We call it the BRAID program.
It is available at http://www.math.wayne.edu/~kaym/
research. An alternative approach has recently been
worked out by Klüners (Kassel), using MAGMA. A pre-
cursor was the HO-program of Przywara [Przywara 98]
which is now outdated.

Our interest in computing braid orbits comes from the
fact that they correspond to irreducible families of covers
of the Riemann sphere. This is a classical fact, used by
Hurwitz (who found Formula (1–1) and many algebraic
geometers since then. This connection to geometry is
briefly explained in Section 3.1. The version required for
the application to the Inverse Galois Problem was worked
out by Fried and Völklein [Fried and Völklein 91].
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However, there are also purely group-theoretic appli-
cations of our braid program, e.g., to find generators of a
given group with prescribed element orders. Most ap-
plications have been in geometry and number theory,
though, via the connection to covers. Covers of P1 de-
fined over Q yield Galois realizations of G over Q via
Hilbert’s irreducibility theorem—the braid program is
needed to find suitable covers for which the criteria of
Inverse Galois Theory apply. A good example of that is
Malle’s construction [Malle 00] of multiparameter poly-
nomials with various small Galois groups. His L3(2)-
polynomial is used as an example in Section 3.4 below to
obtain a generic rational function of degree 7 with mon-
odromy group L3(2). Another example is Matzat’s real-
ization [Malle and Matzat 99], III, 7.5, of M24, for which
Granboulan [Granboulan 96] computed an explicit poly-
nomial. A further example is the realization of symplectic
groups Sp(n, q) by Thompson and Völklein [Thompson
and Völklein 98] which depends on the fact that the pure
braid operations (2–1) generate an abelian group of per-
mutations of the corresponding braid orbit (mod conju-
gation). There are numerous other applications to the
Inverse Galois Problem; see [Malle and Matzat 99] and
[Völklein 96].

There are also applications to problems about the ge-
ometry of algebraic curves and their moduli spaces Mg.
For example, in [Magaard et al. 02] the authors study
the locus in Mg of curves with given “large” automor-
phism group G. The irreducible components of that lo-
cus correspond to certain braid orbits in G. The BRAID
program enabled us to completely classify these compo-
nents for g ≤ 10 and compute the genus of those that are
one-dimensional.

In this paper, we describe the application to classi-
fying the irreducible families of indecomposable rational
functions with monodromy group other than Sn or An. A
generating system σ1, . . . , σr of a transitive permutation
group G with σ1 · · ·σr = 1 is called a genus zero system
if the corresponding covers of P1 have genus 0, i.e., are
given by a rational function f(x) ∈ C(x). The function
f is indecomposable (with respect to composition) if and
only if G is primitive. In this case, we say σ1, . . . , σr is
a primitive genus zero system. There is a huge variety
of such systems that generate Sn or An, too many to
be classified. Those functions with smaller monodromy
group satisfy interesting identities and therefore, it seems
desirable to have a complete classification of their irre-
ducible families.

Thus, we need to compute all braid orbits of genus zero
systems in primitive permutation groups G other than

An or Sn. It follows from the proof of the Guralnick-
Thompson Conjecture (see [Frohardt and Magaard 01])
that only finitely many groups G occur. The complete
list is being worked out by Frohardt, Guralnick, Maga-
ard, and Shareshian [Frohardt et al. 03], [Guralnick and
Shareshian 03] (project nearly completed). The small-
est group that occurs is G = L3(2) (acting on 7 points).
We study this example in Section 3.4. In Section 3.5, we
present all braid orbits of genus zero systems of length
≥ 5 in almost simple groups other than An or Sn. The
remaining cases (systems of length 3 and 4) will be col-
lected in a data base; there are too many of them to be
displayed here.

Another application of the BRAID program was given
in [Magaard and Völklein 03]. We say a tuple σ1, . . . , σr

in Sn has full moduli dimension if the corresponding fam-
ily of covers contains the general curve of that genus. If
that holds and the genus is at least 4 then σ1, . . . , σr

generate Sn or An by work of Guralnick and others [Gu-
ralnick and Magaard 98], [Guralnick and Shareshian 03].
In genus 2 and 3 there are several other possible cases. In
[Magaard and Völklein 03] it was shown that the general
curve of genus 3 has a cover to P1 of degree 7 with mon-
odromy group L3(2). The associated tuple consists of
9 involutions (with product 1) generating L3(2). There
is only one braid orbit of such tuples by [Magaard and
Völklein 03, Remark 5.1]. This requires an iterative ap-
plication of the BRAID program because the orbit is
too large for a direct computation. This iterative pro-
cedure for computing braid-orbits of long tuples in small
groups requires computing braid-orbits of (shorter) tu-
ples of product �= 1 (see Remark 2.2).

2. DESCRIPTION OF THE BRAID PROGRAM

2.1 Exact Formulation of the Problem

Fix an integer r ≥ 3.
The Artin braid group Br is defined by a presentation

on generators Q1, ..., Qr−1 and relations

QiQi+1Qi = Qi+1QiQi+1 and

QiQj = QjQi for |i − j| > 1.

Mapping Qi to the transposition (i, i + 1) extends to a
homomorphism κ : Br → Sr with kernel B(r), the pure
Artin braid group. It is generated by the

Qij = Qj−1 · · ·Qi+1 Q2
i Q−1

i+1 · · ·Q−1
j−1

= Q−1
i · · ·Q−1

j−2 Q2
j−1 Qj−2 · · ·Qi, 0 ≤ i < j ≤ r

(2–1)
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More generally, if P is a partition of {1, . . . , r}, let SP

be the stabilizer of P in Sr and set BP = κ−1(SP ). We
always choose P such that each block consists of all in-
tegers between the smallest and largest element of the
block. Thus, we can identify P with the list of the lengths
of its parts. BP is generated by the Qij with i, j not in
the same block of P , and the Qi with i, i+1 in the same
block.

Now let G be a finite group. Then Br acts on r-tuples
of elements of G with product 1 via Formula (1–1) above.
The orbits of this Br-action are called braid orbits. This
Br-action commutes with the action of Aut(G) on tuples
defined by

α(σ1, . . . , σr) = (α(σ1), . . . , α(σr))

for α ∈ Aut(G). Thus, Br permutes Aut(G)-orbits (as
well as Inn(G)-orbits) of tuples.

Note that in the Br-action on tuples (σ1, . . . , σr), the
conjugacy classes σG

1 , ..., σG
r are being permuted via the

map κ : Br → Sr. This yields an obvious simplifica-
tion in computing the braid orbit of a tuple (σ1, . . . , σr):
We only need to compute those tuples in the braid orbit
where the classes σG

1 , ..., σG
r occur in that given order. In

other words, we only compute the orbit of (σ1, . . . , σr)
under the subgroup of Br that stabilizes this order of the
conjugacy classes. This subgroup equals BP , where P is
the partition of {1, . . . , r} such that i and j lie in the
same block iff σi is conjugate σj .

The classes σG
1 , ..., σG

r have an important interpreta-
tion in terms of the associated covers (“distinguished in-
ertia group generators”; see [Völklein 96]). Thus, we con-
sider the following basic problem.

Problem 2.1. Let C1, ..., Cr be nontrivial conjugacy
classes of the finite group G. Let P be the partition
of {1, . . . , r} such that i and j lie in the same block iff
Ci = Cj . We want to compute the orbits of BP on the
set of Inn(G)-orbits on

E(C1, ..., Cr) = {(σ1, . . . , σr) : σi ∈ Ci, σ1 · · ·σr = 1}.

Further geometric information is furnished by the per-
mutations induced by certain of the generators of BP on
the braid orbit. So we record these permutations as we
construct the braid orbit. In the case r = 4, for example,
this information can be used to compute the genus of the
corresponding Hurwitz curve (see Section 3.2 below).

Remark 2.2. Modified versions of Problem 2.1 arise
where BP is replaced by a subgroup B′. For example,

B′ could be BP ′ for a partition P ′ finer than P , or it
could be an analogous subgroup of Br−1. The latter is
equivalent to acting on tuples of length r − 1 with prod-
uct �= 1. (Note that the braid group acts on tuples with
any fixed product by Formula (1–1)). Further choices
for B′ are the subgroups of the braid group induced by
the fundamental groups of certain curves on the config-
uration space (see [Dettweiler 99]); generators for some
of these groups can be found at http://www.iwr.uni-
heidelberg.de/groups/compalg/dettweil/papers.html.
(They have applications to the Inverse Galois Problem).
The BRAID program can easily be adapted to these
modified versions of Problem 2.1.

2.2 Program Input and Output

Problem 2.1 is solved by our main routine
AllBraidOrbits. To call this routine, choose a
tuple τ representing the classes C1, ..., Cr. (The tuple
τ need not have product 1.) The classes C1, ..., Cr

must be ordered such that if Ci = Cj with i < j,
then Ci = Ck for all i ≤ k ≤ j. The cardinality c of
E(C1, ..., Cr) is given by a well-known formula (see [Malle
and Matzat 99, Ch. I, Th. 5.8]) involving the values
on C1, ..., Cr of the irreducible characters of G. This
number c is called the structure constant associated with
C1, ..., Cr. It can be computed with the GAP command,
ClassStructureCharTable, once the character table of
G is available. Once c has been computed, we call our
main routine in the form

AllBraidOrbits("ProjectName",G, τ, P, c),

where ProjectName is any string that is used to label
the output files. Here, G has to be a permutation group
because many standard algorithms of GAP4 work only
in that case. The routine computes the BP -orbits on
E(C1, ..., Cr) mod Inn(G). For each orbit, it creates a file
containing a list of representatives of Inn(G)-orbits of the
tuples in the orbit, plus the permutations induced on the
orbit by the generators of BP and by the generators of
the pure braid group.

2.2.1 User-friendly version. G and τ are as above.
The routine

Braid(G,τ)

firstly computes the character table of G and uses it to
compute the structure constant c. For large G, this may
be time-consuming or not feasible at all (then the char-
acter table must be taken from some library). Further-
more, the program computes the partition P . Then it
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calls AllBraidOrbits, using always the same Project-
Name “TEMP.” The previous contents of that directory
is removed each time the routine is called. In the end, it
summarizes the output by listing all braid orbits found
that consist of tuples σ generating G. If r = 4, the genus
of the inner Hurwitz curve Hred

in (σ) and straight inner

Hurwitz curve H̃red
in (σ) are given for each of those orbits

(see Sections 3.1 and 3.2). A variation is the command

Braid(G,τ,U)

where U is a core-free subgroup of G of index n. Now
the routine calls AllBraidOrbits with G replaced by
its normalizer in Sn, where G is embedded in Sn via
its permutation representation on the cosets of U . If
r = 4, the genus of the Hurwitz curve Hred(σ) (relative
to this permutation representation) is given for each orbit
of tuples generating G.

2.3 Description of the Algorithm

At the beginning of its main loop, the AllBraidOrbits

routine collects a batch of random tuples from
E(C1, . . . , Cr). If one of these tuples does not belong
to a known (braid) orbit, a routine BraidOrbit is called
to generate the new orbit and add it to the list of known
orbits. Furthermore, the variable c is adjusted to be the
number of tuples in E(C1, . . . , Cr) which do not belong
to any one of the currently known orbits. When c = 0,
we are done.

One is mainly interested in those tuples from
E(C1, . . . , Cr) that generate G. However, we do not know
how to determine their number beforehand (in any effi-
cient way). That is why we are working with the larger
set E(C1, . . . , Cr) (whose cardinality c is given by the
structure constant formula). Here are some variations
on choosing the input value of c: Setting c to a very
large number, AllBraidOrbits is turned into an infinite
loop. The user breaks the loop when he is convinced that
all relevant orbits have been found. This avoids the ac-
tual computation of the structure constant. On the other
hand, by setting c below the actual size of E(C1, . . . , Cr),
one can skip the last few small orbits that are usually
irrelevant. For example, if only the orbits of generating
tuples are of interest, then one can quit once the number
of tuples unaccounted for is below |G/Z(G)| (the length
of an Inn(G)-orbit on generating tuples).

Hitting a particular small orbit with a random tuple is
not likely to happen quickly. Therefore, we implemented
a particular way of creating random tuples. It involves
maintaining a list of small subgroups generated by known
tuples, and trying to find more tuples in those subgroups.

For example, the case of 6-tuples of double transpositions
in A7 took about two hours using a purely random tu-
ple selection. Our current method cut this time to 30
minutes. In both cases, the program took 20 minutes to
account for about 90% of the tuples. So the time for find-
ing the last 10% was cut from 100 minutes to 10 minutes.

The routine BraidOrbit(σ) constructs the braid orbit
of a tuple σ. We use a Dixon-Schreier algorithm: Begin-
ning with σ, apply the generators of BP one by one to
the known tuples and check whether or not the image is
G-conjugate to one of them. If not, we append the new
tuple to the list. The routine terminates when no further
tuples can be produced.

The only difficulty is how to check efficiently whether
two given tuples are G-conjugate. To speed this up,
we use a fingerprinting technique. Fingerprints are se-
quences of numbers that can be quickly computed for a
tuple. Tuples with distinct fingerprints cannot be conju-
gate. Currently, fingerprints are realized as the orders (as
group elements) of certain random words in σ1, . . . , σr.
The fingerprints are stored along with the tuples. Access
to a tuple is via its fingerprint. Access to a fingerprint is
via a hash table, the address for which is formed from the
entries of the fingerprint. We remark that this method
works well for a large variety of groups G. Exceptions
are Frobenius groups and some p-groups.

2.4 A Sample Session: Tuples of Four Involutions in S3

gap> g:=SymmetricGroup(3);;
gap> t:=[(1, 2), (1, 2), (1, 2), (1, 2)];

gap> Braid(g,t);

Collecting 20 random tuples... done
Cleaning done; 20 random tuples remaining

Orbit 1:
Length=4
Generated subgroup size=6
Centralizer size=1
Remaining portion of structure constant=3
Cleaning current orbit... done; 1 random tuples remaining

Orbit 2:
Length=1
Generated subgroup size=2
Centralizer size=2
Remaining portion of structure constant=0
Cleaning current orbit... done; 0 random tuples remaining
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Summary: orbits of generating tuples

Orbit of Length 4
Inner Hurwitz curve genus = 0
Straight inner Hurwitz curve genus = 0

3. APPLICATIONS OF THE BRAID PROGRAM

3.1 Brief Explanation of the Background on Covers

Let P1 = C∪{∞} be the Riemann sphere. A cover of P1

(in the classical sense) is a compact Riemann surface X

together with a nonconstant analytic map f : X → P1

of finite degree. By Riemann’s Existence Theorem, f

can also be viewed as a morphism of complex algebraic
curves.

Consider such a cover f : X → P1 of degree n. It
has finitely many branch points p1, ..., pr ∈ P1 (points
whose preimage has cardinality less than n). Pick p ∈
P1 \ {p1, ..., pr}, and choose loops γi around pi such that
γ1, ..., γr is a standard generating system of the funda-
mental group Γ := π1(P1 \ {p1, ..., pr}, p) (see [Völklein
96, Thm. 4.27]); in particular, we have γ1 · · · γr = 1.
Such a system γ1, ..., γr is called a homotopy basis of
P1 \ {p1, ..., pr}. The group Γ acts on the fiber f−1(p)
by path lifting, inducing a transitive subgroup G of the
symmetric group Sn (determined by f up to conjugacy in
Sn). It is called the monodromy group of f . The images
of γ1, ..., γr in Sn form a tuple σ = (σ1, ..., σr) generat-
ing G. We say the cover f : X → P1 is of type σ. The
genus g of X depends only on σ, and is given by the
Riemann-Hurwitz formula

2 (n + g − 1) =
r∑

i=1

Ind(σi) (3–1)

where the index Ind(σi) of a permutation in Sn is n minus
the number of orbits.

A tuple σ = (σ1, ..., σr) of elements of Sn arises in
the above way from a cover of degree n if and only if
σ generates a transitive subgroup G and σ1 · · ·σr = 1
and σi �= 1 for all i. Call such a tuple admissible. The
significance of braid orbits comes from the following fact
(which follows from Nielsen’s theorem).

Theorem 3.1. Let σ and σ′ be admissible tuples generating
the same subgroup G of Sn. Suppose f : X → P1 is a
cover of type σ. Then f is of type σ′ if and only if the
braid orbits of σ and σ′ are conjugate under NSn

(G)/G.

Here, NSn
(G) is the normalizer of G in Sn. The action

of NSn
(G)/G on braid orbits comes from the fact that if

σ generates G, then Inn(G) fixes the braid orbit of σ (see
[Völklein 96, Lemma 9.4]).

The next important fact is that the covers of type σ

form an irreducible family. Here, we use the term “fam-
ily” in the nontechnical sense: Two covers are in the same
irreducible family if they can be continously deformed
into each other (keeping the branch points distinct). It
turns out that the covers of type σ are parametrized
(up to equivalence) by an irreducible variety, the Hur-
witz space H(σ). This is made precise in the theory of
Hurwitz spaces (= moduli spaces for covers of P1); see
[Fried and Völklein 91], [Völklein 96],[Völklein 94].

Two covers f : X → P1 and f ′ : X ′ → P1 are called
equivalent (respectively, weakly equivalent) if there is a
homeomorphism h : X → X ′ (respectively, a homeomor-
phism h : X → X ′ and an analytic automorphism g of
P1) such that f = f ′ ◦h (respectively, g ◦f = f ′ ◦h). The
automorphism group of P1 is PGL2(C) (group of frac-
tional linear transformations). It has a natural action on
the Hurwitz space H(σ). The quotient by this action is
the reduced Hurwitz space Hred(σ). It parametrizes the
covers of type σ up to weak equivalence. Summarizing:

Basic Fact. The covers of type σ are parametrized up to
equivalence (respectively, up to weak equivalence) by an
irreducible variety, the Hurwitz space H(σ) (respectively,
Hred(σ)). These varieties depend only on the braid orbit
of σ.

A cover f : X → P1 of type σ is a Galois cover if
and only if σ generates a regular subgroup G of Sn.
Pairs (f, µ), where f is a Galois cover of type σ and
µ : Deck(f) → G an isomorphism, are parametrized by
the inner Hurwitz space Hin(σ) (up to suitable equiva-
lence). This also is an irreducible variety. Its quotient by
PGL2(C) is the inner reduced Hurwitz space Hred

in (σ). It
is the inner Hurwitz space that is of foremost importance
for the Inverse Galois Problem (see [Fried and Völklein
91]). There is another version of it, the straight inner
Hurwitz space H̃in(σ) that parametrizes pairs (f, µ) to-
gether with an ordering of the branch points of f . It also
has a reduced version H̃red

in (σ).

If σ has length r ≤ 3, then Hred(σ) and Hred
in (σ)

consist just of a single point. If r = 4, then these reduced
Hurwitz spaces are curves. In the next section, we show
how to compute their genus.
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3.2 The Genus of the Reduced Hurwitz Curve
in the Case r = 4

In this section, we look at the case r = 4. The braid group
B4 =< Q1, Q2, Q3 > acts on Inn(G)-orbits of admissible
4-tuples from G via its quotient B4 defined by the extra
relations

Q1Q2Q
2
3Q2Q1 = 1 = Q2

1Q
−2
3 .

The structure of B4 has been determined by Thompson
[Thompson 94]. We denote the image of Qi in B4 by the
same symbol, for simplicity. The elements γ0 = Q1Q2

and γ1 = Q1Q2Q1 of B4 have order 3 and 2, respectively.
The elements Q1Q

−1
3 and (Q1Q2Q3)2 generate a normal

Klein 4-group V in B4, and B4/V is the free product of
the images of < γ0 > and < γ1 >.

Fix an admissible 4-tuple σ = (σ1, ..., σ4), and let G ⊂
Sn be the group generated by σ. Two 4-sets (unordered
4-tuples) of points of P1 are PGL2(C)-conjugate if and
only if they have the same j-invariant (which can be any
complex number). The covers f of type σ whose branch
points have fixed j-invariant �= 0, 1 are parametrized, up
to weak equivalence, by the set F of V-orbits of NSn

(G)-
orbits of 4-tuples in the braid orbit of σ. (Follows from
the theory outlined in Section 3.1, plus the fact that the
stabilizer in PGL2(C) of any 4-set with j-invariant �= 0, 1
is a Klein 4-group). From this, one obtains an explicit
description of the Hurwitz curve Hred(σ) parametrizing
the covers of type σ (up to weak equivalence). It arises as
covering of P1 with branch points at 0, 1,∞ whose gen-
eral fiber is in 1-1 correspondence with F . The triple of
permutations associated with this covering (by Section
3.1) is given by the action on F of γ0, γ1 and γ∞ := Q2

(see [Bailey and Fried 02, Prop. 4.4] and [Debes and
Fried 99, Prop. 6.5]). From this, we can compute
the genus of Hred(σ) by the Riemann-Hurwitz Formula
(2–1). The case of the inner reduced Hurwitz curve
Hred

in (σ) is analogous, with F replaced by the set of V-
orbits of Inn(G)-orbits of 4-tuples in the braid orbit of σ.

3.3 Indecomposable Rational Functions
and Primitive Genus Zero Systems

Here, we are concerned with covers f : X → P1 where
X has genus 0. Then we can identify X with P1, so
we consider covers f : P1 → P1. If such a cover has
degree n, then it is given by a rational function of degree
n, i.e., f(x) = P (x)/Q(x) where P and Q are complex
polynomials with n = max(deg(P ),deg(Q)). Then the
monodromy group G of f is isomorphic (as a permutation
group) to the Galois group of the polynomial P (x) −

tQ(x) over C(t). By the Riemann-Hurwitz formula (2–
1), genus 0 covers correspond to the following kind of
tuples:

Definition 3.2. A genus zero system in Sn is a tuple
(σ1, ..., σr) generating a transitive subgroup G of Sn such
that σ1 · · ·σr = 1 and σi �= 1 (for all i) and

2 (n − 1) =
r∑

i=1

Ind(σi).

It is called a primitive genus zero system if G is primitive.

Thus, by Section 3.1, irreducible families of rational
functions in C(x) of degree n with monodromy group
G ⊂ Sn correspond to NSn

(G)/G-orbits of braid orbits
of genus zero systems generating G. The family consists
of indecomposable functions if and only if G is primitive.
Here “indecomposable” means that the function is not
the composition f1(f2(x)) of two functions of degree > 1.

There is a huge number of genus zero systems that
generate Sn or An, too many to be classified. The “gen-
eral” rational function has monodromy group Sn. Those
functions with smaller monodromy group satisfy interest-
ing identities and therefore it seems desirable to have a
complete classification of their irreducible families. They
correspond to the primitive genus zero systems that gen-
erate a permutation group G other than Sn or An. The
smallest case is G = L3(2) (acting on 7 points). It has
the most braid orbits of genus zero systems. We discuss
this example in the following section.

3.4 Example: Genus Zero Systems for the Action of
G = L3(2) on Seven Points

The braid orbits of such tuples are listed in Table 1. We
note there is exactly one braid orbit B6 of tuples of length
6; all the others consist of shorter tuples.

Replacing the last two entries of a tuple σ by their
product is called “Coalescing the tuple.” Geometrically,
this means that we merge (or “coalesce”) the last two
branch points of the associated cover. The family corre-
sponding to the coalesced tuple σ′ lies in the boundary
of the original family; in other words, the generic cover
of type σ′ arises by specialization of the generic cover of
type σ.

One checks that each of the orbits �= B6 in Table 1
contains a tuple that arises by a sequence of such coa-
lescing operations from a tuple of length 6. This means
that there is essentially only one family of rational func-
tions of degree 7 with monodromy group G = L3(2). The
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classes C1, ..., Cr length of orbits number of orbits genus straight genus
(2A, 2A, 2A, 2A, 2A, 2A) 1680 1

(2A, 2A, 2A, 2A, 3A) 216 1
(2A, 2A, 2A, 2A, 4A) 192 1

(2A, 2A, 2A, 7A) 7 1 0 0
(2A, 2A, 2A, 7B) 7 1 0 0
(2A, 2A, 3A, 3A) 30 1 0 2
(2A, 2A, 3A, 4A) 24 1 0 1
(2A, 2A, 4A, 4A) 24 1 0 1

(2A, 3A, 7A) 1 1
(2A, 3A, 7B) 1 1
(2A, 4A, 7A) 1 1
(2A, 4A, 7B) 1 1
(3A, 3A, 4A) 1 4
(3A, 4A, 4A) 1 2
(4A, 4A, 4A) 1 4

TABLE 1. Genus zero systems for the action of G = L3(2) on 7 points.

generic function in this family has 6 branch points, and
on the boundary we have functions with 3, 4, or 5 branch
points. We can extract an explicit form of such a generic
function from [Malle 00, Thm. 4.3]:

3.4.1 Generic function of degree 7 with monodromy
group L3(2).

f(x) =
P (x)

x2(x − c)(x2 − bx + b)
,

where

P (x) = x7 − (a(c − 2) + 2b + c)x6 + (−(b − 4)(c − 1)a2

+ ((c − 2)b2 + (2c2 − 5c + 4)b − 2 c2)a

+ b(2bc + 2c2 + b2))x4

+ ((2 c2 − 1) (b − 4) a2 + ((−2 c2 + c + 2) b2

+ (5c2 + 2c − 4)b − 4c2)a

− (c + 1)b3 − c(2 c + 3)b2 + c2b)x3

+ ((c2 + 3 c − 1) (4 − b) a2

+ ((3 c − 2)b2 − 2(c2 + 4 c − 2)b + 4 c2) a

+ b(b2 + 3 bc − c2))cx2

+ (2abc − 8ac + ab − 4a − b2 + 2bc)ac2x

− a2(b − 4)c3.

Replacing a function g(x) by α(g(β(x)) with α, β ∈
PGL2(C) does not change the monodromy group. So the
functions we are interested in are only determined up
to coordinate change. (Weak equivalence of covers, see
above.)

To illustrate the interplay between these functions and
the group-theoretic data in Table 1, we consider the spe-
cialization b = 0. The resulting function y = h(x) still
has degree 7. It has poles of order 4,2,1 at x = 0,∞, c,
respectively. Thus the corresponding tuple σ contains an
element of cycle type (4)(2) (corresponding to the branch
point y = ∞). Thus the monodromy group of h(x) is still
L3(2) (since it is a transitive subgroup of L3(2) contain-
ing an element of order 4). The ramification index at a
point x = x0 not over y = ∞ equals one plus the multi-
plicity of the zero x = x0 of the derivative h′(x). Here
we can replace h′(x) by its numerator (when it is written
as a rational function in reduced form). This numerator
is a lengthy expression of degree 8 in x. But its discrim-
inant with respect to x factors nicely as 16777216 c16 a9

times the cube of the following expression (3–2) times
the square of another (slightly longer) expression that
we don’t display here:

4 a2 c4 + 8 a c4 + 4 c4 − 4 a2 c3 − 36 c3 a + a3 c2 + 6 a2 c2

+ 16 c2 a − 2 a3 c − 8 c a2 + 2 a3 + 16 a2 (3–2)

The discriminant is nonzero, hence the above ramifi-
cation indices are all ≤ 2. It follows that σ consists of an
element of order 4 and four involutions (by Riemann-
Hurwitz). Thus, h(x) is the generic function in the
(2A, 2A, 2A, 2A, 4A)-family from Table 1.

Let’s see how we can further specialize h(x) by coalesc-
ing two of the finite branch points. By Table 1, this leads
to the (2A, 2A, 3A, 4A)- and the (2A, 2A, 4A, 4A)-family.
Both of those have ramification indices > 1 at certain
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points not over y = ∞. Hence these specializations anni-
hilate the above discriminant. The two factors, (3–2) and
the aforementioned longer expression, define genus zero
curves in the a, c-plane (checked by [Maple 00]). This cor-
responds nicely to the fact that the (2A, 2A, 3A, 4A)- and
the (2A, 2A, 4A, 4A)-family are parametrized by Hurwitz
curves of genus zero (see Table 1).

Incidentally, [Malle 00, Thm. 4.2] gives another ver-
sion of the generic function in the (2A, 2A, 2A, 2A, 4A)-
family. (He does not consider our version). One
can similarly specialize it to obtain two genus zero
curves parametrizing the (2A, 2A, 3A, 4A)- and the
(2A, 2A, 4A, 4A)-family.

3.5 Primitive Genus Zero Covers Branched
at ≥ 5 Points

Each finite group has a characteristic subgroup F ∗(G)
(called the generalized Fitting subgroup). If G is a primi-
tive permutation group, then F ∗(G) is a direct product of
isomorphic simple groups. Frohardt, Guralnick, and Ma-
gaard [Frohardt et al. 03] determine all primitive genus
zero systems generating a group G ⊂ Sn with F ∗(G) not
abelian and not a direct product of alternating groups.
The resulting list is finite, but too long to be shown in
tabular form. However, there are only a few cases with
r ≥ 5 (i.e., where the corresponding covers are branched
at 5 or more points). We list these in Table 2 and note
that for each choice of C1, ..., Cr, there is exactly one as-
sociated braid orbit (i.e., exactly one irreducible family
of genus zero covers).

The table was produced as follows. A series of reduc-
tions shows that the permutation degree of such a system
is at most 1000. It remains to search the GAP library
of primitive permutation groups of degree ≤ 1000. For
each such group G that satisfies our hypothesis, we find
all collections of conjugacy classes C1, ..., Cr that satisfy
the Riemann-Hurwitz formula (for g = 0). For each such
collection, we apply the BRAID program to find all braid
orbits of associated tuples.
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und ihre Anwendungen in der Galoistheorie.” PhD diss.,
Erlangen, 1999

[Fried and Guralnick 90] M. Fried and R. Guralnick. “On
Uniformization of Generic Curves of Genus g < 6 by
Radicals.” Unpublished manuscript, 1990.

[Fried and Völklein 91] M. Fried and H. Völklein. “The In-
verse Galois Problem and Rational Points on Moduli
Spaces.” Math. Annalen 290 (1991), 771–800.

[Frohardt et al. 02] D. Frohardt, R. Guralnick, and K. Ma-
gaard. “Genus Zero Actions of Groups of Lie Rank 1.”
Proc. Symp. Pure Math. 70 (2002), 449–483.

[Frohardt et al. 03] D. Frohardt, R. Guralnick, and K. Maga-
ard. “The Primitive Genus Zero Systems Involving Non-
alternating, Nonabelian Simple Groups.” Preprint, 2003.



Magaard et al.: A GAP Package for Braid Orbit Computation and Applications 393

[Frohardt and Magaard 01] D. Frohardt and K. Magaard.
“Composition Factors of Monodromy Groups.” Annals
of Math. 154 (2001), 1–19.

[GAP4 00] The GAP Group. GAP—Groups, Algorithms,
and Programming, Version 4.2. Available from World
Wide Web (http://www.gap-system.org), 2000.

[Granboulan 96] L. Granboulan. “Construction d’une exten-
sion régulière de Q(t) de groupe de Galois M24.” Exp.
Math. 5 (1996), 3–14.

[Guralnick and Magaard 98] R. Guralnick and K. Magaard.
“On the Minimal Degree of a Primitive Permutation
Group.” J. Algebra 207 (1998), 127–145.

[Guralnick and Neubauer 95] R. Guralnick and M.
Neubauer. “Monodromy Groups and Branched Cover-
ings: The Generic Case.” Contemp. Math. 186 (1995),
325–352.

[Guralnick and Shareshian 03] R. Guralnick and J.
Shareshian. “Alternating and Symmetric Groups
as Monodromy Groups of Curves I.” Preprint, 2003.

[Magaard et al. 02] K. Magaard, S. Shpectorov, and H.
Völklein. “The Locus of Curves with Prescribed Au-
tomorphism Group.” In Communications in Arithmetic
Fundamental Groups, Proceedings of the RIMS workshop
held at Kyoto University Oct. 01, pp. 112–141. Kyoto:
Kyoto Univ. Research Inst. for Math. Sciences, 2002.

[Magaard and Völklein 03] K. Magaard and H. Völklein.
“The Monodromy Group of a Function on a General
Curve.” To appear in Israel Journal of Math., 2003.

[Malle 00] G. Malle. “Multi-Parameter Polynomials with
Given Galois Group.” J. Symb. Comp. 30 (2000), 717–
731.

[Malle and Matzat 99] G. Malle and B. H. Matzat. Inverse
Galois Theory. Berlin-Heidelberg-New York: Springer-
Verlag, 1999.

[Maple 00] Maple 6. Waterloo: Waterloo Maple Inc., 2000.

[Neubauer 93] M. Neubauer. “On Primitive Monodromy
Groups of Genus 0 and 1.” Comm. Alg. 21 (1993), 711–
746.

[Neubauer 92] M. Neubauer. “On Monodromy Groups of
Fixed Genus.” J. Algebra 153 (1992), 215–261.

[Przywara 98] B. Przywara. Braid Operation Software
Package, 2.0. Available from World Wide Web
(http://www.iwr.uni-heidelberg.de/ftp/pub/ho), 1998.

[Thompson 94] J. Thompson. “Note on H(4).” Comm. Alg.
22 (1994), 5683–5687.

[Thompson and Völklein 98] J. Thompson and H. Völklein.
“Symplectic Groups as Galois Groups.” J. Group Theory
1 (1998), 1–58.

[Völklein 96] H. Völklein. Groups as Galois Groups—An In-
troduction, Cambr. Studies in Adv. Math., 53. Cam-
bridge, UK: Cambridge Univ. Press, 1996.

[Völklein 94] H. Völklein. “Moduli Spaces for Covers of the
Riemann Sphere.” Israel J. Math. 85 (1994), 407–430.

Kay Magaard, Wayne State University, 656 W. Kirby Room 1150 Faculty/Adminstration Bldg., Detroit, MI 48202
(kaym@math.wayne.edu)

Sergey Shpectorov, Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403
(sergey@bgnet.bgsu.edu)

Helmut Völklein, University of Florida, Department Of Mathematics, 436 Little Hall, Gainesville, FL 32611-8105
(helmut@math.ufl.edu)

Received April 24, 2003; accepted May 8, 2003.


