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The values that the first two Vassiliev invariants take on prime
knots with up to fourteen crossings are considered. This leads
to interesting fish-like graphs. Several results about the values
taken on torus knots are proved.

‘First the fish must be caught.’
That is easy: a baby, I think, could have caught it.

– The Red Queen, Through the Looking Glass.

1. INTRODUCTION

The two simplest nontrivial Vassiliev knot invariants (see

[Vassiliev 92, Birman and Lin 93]) are of type two and

type three. These invariants have been studied from var-

ious angles: for instance, combinatorial formulæ for eval-

uating them have been derived, and simple bounds in

terms of crossing number have been obtained (see e.g.,

[Polyak and Viro 94, Lannes 93, Willerton 97]). In this

work, the invariants are examined from the novel per-

spective of the actual values that they take on knots of

small crossing number. For instance, one can ask how

accurate the known bounds are, as in Section 2. When

looking at this question I plotted the values of these in-

variants which revealed the interesting “fish” plots in Sec-

tion 3: these pictures form the focus of this paper. Vari-

ous questions arising from these graphs can be answered

for torus knots (see Section 4). Section 5 presents some

problems and further questions.

2. ON v2 AND v3.

The space of additive invariants of type three is two-

dimensional. By “the first two Vassiliev invariants,” we

mean the elements of a basis {v2, v3} of this space. The
invariants v2 and v3 can be defined canonically in the

following fashion. The space of additive invariants of type

three splits into the direct sum of type three invariants

which do not distinguish mirror image knots and the type

three invariants which differ by a factor of minus one on
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Crossing number 3 4 5 6 7 8 9 10 11 12
Maximum |v2| 1 1 3 2 6 5 10 9 15 14
Bound on |v2| 1.5 2 5 7.5 11.5 14 18 22.5 27.5 33
Maximum |v3| 1 0 5 1 14 10 30 25 55 49
Bound on |v3| 1.5 6 15 30 57.5 84 126 180 247.5 330

TABLE 1. Comparing actual maxima and minima of |v2| and |v3| with the bounds of Section 2.

mirror image knots. Pick the vector in each of these

one-dimensional spaces that takes the value one on the

positive trefoil. The one which is invariant under taking

mirror images is of type two and will be denoted v2; the

other will be denoted v3.

The invariant v2 has appeared in various guises pre-

viously in knot theory: it is the coefficient of z2 in the

Conway polynomial, and its reduction modulo two is the

Arf invariant. Both v2 and v3 can be obtained from the

Jones polynomial in the following fashion. If J(q) is the

Jones polynomial of a knot K, and J (n)(q) denotes the

nth derivative with respective to q, then

v2(K) = − 16J (2)(1), v3(K) = − 1
36

³
J (3)(1) + 3J (2)(1)

´
.

Combinatorial formulæ for v2 and v3 can be given in

terms of Gauß diagram formulæ–the reader is referred

to [Polyak and Viro 94, Willerton 97]. From the combi-

natorial formulæ, it is straightforward to obtain simple

bounds for v2 and v3 in terms of the crossing number, c,

of the knot, K: namely,

|v2(K)| ≤ 1
4 c(c− 1), |v3(K)| ≤ 1

4c(c− 1)(c− 2).

The first of these bounds was obtained by Lin and Wang

[Lin and Wang 96] and led Bar-Natan [Bar-Natan 95] to

prove that any type n invariant is bounded by a degree

n polynomial in the crossing number–this also follows

from Stanford’s algorithm [Stanford 97] for calculating

Vassiliev invariants. The bound for v3 was obtained in

[Willerton 97] by utilizing Domergue and Donato’s inte-

gration [Domergue and Donato 96] of a type three weight

system.

It is natural to ask how sharp these bounds are, and

it is this question that motivated this work. Stanford

has calculated Vassiliev invariants up to order six for

the prime knots up to ten crossings; the programs and

data files of these calculations are available as [Stan-

ford 92]. Thistlethwaite calculated various polynomials

for knots up to 15 crossings, which are available in the

knotscape program [Hoste and Thistlethwaite 99]. Us-

ing these data, one can compare the bounds on |v2| and
|v3| given above, with the actual maximum attained for

each crossing number–this comparison is made in Table

1. It is seen, that in this range of crossing numbers, the

bounds are not particularly tight.

By looking at the raw data, one can see that, in this

range, for odd crossing number (2b + 1), the maximum

is achieved precisely by the (2, 2b + 1)-torus knot, and

that this dominates the v2 and v3 of the (2b+2)-crossing

knots as well. Letting T (p, q) be the knot type of the

(p, q)-torus knot, Alvarez and Labastida [Alvarez and

Labastida 96] (see also Section 4 below) give explicitly

for crossing number c = 2b+ 1,

v2 (T (2, c)) = (c
2 − 1)/8, v3 (T (2, c)) = c(c

2 − 1)/24.
One could conjecture that these give bounds on v2 and

v3. After an earlier version of this paper, Polyak and

Viro [Polyak and Viro 01] showed that for a knot with c

crossings, v2 ≤ c2/8.

3. PLOTS FOR KNOTS WITH UP TO 14 CROSSINGS

Having stared at Stanford’s raw data long enough to start

noticing patterns, I was led to plot v2 against v3 for knots

of each crossing number up to crossing number 14. These

plots are contained in Figure 1 and Figure 2. The sym-

metry in the v2-axis is expected, as this is just the effect

of taking the mirror image of the knots. However, the

“fish” shape of these plots is not expected! This shape

suggests some bound of the form

cubic in v2(K) ≤ (v3(K))2 ≤ another cubic in v2(K).
Such bounds, independent of crossing number do, in fact,

exist for torus knots, as will be seen below. However, this

cannot be the case in general (unless the bounds depend

on the crossing number); we give two reasons.

First, consider the sequence of Whitehead doubles of

the unknot, {Wh(i)}i∈Z (see Figure 3). Table 2 gives the
value of v2 and v3 on these for a range of i. It follows

from the theorem of Dean [Dean 94] and Trapp [Trapp 94]

on twist sequences that a type n invariant evaluated on

the Whitehead doubles is a polynomial in i of degree at

most1 n. A glance at Table 2 shows that v2 (Wh (i)) = i

1In this case, Lin observed that it must be of degree at most
n− 1.
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FIGURE 1. Plots by crossing number of v2 and v3 for the prime knots up to 12 crossings.
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FIGURE 2. Plots by crossing number of v2 and v3 for the prime knots with 13 and 14 crossings.
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i full twists

FIGURE 3. The ith twisted Whitehead double of the
unknot, Wh(i). For i negative, i full twists means −i
negative twists.

and v3 (Wh (i)) =
1
2 i(i + 1). Thus, there is a sequence

of knots (all except the unknot having unknotting num-

ber equal to one) that maps into the (v2, v3)-plane as a

nice quadratic. This contradicts any bounds of the above

form.

Second, for any (a, b) ∈ Z2 one can obtain a prime
(alternating) knot with (v2, v3) equal to (a, b) in the fol-

lowing manner: connect some suitably many positive and

negative trefoil knots (with (v2, v3) = (1,±1)) and figure
eight knots (with (v2, v3) = (−1, 0)), to obtain a compos-
ite knot with (v2, v3) = (a, b); then Stanford [Stanford

96] gives a method for constructing a prime knot with

the same v2 and v3.

There does appear to be a qualitative difference be-

tween the pictures for odd and even crossing numbers in

Figures 1 and 2. The even crossing number ones seem to

be more concentrated in the ‘body’ of the ‘fish’ and the

odd ones more in the ‘tail’.

Note that for each odd crossing number, c, there

is the (2, c)-torus knot and the Whitehead double

Wh((c− 1) /2) with a (v2, v3) of
¡
(c− 1) /2, ¡c2 − 1¢ /8¢;

and for even crossing number, c, there is the

Whitehead double Wh(1 − c/2) with a (v2, v3) of

(1− c/2, (c− 2) c/8).
Also for up to 12 crossings the amphicheiral knots–

that is those equivalent to their mirror image, and hence

with v3 = 0–all have an even crossing number, but this

is not true in general, as the 15 crossing knot 15224980 is

amphicheiral.

i -3 -2 -1 0 1 2 3 4

Wh(i) 81 61 41 01 31 52 72 92

v2 (Wh(i)) -3 -2 -1 0 1 2 3 4

v3 (Wh(i)) 3 1 0 0 1 3 6 10

TABLE 2. The values of v2 and v3 on the twisted
Whitehead doubles of the unknot. The knot no-
tation, e.g. 31, refers to Alexander-Briggs notation
(see [Burde and Zieschang 85]).

4. TORUS KNOTS

The purpose of this section is to show that the torus knots

map into the (v2, v3)-plane in a nice manner. In par-

ticular, they satisfy cubic bounds of the form described

above, implying that they lie on the tails of the fish;

further, torus knots of the same unknotting number, or

crossing number, lie on nice curves in the (v2, v3)-plane.

The results of this section are summarized diagrammat-

ically in Figure 4.

For p and q coprime, let T (p, q) be the knot type of the

(p, q)-torus knot. Then T (p, q) is the unknot if and only if

p or q is ±1, and for T (p, q) nontrivial, T (p, q) is the same
knot as T (p0, q0) if and only if (p0, q0) equals one of the
following: (p, q), (q, p), (−p,−q), or (−q,−p). Further,
T (p,−q) is the mirror image of T (p, q). See [Burde and
Zieschang 85].

The key to this section is the following pair of formulæ

of Alvarez and Labastida [Alvarez and Labastida 96]:

v2(T (p, q)) =
1
24 (p

2 − 1)(q2 − 1),
v3(T (p, q)) =

1
144pq(p

2 − 1)(q2 − 1).

Note that these have the required properties under the

symmetries of p and q mentioned above, and that these

are integer valued on torus knots (i.e., when p and q are

coprime). Also, T 7→ (v2(T ), v3(T )) is injective for torus

knots, i.e., torus knots are determined by their (v2, v3).

4.1 Cubic Bounds

With the above formulæ of Alvarez and Labastida it is

straightforward to prove bounds for torus knots of the

form suggested in the last section.

Proposition 4.1. If T is a torus knot then

2
3v2(T )

3 + 1
3v2(T )

2 ≤ v3(T )2 ≤ 8
9v2(T )

3 + 1
9v2(T )

2.

Further, the righthand bound is tight in the sense that

there exist torus knots with arbitrarily large v2 and v3
such that equality holds.

Proof: Suppose that T is a (p, q)-torus knot. Then

v3(T )
2 − 2

3v2(T )
3 =

¡
1
144pq(p

2 − 1)(q2 − 1)¢2
− 2

3

¡
1
24 (p

2 − 1)(q2 − 1)¢3
= 1

124 (p
2 − 1)2(q2 − 1)2[p2 + q2 − 1]

≥ 1
123 (p

2 − 1)2(q2 − 1)2
as p2 + q2 ≥ 13

= 1
3v2(T )

2.
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FIGURE 4. Torus knots in the (v2, v3)-plane: (i) mapping torus knots from the (p, q)-plane into the region of the (v2, v3)-
plane given by Propositions 4.1 and 4.2; (ii) torus unknotting number curves for u = 1, . . . , 9 (see Section 4.2); (iii) torus
crossing number curves for c = 3, 5, . . . , 17 (see Section 4.3).

Hence, the first inequality holds (with equality only in

the case of trefoil knots).

For the second inequality,

8
9v2(T )

3 − v3(T )2 = 8
9

¡
1
24 (p

2 − 1)(q2 − 1)¢3
− ¡ 1

144pq(p
2 − 1)(q2 − 1)¢2

= 1
4.27

£
1
24 (p

2 − 1)(q2 − 1)¤2
× ©4(p2 − 1)(q2 − 1)− 3p2q2ª

= 1
4.27v2(T )

2
©
(p2 − 4)(q2 − 4)− 12ª

≥ 1
4.27v2(T )

2{−12} = − 19v2(T )2.

Note that equality occurs precisely when T is a

(2, q)-torus knot.

Although the lefthand bound has the correct asymp-

totic behaviour, a different form of cubic is required for

a tight bound.

Proposition 4.2. For a torus knot T ,

2
3v2(T )

3 + 1
3v2(T )v3(T ) ≤ v3(T )2,

and this bound is tight in the sense of the previous propo-

sition.
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Proof: Using the notation of the previous proof,

v3(T )
2 − 2

3v2(T )
3 − 1

3v2(T )v3(T )

= 1
36.242 (p

2 − 1)2(q2 − 1)2 ¡(p− q)2 − 1¢
≥ 0,

with equality if and only if T is a (p, p+1) torus knot.

Given that half the torus knots (those with positive

v3) can be thought of as lying in the region q > p >

0 in the (p, q)-plane, these bounds are not surprising.

Graphically, this can be seen in Figure 4.

4.2 Torus Knots and Unknotting Number

By Kronheimer and Mrowka’s [Kronheimer and Mrowka

93] positive solution to the Milnor conjecture, the follow-

ing formula is known for the unknotting number, u, of

torus knots:

u(T (p, q)) = 1
2 (|p|− 1) (|q|− 1) .

As a consequence, the following easily verifiable relation-

ship is obtained:

Proposition 4.3. For a torus knot T,

v2(T )
2 + 1

6u(T )(u(T )− 1)v2(T ) = u(T )|v3(T )|,

and given v2(T ) and v3(T ), then u(T ) is the smaller of

the two roots.

So for a fixed unknotting number, the torus knots lie on a

quadratic in the (v2, v3)-plane (c.f., the Whitehead knots

in Section 3). This is pictured in Figure 4. The segments

of curves shown were chosen by the following proposition.

Proposition 4.4. For a torus knot T ,

1
2u(T )(u(T ) + 1) ≥ v2(T )

≥ 1
6u(T )

³
u(T ) +

p
8u(T ) + 1 + 2

´
,

and both bounds are tight.

Proof: If T is a (p, q)-torus knot, then a minimal amount

of manipulation gives

1
2u(T )(u(T ) + 1)− v2(T )

= 1
12 (|p|− 1)(|q|− 1)(|p|− 2)(|q|− 2)

≥ 0,

with equality if and only if T is a (2, q)-torus knot.

For the righthand bound, first let a and b be distinct

positive integers, then (a− b)2 ≥ 1, so (a+ b)2 ≥ 4ab+1,
and thus a+ b ≥ √4ab+ 1, with equality precisely when
a and b differ by one.

Now for T , a (p, q)-torus knot,

v2(T )− 1
6u(T )

³
u(T ) +

p
8u(T ) + 1 + 2

´
= 1

12 (|p|− 1)(|q|− 1)
×
n
|p|+ |q|− 2−

p
4(|p|− 1)(|q|− 1) + 1

o
≥ 0,

by setting a = |p|−1, b = |q|−1 in the above paragraph.
Note that equality occurs precisely when T is a (p, p+1)-

torus knot.

If we weaken the righthand bound to v2 ≥
1
6u(T )(u(T ) + 5) and invert the inequalities, we have the

following corollary.

Corollary 4.5. For a torus knot T ,p
1 + 8v2(T )− 1 ≤ 2u(T ) ≤

p
24v2(T ) + 25− 5,

and the lefthand bound is tight (in the sense of Proposi-

tion 4.1).

4.3 Torus Knots and Crossing Number

In the work of Murasugi [Murasugi 91], a similar formula

can be found for the crossing number, c, of torus knots:

c(T (p, q)) = |q|(|p|− 1), when |p| < |q|.

This leads to the following relation:

Proposition 4.6. If T is a torus knot, and ρ(T ) =¯̄̄
6v3(T )
v2(T )

¯̄̄
, then

24v2(T )(c(T )− ρ(T ))2

= c(T )
³
(c(T )− ρ(T ))2 − 1

´
(2ρ(T )− c(T )) ,

and

c(T ) = ρ(T )− 1
2

³p
(ρ(T )− 1)2 − 24v2(T )

+
p
(ρ(T ) + 1)2 − 24v2(T )

´
.

Proof: This is easily verified; note that if T is a (p, q)-

torus knot, then ρ(T ) = |pq| and c(T )− ρ(T ) = |q|.
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This isn’t as nice a relationship as with the unknotting

number: for a fixed crossing number, the relationship is a

not particularly nice quartic between v2 and v3. However,

the crossing number curves can still be graphed, as in

Figure 4–the length of arc segments plotted there being

determined by the following proposition.

Proposition 4.7. For a torus knot T ,

1
8

¡
c(T )2 − 1¢ ≥ v2(T )

≥ 1
24c(T )

³
c(T ) + 1 + 2

p
c(T ) + 1

´
,

and these bounds are tight (in the sense of Proposi-

tion 4.1).

Proof: Suppose that T is a (p, q)-torus knot with q >

p > 0 (this just avoids excessive modulus signs in the

calculation), then for the lefthand bound,

1
8

¡
c(T )2 − 1¢− v2(T )
= 1

24

n
3
³
[q(p− 1)]2 − 1

´
− (p2 − 1)(q2 − 1)

o
= 1

24

©
2q2p2 − 6q2p+ 4q2 + p2 − 4ª

= 1
24 (p− 2)

©
(2q2 + 1)(p− 1) + 3ª

≥ 0,
and equality occurs precisely when T is a (2, q)-torus

knot.

For the righthand bound,

24v2(T )− c(T )
³
c(T ) + 1 + 2

p
c(T ) + 1

´
= (p2 − 1)(q2 − 1)− q(p− 1)
×
³
q(p− 1) + 1 + 2

p
q(p− 1) + 1

´
= (p− 1)

n
2q2 − q − 1− p− 2q

p
qp− q + 1

o
,

and claim that this is nonnegative and is zero precisely

when q = p+ 1.

To prove the claim, note

(q − 1)2 = q(q − 1)− q − 1 ≥ qp− q − 1
as q − p− 1 ≥ 0, and so also

(q − 1)2 + 2(q−1)(q−p−1)
2q +

h
q−p−1
2q

i2
≥ qp− q − 1 > 0.

Thus, by taking square roots,

(q − 1) + q−p−1
2q ≥

p
qp− q − 1,

from which the claim follows on multiplying through by

2q.

Weakening the righthand bound to v2 ≥ 1
24c(c + 5)

and inverting gives

Corollary 4.8. For a torus knot T

1
24

³p
25 + 96v2(T )− 5

´
≥ c(T ) ≥ 2

p
8v2(T ) + 1,

and the righthand bound is tight in the previous sense.

5. PROBLEMS AND FURTHER QUESTIONS

Problem 5.1. Does the fish pattern persist in the graphs
of knots with higher crossing number?

Problem 5.2. Is there some qualitative distinction be-

tween knots with odd and even crossing number which

explains the perceived difference in the fish?

Problem 5.3. Is there any relationship with unknotting
number? Note that the n-fold connect sum of 814 has

unknotting number n and (v2, v3) = (0, 0). (Stoimenov

pointed this out to me.)

Problem 5.4. For a knot K with (6|v3(K)|− |v2(K)|)2 ≥
24v2(K)

3, let ρ(K) = 6|v3(k)/v2(K)| and then define
the pseudo-unknotting number, ũ(K), and the pseudo-

uncrossing number, c̃(K), by

ũ(K) := 1
2

³
1 + ρ(K)−

p
(1 + ρ(K))2 − 24v2(K)

´
;

c̃(K) := ρ− 1
2

³p
(1 + ρ(K))2 − 24v2(K)

+
p
(1− ρ(K))2 − 24v2(K)

´
.

For torus knots, the pseudo-unknotting and pseudo-

crossing numbers coincide with the usual unknotting and

crossing numbers. Do they have any meaning for other

knots? Does the necessary bound for K have any topo-

logical interpretation?

As an example, consider the Whitehead knots Wh(i),

for i > 0 these all have unknotting number equal to one.

In this case ũ(Wh(1)) = 1, and ũ(Wh(i))→ 2 as i→∞.

6. RELATED WORK

Since an early version of this paper was circulated, Das-

bach, Le, and Lin [Dasbach et al. 01] have considered

the fish phenomenon from the point of view of the Jones

polynomial evaluated at roots of unity for knots with 13

and 14 crossings, and Okuda [Okuda 02] has examined

the plots of v2/c
2 versus v3/c

3 (where c is the crossing
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number) for various infinite families of knots, although,

at the time of writing, I have not seen this work.
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