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An algorithm for computing the elements of a given weight of
the canonical basis of a quantized enveloping algebra is de-
scribed. Subsequently, a similar algorithm is presented for com-
puting the canonical basis of a finite-dimensional module.

1. INTRODUCTION

Since the invention of canonical bases of quantized en-

veloping algebras, one of the main problems has been to

establish what they look like. Explicit formulas are only

known in a few cases corresponding to root systems of

low rank, namely A1 (trivial), A2 ([Lusztig 90]), A3 ([Xi

99a]), and B2 ([Xi 99b]). Furthermore, there is evidence

suggesting that for higher ranks the formulas become so

complicated that an explicit description is virtually im-

possible (see [Carter 97]). Therefore, it is natural to start

less ambitiously, and try to find part of the canonical

basis, say the part consisting of all elements of a given

weight. We will describe an algorithm for computing the

elements of a given weight of the canonical basis of the

negative part of the quantized enveloping algebra of a

finite-dimensional semisimple Lie algebra. We will also

give an algorithm for computing the canonical basis of a

finite-dimensional module.

To the best of my knowledge, two algorithms for com-

puting canonical bases of modules are known. In [Leclerc

and Toffin 00] an algorithm is described for computing

the canonical basis of a Uq(sln)-module, and [Marsh 96]

contains an algorithm for computing the canonical ba-

sis of a fundamental module, when the root system is of

type A − D. Our approach differs from the ones taken

in [Leclerc and Toffin 00], [Marsh 96] in that we work

with PBW-type bases. This leads to algorithms that

are more generally applicable: They work for any finite-

dimensional module of the quantized enveloping algebra
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of any semisimple Lie algebra. The problem of comput-

ing elements of the canonical basis of the negative part

of a quantized enveloping algebra has, to the best of my

knowledge, not been considered before.

This paper is organized as follows. In Section 2 we

recall some basic facts on canonical bases. In Section 3

we describe an algorithm for computing the action of the

Kashiwara operators. In Section 4 we describe the no-

tion of adapted string, following [Littleman 98]. Then,

in Section 5, we describe an algorithm for computing the

elements of the canonical basis of a given weight ν. In

Section 6 we give a similar algorithm for computing the

canonical basis of a finite-dimensional Uq(g)-module. Fi-

nally, in Section 7, we apply the algorithm of Section 5

to the study of tight monomials of small weight.

The algorithms described here have been implemented

in the computer algebra system GAP4 ([GAP 00]), as part

of a package called QuaGroup, [Graaf 01b]. The main

computations for Examples 5.2, 5.3 and for Table 1 were

done using that package.

2. THE CANONICAL BASIS

First we recall some notation. Our main reference is

[Jantzen 96a]. Let g be a finite-dimensional semisimple

Lie algebra with root system Φ. Let ∆ = {α1, . . . ,αl} be
a simple system of Φ. Then Uq(g) is the corresponding

quantized enveloping algebra, with generators Fα, K
±1
α ,

Eα, for α ∈ ∆, subject to the relations [Jantzen 96a,

4.3]. Furthermore, U− will be the subalgebra of Uq(g)
generated by the Fα. Let ν =

Pl
i=1 kiαi be a linear

combination of the simple roots, with non-negative in-

tegral coefficients. Then U−−ν will be the span of all el-
ements Fαm1

· · ·Fαmt
such that Fαi appears exactly ki

times. Elements of U−−ν are said to be homogeneous of
weight ν.

By W (Φ), we denote the Weyl group of Φ. It is gener-

ated by the simple reflections si = sαi for 1 ≤ i ≤ l. Usu-
ally, we will denote a reduced expression for the longest

element in W (Φ) by w0.

We work in the subalgebra U− of Uq(g). Let w0 =
si1 · · · sit be a reduced expression for the longest element
in the Weyl group. For 1 ≤ k ≤ l, let Tk = Tαk : Uq(g)→
Uq(g) be the automorphism described in [Jantzen 96a,

8.13]. For 1 ≤ k ≤ t, set Fk = Ti1 · · ·Tik−1(Fαik ).
Then Fk is an element of weight βk = si1 · · · sik−1(αik).
We also denote Fk by Fβk . As usual, we set F

(m)
k =

Fmk /[m]!αik (where [m]!αik is the Gaussian factorial, de-

fined in [Jantzen 96a, 0.1, 4,2]). Then the monomials

F
(n1)
1 · · ·F (nt)t (2—1)

form a basis of U−. This basis is called a PBW-type
basis; we call a monomial of the form (2—1) a PBW-

monomial (relative to the chosen reduced expression

for the longest element of the Weyl group). We have

algorithms for writing the product of any two PBW-

monomials as a linear combination of PBW-monomials

([Graaf 01a]).

Let x be a monomial of the form (2—1). To stress the

dependency of x on the choice of reduced expression for

the longest element of the Weyl group, we say that x is

a w0-monomial. We refer to the exponents n1, . . . , nt as

the first, second, . . ., tth exponent of x.

Now we let be the unique automorphism of U−

(viewed as a Q-algebra) satisfying q = q−1 and Fαi =
Fαi . Elements that are invariant under are said to

be bar-invariant. The bar-invariant elements include all

monomials of the form F
(n1)
αi1

· · ·F (nr)αir (but not all PBW-

monomials).

By results of Lusztig ([Lusztig 93a, Theorem 42.1.10],

[Lusztig 96, Proposition 8.2], see also [Berenstein and

Zelevinsky 01]), there is a unique basis B of U− with the
following properties:

Firstly, all elements of B are bar-invariant. Secondly,

for any choice of reduced expression w0 for the longest

element in the Weyl group, and any element X ∈ B,
X = x+

P
ζixi, where x, xi are different w0-monomials,

and ζi ∈ qZ[q].
The basis B is called the canonical basis. If we work

with a reduced expression w0 for the longest element in

W (Φ), and write X ∈ B as above, then we say that

x is the principal w0-monomial of X (or just principal

monomial of X , if it is clear which reduced expression we

mean).

We let L(∞) be the Z[q]-lattice spanned by B. Fix
a reduced expression w0 for the longest element in

W (Φ). Then L(∞) is also spanned by the set of all
w0-monomials (cf. [Lusztig 93a, Chapter 42]; it will

also follow from Proposition 5.1 in Section 5 ). We

let π : L(∞) → L(∞)/qL(∞) be the projection map,
and we let B(∞) be the set of all π(x), where x runs
through all w0-monomials. Then B(∞) does not depend
on the choice of reduced expression for the longest el-

ement in W (Φ). (Indeed, let ew0 be a second reduced
expression for the longest element in W (Φ). Let x be a

w0-monomial, and let X be the element of B with princi-

pal w0-monomial x. Let x
0 be its principal ew0-monomial,

then x = x0 mod qL(∞).)
Let x be a w0-monomial, then we write bx = π(x) ∈

B(∞). Also G(bx) will denote the element of B which

has principal monomial x, i.e., such that π(G(bx)) = bx.
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Remark 2.1. In this section, we have worked with a Z[q]-
lattice L(∞) in U−. However, in some other places (e.g.,
[Berenstein and Zelevinsky 01], [Lusztig 93a], [Lusztig

96]) a Z[q−1]-lattice in U+ is used. In these references, a
different PBW-type basis is used (compare the descrip-

tion of Tα in [Jantzen 96a, 8.14] with the description

of T 0i,−1 in [Lusztig 93a, 37.1.3]). The two approaches
are equivalent. In order to see that, we view Uq(g) as a

Q-algebra, and we let φ be the automorphism of Uq(g)

defined by φ(Fα) = Eα, φ(Kα) = Kα, φ(Eα) = Fα,

and φ(q) = q−1. (This is the composition of the au-

tomorphisms ω of [Jantzen 96a, Lemma 4.6], and ψ of

[Jantzen 96a, Proposition 11.9].) Then φ(U+) = U− and
φ(T 0i,−1(u)) = Tα(φ(u)) for all u ∈ Uq(g). Therefore φ
maps a PBW-type basis of U+ (defined using the T 0i,−1)
to a PBW-type basis of U− (defined using the Tα), and
interchanges q and q−1. Also, φ maps bar-invariant el-
ements of U+ to bar-invariant elements of U−, so that
φ maps the canonical basis of U+ to the canonical basis

of U−.

3. KASHIWARA OPERATORS

Let α ∈ ∆. The Kashiwara operators eFα, eEα : U− → U−

are defined as follows. Let w0 = si1 · · · sit be a reduced
expression for the longest element of the Weyl group,

such that αi1 = α. Let u be a w0-monomial with ex-

ponents n1, . . . , nt. Then eFα(u) = F (n1+1)1 · · ·F (nt)t , andeEα(u) = F
(n1−1)
1 · · ·F (nt)t , if n1 > 0, and eEα(u) = 0

otherwise. (Note that F1 = Fα.) The action of eFα, eEα
is extended to the whole of U− by linearity. It can be
shown that this definition does not depend on the choice

of reduced expression of the longest element in the Weyl

group (cf. [Jantzen 96a, 10.1]).

Then eFα and eEα map PBW-monomials to PBW-

monomials, relative to a reduced expression for the

longest element in W (Φ) starting with sα. However,

B(∞) does not depend on that choice, and therefore, eFα
and eEα can be viewed as maps eFα : B(∞) → B(∞) andeEα : B(∞) → B(∞) ∪ {0}. This means that if x is a
w0-monomial, then eFα(x) = x0 mod qL(∞), where x0 is
a certain w0-monomial. We consider the problem of ob-

taining x0 from x.

First we note that if w0 happens to start with sα,

then x0 is constructed from x by increasing the first ex-

ponent of x by 1. Now suppose that w0 does not start

with sα. Let ew0 be a different reduced expression for
the longest element of the Weyl group. Then there is

a ew0-monomial x̃ such that x = x̃ mod qL(∞). Follow-
ing Lusztig’s notation (see [Lusztig 92], [Lusztig 93a]),

we write x̃ = Rw̃0w0(x). If we can find x̃ from x, then

the problem of calculating eFα(x) is solved. Indeed, letew0 be a reduced expression for the longest element of
the Weyl group, starting with sα. We find x̃ = R

w̃0
w0(x),

and increase its first exponent by 1. Denote the result-

ing monomial by x̃0. Finally, we construct x0 = Rw0w̃0(x̃
0).

Then eFα(x) = x0 mod qL(∞).
We may assume that ew0 can be obtained from w0 by

applying one braid relation. Suppose that this relation

amounts to replacing sαsβ · · · by sβsα · · · , where both
words are of length d. Then d = 2, 3, 4 or 6. Suppose that

the first word occurs in w0 on positions p, p+ 1, . . . , p+

d−1. Write x = F (m1)
1 · · ·F (mt)

t and x̃ = F
(m0

1)
1 · · ·F (m0

t)
t

(where the Fi in x̃ are defined relative to ew0). We obtain
the m0

i from the mi in the following way:

1. If d = 2, then m0
p = mp+1 and m

0
p+1 = mp.

2. If d = 3, set µ = min(mp,mp+2), and m
0
p = mp+1 +

mp+2 − µ, m0
p+1 = µ, m

0
p+2 = mp +mp+1 − µ.

3. If d = 4, suppose that the move consists of replacing

sαsβsαsβ by sβsαsβsα. Set a = mp, b = mp+1,

c = mp+2, d = mp+3.

(a) If α is short, then set n1 = max(b,max(b, d) +

c − a), n2 = max(a, c) + 2b, n3 = min(c +

d, a + min(b, d)), n4 = min(a, c). Set µ =

max(2n3, n2+n4) andm
0
p = n1,m

0
p+1 = µ−n2,

m0
p+2 = n2 + n3 − µ, m0

p+3 = n4 − 2n3 + µ.
(b) If α is long, then set p1 = max(b,max(b, d) +

2c − 2a), p2 = max(a, c) + b, p3 = min(2c +

d,min(b, d) + 2a), p4 = min(a, c). Set µ =

max(p3, p2+ p4), and m
0
p = p1, m

0
p+1 = µ− p2,

m0
p+2 = p3 + 2p2 − 2µ, m0

p+3 = p4 − p3 + µ.
4. If d = 6, we consider the root system of type D4,

along with its diagram automorphism φ of order 3.

Let α2 be the simple root fixed by φ, and α1,α3,α4
the other three. Set v = s1s3s4. We use the fol-

lowing two reduced expressions for the longest el-

ement in the Weyl group: v0 = vs2vs2vs2 andev0 = s2vs2vs2v. Let eU− be the algebra generated by
the Fαi for 1 ≤ i ≤ 4, of the corresponding quantized
enveloping algebra. In eU−, we use the PBW-bases
relative to v0 and ev0.
For simplicity assume that the root sys-

tem of Uq(g) is of type G2. Suppose that

the braid relation amounts to replacing

w0 = sαsβsαsβsαsβ by ew0 = sβsαsβsαsβsα,

where α is long. Corresponding to a w0-monomial
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x with exponents m1, . . . ,m6, we construct

the v0-monomial y = ψ1(x) with exponents

m1,m1,m1,m2,m3,m3,m3,m4,m5,m5,m5,m6.

Furthermore, corresponding to a ew0-monomial
x̃ with exponents m1, . . . ,m6 we construct

the ev0-monomial ỹ = ψ2(x̃) with exponents

m1,m2,m2,m2,m3,m4,m4, m4,m5,m6,m6,m6.

Now starting with a w0-monomial x, we con-

struct (using Cases 1 and 2) the ev0-monomial
ỹ = Rṽ0v0(ψ1(x)). Then we have R

w̃0
w0(x) = ψ−12 (ỹ).

Finally, if α is short, we have Rw̃0w0(x) =

ψ−11 (Rv0ṽ0(ψ2(x))).

Cases 1 and 2 are proved in [Lusztig 93a]; Case 3 can

be proved using [Lusztig 92, 12.5], and Case 4 follows in

the same way (see also [Carter 97], [Lusztig 93a, Theorem

14.4.9]). At the end of Section 5, we sketch a different

proof of Cases 2 and 3.

We note that by the same methods we can calculate

the action of eEα.
Example 3.1. Consider the root system of type A3,

with simple roots α, β, γ (where α, γ correspond to

the outer vertices of the Dynkin diagram of type A3,

and β to the middle vertex). Then w0 = sαsβsγsαsβsα
is a reduced expression for the longest element in the

Weyl group. Let x be the w0-monomial with exponents

(1, 2, 3, 4, 5, 6). We calculate the action of eFγ on x. First
of all, ew0 = sγsαsβsγsαsβ is a reduced expression for the
longest element in the Weyl group, starting with sγ . By

applying braid relations, w0 is transformed to ew0 in the
following way:

w0 → sαsβsγsβsαsβ → sαsγsβsγsαsβ

→ sγsαsβsγsαsβ = ew0.
Using Cases 1 and 2, we see that x transforms to a mono-

mial with exponents (1, 2, 3, 7, 4, 5), (1, 8, 2, 3, 4, 5), and

(8, 1, 2, 3, 4, 5). Here the last sequence of exponents de-

fines the ew0-monomial x̃. We now increase its first expo-
nent to 9, obtaining the ew0-monomial x̃0. Transforming
this back we obtain the w0-monomial x

0 with exponents
(1, 2, 3, 4, 5, 7), which is equal to eFγ(x).
4. ADAPTED STRINGS

First we recall some facts on Littelmann’s path model.

For more details and proofs, we refer to [Littleman 95].

Let P denote the weight lattice, and let PR be the vec-
tor space over R spanned by P (i.e., PR = P ⊗Z R). Let
Π be the set of all piecewise linear paths ξ : [0, 1]→ PR,

such that ξ(0) = 0. For α ∈ ∆ Littelmann defines op-

erators fα, eα : Π → Π ∪ {0}. Let λ be a dominant

weight and let ξλ be the path joining λ and the ori-

gin by a straight line. Let Πλ be the set of all nonzero

fαi1 · · · fαim (ξλ) form ≥ 0. Then ξ(1) ∈ P for all ξ ∈ Πλ.
Let µ ∈ P be a weight, and let V (λ) be the highest-weight
module over Uq(g) of highest weight λ. A theorem of Lit-

telmann states that the number of paths in ξ ∈ Πλ, such
that ξ(1) = µ, is equal to the dimension of the weight

space of weight µ in V (λ) ([Littleman 95, Theorem 9,1]).

Let ν =
Pl

i=1 kiαi be a linear combination of simple

roots, with non-negative integral coefficients. Set λ =Pl
i=1 kiλi (where the λi are the fundamental weights).

Then the dimension of the weight space of weight λ − ν

in V (λ) is equal to the dimension of U−−ν . In particular,
the dimension of U−−ν is equal to the number of paths
ξ ∈ Πλ such that ξ(1) = λ− ν.
Let w0 = si1 · · · sit be a fixed reduced expression of

the longest element in the Weyl group. Let ν,λ be as

in the preceding paragraph, and let ξ ∈ Πλ be such

that ξ(1) = λ − ν. We define a sequence of integers

ηξ = (n1, . . . , nt) and a sequence of paths ξk in the fol-

lowing way. First we set ξ0 = ξ. Suppose that the el-

ements ξ0, . . . , ξk−1 and n1, . . . , nk−1 are defined. Then
let nk be maximal such that e

nk
αik
(ξk−1) 6= 0, and set

ξk = e
nk
αik
(ξk−1). Following [Littleman 98] we call ηξ the

adapted string corresponding to ξ (relative to the fixed

reduced expression of the longest element of the Weyl

group). Let Sν be the set of adapted strings correspond-

ing to all ξ ∈ Πλ such that ξ(1) = λ− ν.
Let η = (n1, . . . , nt) ∈ Sν and set

Mη = F
(n1)
αi1

· · ·F (nt)αit
,

and

bη = eFn1αi1 · · · eFntαit (1) ∈ B(∞).
Let <lex be the lexicographical ordering on integer se-

quences of length t (i.e., (m1, . . . ,mt)<lex(n1, . . . , nt) if

there is a k such that mi = ni for i < k, and mk < nk).

Then [Littleman 98, Proposition 10.4] states

Mη = G(bη)−
X

η0>lexη
η0∈Sν

cη,η0G(bη0), (4—1)

where cη,η0 ∈ Z[q, q−1].
Let η = (n1, . . . , nt) be an adapted string, correspond-

ing to the reduced expression w0 = si1 · · · sit of the
longest element in W (Φ). Then we also write fη(ξλ)

instead of fn1αi1 · · · fntαit (ξλ).
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5. CONSTRUCTING CANONICAL BASIS ELEMENTS

Here we describe an algorithm for computing the ele-

ments of the canonical basis of a given weight ν. The

main idea is similar to the one used in [Leclerc and Tof-

fin 00]: We “approximate” G(bη) with a bar-invariant

element, i.e., Mη . Then we add multiples of the G(bη0)

that are already constructed, while making sure that the

element remains bar-invariant. We are finished when the

element is a Z[q]-linear combination of PBW-monomials,
where exactly one coefficient is 1, and the rest lies in

qZ[q].
By <lex, we denote the lexicographical or-

dering on the PBW-monomials of U− (i.e.,

F
(m1)
1 · · ·F (mt)

t <lexF
(n1)
1 · · ·F (nt)t if and only if

(m1, . . . ,mt)<lex (n1, . . . , nt)).

Let x be a PBW-monomial. From Section 2, we recall

that bx denotes the element of B(∞) such that G(bx)
has principal monomial x. Also by εα(x), we denote the

maximal integer n such that eEnα(bx) 6= 0. Note that if x
is a w0-monomial, where w0 starts with sα, then εα(x) is

equal to the first exponent of x.

Proposition 5.1. Let w = sαi1 · · · sαir be a reduced word
in the Weyl group of Φ. Let w0 be any reduced expression

for the longest element in the Weyl group starting with

w. Let

x = F (n1)αi1
Tαi1 (Fαi2 )

(n2) · · · (Tαi1 · · ·Tαir−1 )(Fαir )(nr)

be a PBW-monomial in U−. Then G(bx) is equal to x
plus a qZ[q]-linear combination of w0-monomials y such
that y>lexx.

In the proof, we use two direct sum decompositions of

U− relative to a simple root α:

U− = U− ∩ Tα(U−)⊕ FαU−, (5—1)

U− = U− ∩ T−1α (U−)⊕ U−Fα, (5—2)

(cf. [Jantzen 96a, 8.25], [Lusztig 96]). We have the corre-

sponding projection maps π+α : U
− → U− ∩ Tα(U−) and

π−α : U
− → U−∩T−1α (U−). These maps can be described

as follows. Let w0 = sαi1 · · · sαit be a reduced expression
for the longest element in the Weyl group, where αi1 = α.

If (2—1) is a w0-monomial, then F1 = Fα and FαU
− is the

linear span of all w0-monomials with first exponent ≥ 1.
Also U−∩Tα(U−) is the linear span of all w0-monomials
with first exponent equal to 0. Now let u ∈ U− and

write u as a linear combination of w0-monomials. Then

u = u1 + u2, where u1 consists of w0-monomials with

first exponent 0, and u2 is a linear combination of w0-

monomials with first exponent ≥ 1. Hence π+α (u) = u1.
Set v = sαi2 · · · sαit , and let β be a simple root such

that v(β) > 0. We set ew0 = vsβ ; then ew0 is also a reduced
expression for the longest element of the Weyl group. We

have v(β) > 0, but sαv(β) < 0, so that v(β) = α. Hence

Tv(Fβ) = Fα (cf. [Jantzen 96a, Proposition 8.20]). So

if we have a ew0-monomial of the form (2—1), then Ft =

Fα; hence U
−Fα is the linear span of all ew0-monomials

with tth exponent ≥ 1. Furthermore, U− ∩ T−1α (U−) is
the linear span of all ew0-monomials with tth exponent
equal to 0. This means that we can decompose u ∈ U−
according to the decomposition (5—2) by writing u = u1+

u2, where u1 is a linear combination of ew0-monomials
with tth exponent 0, and u2 consists of ew0-monomials
with tth exponent ≥ 1. Then π−α (u) = u1.
B+α = π+α (B \B ∩ FαU−) is a basis of U− ∩ Tα(U−),

and B−α = π−α (B\B∩U−Fα) is a basis of U−∩T−1α (U−)
(see [Lusztig 96]). Theorem 1.2 in [Lusztig 96] states that

Tα(B
−
α ) = B

+
α . (5—3)

Proof: (of Proposition 5.1). We use induction on r. Note

that the result is trivial for r = 1 as in that case x = F
(n1)
αi1

and G(bx) = x. Set α = αi1 and

x0 = Tαi1 (Fαi2 )
(n2) · · · (Tαi1 · · ·Tαir−1 )(Fαir )(nr),

x00 = F (n2)αi2
Tαi2 (Fαi3 )

(n3) · · · (Tαi2 · · ·Tαir−1 )(Fαir )(nr).
(So that x0 = Tα(x

00).) We define ew0 as above. Then
x00 is a ew0-monomial and by induction G(bx00) is equal to
x00 plus a qZ[q]-linear combination of ew0-monomials that
are lexicographically bigger than x00. By the descrip-

tion of π−α , we see that the same holds for π−α (G(bx00)).
Now, by (5—3), Tα(π

−
α (G(bx00))) = π+α (G(by)) for some

G(by) ∈ B \ B ∩ FαU−. But Tα(π−α (G(bx00))) is equal
to Tα(x

00) = x0 plus a qZ[q]-linear combination of w0-
monomials (lexicographically bigger than x0), and there-
fore y = x0. It follows that π+α (G(bx0)) is equal to x

0

plus a qZ[q]-linear combination of w0-monomials that are
lexicographically bigger than x0. From the description

above of the map π+α , we now see that G(bx0) is equal to

π+α (G(bx0)) plus a linear combination of w0-monomials

with nonzero first exponent, and these are lexicograph-

ically bigger than x0. Now by [Jantzen 96a, 11.12(1)],

G(bx) = F
(n1)
α G(bx0) + R where R is a linear combina-

tion of elements G(bz), with εα(z) > n1. By [Jantzen

96a, 11.3(2), 11.12(3)], G(bu) ∈ F (εα(u))α U− for all PBW-
monomials u. In particular, all w0-monomials occurring

in R have first exponent > n1, and therefore they are

bigger than x in the lexicographical ordering.
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Proposition (5.1) yields the following algorithm for

constructing elements of the canonical basis. From (4—1)

we get:

G(bη) =Mη +
X

η0>lexη

cη,η0G(bη0). (5—4)

The Mη and G(bη) are all bar-invariant, and the latter

form a basis of U−−ν , hence the cη,η0 are bar-invariant as
well.

Let η ∈ Sν , and suppose that we have already con-
structed the elements G(bη0) for η

0>lexη. In order to

construct G(bη), we need to know the coefficients cη,η0

in (5—4). For b1, b2 ∈ B(∞), we write b1<lexb2 if the
principal monomial of G(b1) is smaller with respect to

<lex than the principal monomial of G(b2). Order the

elements occurring in the sum on the righthand side of

(5—4) as bη1<lexbη2<lex · · ·<lexbηr . We define a sequence
of elements Gk ∈ U−. First set G0 = Mη. Suppose

that G0, . . . , Gk−1 are defined. Let ζk be the coefficient
of the principal monomial of G(bηk) in Gk−1, and let ζ

0
k

be the unique bar-invariant element of Z[q, q−1] such that
ζk+ζ

0
k ∈ qZ[q]. Set Gk = Gk−1+ζ 0kG(bηk). By induction

on k, and Proposition 5.1, cη,ηk = ζ 0k. Hence Gr = G(bη).

Example 5.2. We consider the root system of type B2,

with simple roots α and β, where α is long. We use

the reduced expression sαsβsαsβ of the longest element

in the Weyl group. The generators of the corresponding

PBW-type basis of U− are Fα, Fα+β , Fα+2β , Fβ . Let
ν = 3α + 2β; we compute the elements of the canonical

basis of weight ν.

The set Sν consists of the adapted strings η1 =

(3, 2, 0, 0), η2 = (2, 2, 1, 0), η3 = (2, 1, 1, 1), η4 =

(1, 2, 2, 0) (in lexicographical order). We know that

Mη1 = F
(3)
α F

(2)
β = G(bη1). Now we consider η2. Using

the algorithms to compute products of PBW-monomials

in U− ([Graaf 01a]), which are implemented in [Graaf
01b], we get

Mη2 = F
(2)
α F

(2)
β Fα

= F (2)α Fα+2β + qF
(2)
α Fα+βFβ + (1 + q

4 + q8)F (3)α F
(2)
β .

Here the coefficient of F
(3)
α F

(2)
β is not contained in qZ[q].

We repair this situation, and we get

G(bη2) =Mη2 −G(bη1)

= F (2)α Fα+2β + qF
(2)
α Fα+βFβ + (q

4 + q8)F (3)α F
(2)
β .

Since

Mη3 = F
(2)
α Fα+βFβ + (q

−3 + q−1 + q+ q3 + q5 + q7)F (3)α F
(2)
β ,

we have

G(bη3) =Mη3 − (q−3 + q−1 + q + q3)G(bη1)

= F (2)α Fα+βFβ + (q
5 + q7)F (3)α F

(2)
β .

Finally,

Mη4 =FαF
(2)
α+β + (1 + q

4)F (2)α Fα+2β

+ (q + q5)F (2)α Fα+βFβ + (q
4 + q8 + q12)F (3)α F

(2)
β .

Here the coefficient of F
(2)
α Fα+2β does not lie in qZ[q].

So we have to subtract the principal monomial, G(bη2),

from the element of the canonical basis. We get

G(bη4) =Mη4 −G(bη2)

= FαF
(2)
α+β + q

4F (2)α Fα+2β + q
5F (2)α Fα+βFβ

+ q12F (3)α F
(2)
β .

As a first application of the algorithm for construct-

ing elements of the canonical basis, we give an algo-

rithm for constructing highest-weight modules. Let λ

be a dominant weight. Let vλ be a highest-weight vector

of the highest weight module V (λ). Then according to

[Jantzen 96a, Theorem 11.10 (d)], the set {G(b) · vλ | b ∈
B(∞)} \ {0} is a basis of V (λ). Using the path method,
it is straightforward to decide which b ∈ B(∞) satisfy
G(b) · vλ = 0. Let b = bη for some adapted string η.

Then G(b) · vλ = 0 if and only if fηξλ = 0 (this fol-

lows from Lemma 6.1, along with [Jantzen 96a, Theorem

11.10 (d)]).

Furthermore, we only have to check that b ∈ B(∞)
with weight ν such that the multiplicity of λ− ν in V (λ)
is nonzero. By a standard algorithm, we can calculate the

set of all those ν (using the path method, for example).

Now the nonzero G(b) · vλ form a basis of the highest-

weight module, and we use the G(b) where G(b) · vλ = 0
to rewrite all other vectors as linear combinations of ba-

sis elements. This algorithm is rather inefficient because

the dimension of U−−ν grows quickly as the level of ν
increases. A more efficient algorithm for constructing

highest-weight modules is indicated in [Graaf 01a]. How-

ever, using the algorithm described above, it is possible

to investigate single weight spaces of a highest-weight

module, without first constructing the module.

Example 5.3. We use the same notation as in Example
5.2. Let λ = λ1 be the first fundamental weight. Then

V (λ) has a weight space of weight −λ1 = λ − 2α − 2β.
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The elements of the canonical basis of weight 2α+2β are

G(b1) = F
(2)
α F

(2)
β ;

G(b2) = FαFα+βFβ + (q
3 + q5)F (2)α F

(2)
β ;

G(b3) = FαFα+2β + qFαFα+βFβ + (q
2 + q6)F (2)α F

(2)
β ;

G(b4) = F
(2)
α+β + q

2FαFα+2β + q
3FαFα+βFβ + q

8F (2)α F
(2)
β .

They correspond to the strings η1 = (2, 2, 0, 0), η2 =

(1, 1, 1, 1), η3 = (1, 2, 1, 0) and η4 = (0, 2, 2, 0), respec-

tively. Now only fη3ξλ 6= 0. So G(bi) · vλ = 0 for

i = 1, 2, 4. Let xi denote the principal monomial of G(bi).

We see that xi ·vλ = 0 for i = 1, 2, and x4 ·vλ = −q2x3 ·vλ.

We end this section with a sketch of a proof of Case

3 of the formulas for the exponents m0
i in Section 3. We

consider the case where the root system is of type B2.

We let α,β be the simple roots, where β is long. First

suppose that we use the reduced expression sαsβsαsβ .

Then by [Littleman 98, Corollary 2], the set Cs,r1 of

adapted strings of weight sα + rβ consists of all ηl,m =

(s −m, r − l,m, l), such that 0 ≤ m ≤ s, 0 ≤ l ≤ r and
2(r− l) ≥ m ≥ 2l. Here we have ηl,m>lexηl0,m0 if m < m0

or m = m0 and l < l0.
Now

F (s−m)α F
(r−l)
β F (m)α F

(l)
β =

i,j≥0
i+j≤r−l
2i+j≤m

q(m−2i−j)(2r−2l−2i−j)+2(r−l−i−j)i

s− 2i− j
s−m

α

r − i− j
l

β

F (s−2i−j)α F
(i)
2α+βF

(j)
α+βF

(r−i−j)
β .

By studying the coefficients in this expression, and fol-

lowing the algorithm for computing elements of the

canonical basis, it can be shown that the principal mono-

mial of G(bηl,m) is

F (s−m)α F
(l)
2α+βF

(m−2l)
α+β F

(r−m+l)
β if m ≤ r;

F (s−m)α F
(m+l−r)
2α+β F

(2r−2l−m)
α+β F

(l)
β if m ≥ r.

Now suppose that we use the reduced expression

sβsαsβsα. The set Cs,r2 of adapted strings of weight

sα + rβ consists of all ζl,m = (r − m, s − l,m, l) such
that 0 ≤ l ≤ s, 0 ≤ m ≤ r, s − l ≥ m ≥ l (see [Little-
man 98, Corollary 2]). Thus, ζl,m>lexζl0,m0 if m < m0 or
m = m0 and l < l0. In this case the principal monomial
of G(bζl,m) is

F
(r−m)
β F

(2m−s+l)
α+β F

(s−l+m)
2α+β F (l)α if s ≤ 2m;

F
(r−m)
β F

(l)
α+βF

(m−l)
2α+β F

(s+l−2m)
α if s ≥ 2m.

Suppose that the braid relation consists of replacing

sαsβsαsβ by sβsαsβsα. We start with a PBW-monomial

x = F
(a)
α F

(b)
2α+βF

(c)
α+βF

(d)
β . We form the adapted string η

such that G(bη) has principal monomial x. By the de-

scription of the principal monomials above, η = (a, c +

max(b, d), 2b + c,min(b, d)). Now we use the bijection

φ : Cs,r1 → Cs,r2 , such that fθ = fφ(θ) for all θ ∈ Cs,r1 .

According to [Littleman 98, Proposition 2.4], φ(η) =

(n1, n2, n3, n4), where n1 = max(b,max(b, d) + c − a),
n2 = max(a, c) + 2b, n3 = min(c + d, a + min(b, d)),

n4 = min(a, c). Now φ(η) corresponds to the PBW-

monomial F
(n1)
β F

(2n3−n2)
α+β F

(n2−n3)
2α+β F

(n4)
α if n2+n4 ≤ 2n3,

and to F
(n1)
β F

(n4)
α+βF

(n3−n4)
2α+β F

(n2+2n4−2n3)
α if n2 + n4 ≥

2n3. This implies the formulas in Case 3(a); Case 3(b)

is similar. The formula in Case 2 can also be proved this

way.

6. CANONICAL BASES OF MODULES

For a dominant weight λ, let V (λ) be the finite-

dimensional highest-weight module over Uq(g) with high-

est weight λ. Let vλ ∈ V (λ) be a fixed highest weight vec-
tor. SetB(λ) = {G(b)·vλ | G(b) ∈ B}\{0}. ThenB(λ) is
a basis of V (λ) (cf. [Jantzen 96a, Theorem 11.10]), called

the canonical basis of V (λ). We can compute B(λ) by

computing elements ofB. However, this method is rather

inefficient, since for many G(b) ∈ B, G(b) · vλ = 0. In

this section we describe an algorithm for computing B(λ)

without first computing elements of B.

Let ϕλ : U
− → V (λ) be the map defined by ϕλ(u) =

u · vλ. Set L(λ) = ϕλ(L(∞)); then L(λ) is a Z[q]-lattice
in V (λ) spanned by all nonzero G(b) · vλ for G(b) ∈ B.
By ϕλ, we also denote the induced map ϕλ :

L(∞)/qL(∞) → L(λ)/qL(λ), and we set B(λ) =

ϕλ(B(∞)) \ {0}. Then B(λ) consists of all x · vλ mod
qL(λ), where x runs through all PBW-monomials such
that G(bx) · vλ 6= 0. Therefore, |B(λ)| = dimV (λ).
For α ∈ ∆, we use the Kashiwara operator eFα :

V (λ) → V (λ) as defined in [Jantzen 96a, 9.2]. For

u ∈ L(∞), we have eFα(u · vλ) = eFα(u) · vλ mod qL(λ)
(where the second eFα is the Kashiwara operator on U−),
cf. [Jantzen 96a, Proposition 10.9]. Therefore, eFα is also
a map from B(λ) into B(λ) ∪ {0}.
Let η = (n1, . . . , nt) be an adapted string, relative to

the reduced expression w0 = sαi1 · · · sαit . Then we writeeF η for eFn1αi1 · · · eFntαit (where the eFαk are the Kashiwara
operators on U− or the Kashiwara operators on V (λ)).
From Section 4, we recall that ξλ denotes the path joining

0 with λ by a straight line.
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Lemma 6.1. Let η be an adapted string, and set b =eF η(1) ∈ B(∞). Then ϕλ(b) = 0 if and only if fη(ξλ) = 0.
Proof: Set bλ = ϕλ(1) ∈ B(λ). By [Kashiwara 96,

Theorem 4.1], fηξλ = 0 if and only if eF ηbλ = 0. By

[Jantzen 96a, Proposition 10.9], this is equivalent to

ϕλ( eF η(1)) = 0.
For an adapted string η, we denote by xη the PBW-

monomial with the property eF η(1) = xη mod qL(∞).
Note that we can compute xη by using the algorithm

for computing the action of eFα, described in Section 3.
So Lemma 6.1 gives a straightforward algorithm for com-

puting the elements of B(λ) of a given weight λ− ν. We
loop over all η ∈ Sν and for every η such that fηξλ 6= 0,
we compute xη · vλ mod qL(λ).
By , we denote the involution of V (λ) defined by

u · vλ = u·vλ, for u ∈ U− (this is well defined by [Jantzen
96a, Proposition 11.9 (b)]).

Lemma 6.2. Let b ∈ B(λ). Then there is a unique el-
ement v(b) ∈ L(λ) such that v(b) = b mod qL(λ) and
v(b) = v(b). Let b0 ∈ B(∞) be such that ϕλ(b0) = b; then
v(b) = ϕλ(G(b

0)).

Proof: It is clear that ϕλ(G(b
0)) has the listed proper-

ties. Suppose that the element v ∈ L(λ) also has these
properties. Then we write v as a linear combination of

elements ϕλ(G(b
00)). Because v is bar-invariant, the co-

efficients in this expression must be bar-invariant as well.

Because the ϕλ(G(b
00)) form a basis of L(λ) over Z[q], the

coefficients must lie in Z[q]. This means that the coeffi-
cients are elements of Z. Since v = b mod qL(λ), the only
ϕλ(G(b

00)) that has a nonzero coefficient is ϕλ(G(b0)).

Let ν be a weight such that λ− ν is a weight of V (λ).
Let ξ1, . . . , ξr be the paths in Πλ ending in λ − ν. LeteSν = {η1, . . . , ηr} be the corresponding adapted strings
(relative to some fixed reduced expression for the longest

element in the Weyl group). Note that by [Littleman 98,

Lemma 1.3], eSν is the set of all η ∈ Sν (defined as in
Section 4) such that fηξλ 6= 0.
By taking images under ϕλ, we get by (5—4), for η ∈eSν ,

v(bη) =Mη · vλ +
X

η0>lexη

cη,η0v(bη0). (6—1)

For 1 ≤ i ≤ r, set ui = xηi · vλ, and write ui<lexuj if
xηi<lexxηj . Then Proposition 5.1 implies that

v(bηi) = ui +
X

uik<lexui

ζi,ikuik (6—2)

where all ζi,ik ∈ qZ[q]. We call ui the principal vector of
v(bηi).

By Lemma 6.2, v(bηi) is the unique bar-invariant ele-

ment of L(λ) of the form of the righthand side of (6—2).

(Note that all ui ∈ L(λ), so that any vector of the form
(6—2) belongs to L(λ).) Hence by (6—1), and (6—2), we
have an algorithm for computing the v(bηi) that is highly

analogous to the algorithm for computing elements of the

canonical basis of U−. The ui play the role of the PBW-
monomials, and we use principal vectors instead of prin-

cipal monomials. Furthermore, the role of Sν is taken

by eSν , and Mη is replaced by Mη · vλ. The details of
the algorithm are exactly the same; we leave them to the

reader.

Note that here we do not need to use the algorithm for

multiplying PBW-monomials in U− (this is in contrast
to the algorithm given in Section 5). We only need to be

able to compute the action of any given PBW-monomial

on elements of the module V (λ).

Remark 6.3. By the results in [Frenkel et al. 98], the al-
gorithm for computing canonical bases of modules can, in

principle, be used to compute Kazhdan-Lusztig polyno-

mials in the An-case. However, since there are specialized

methods available for that, it seems unlikely that such an

algorithm will beat the existing ones (see [du Cloux 96]).

7. TIGHT MONOMIALS OF SMALL WEIGHT

Following [Lusztig 93b], we call a monomial m =

F
(n1)
αi1

· · ·F (nr)αir tight if m ∈ B. The canonical bases of
the quantized enveloping algebras of types A1, A2 con-

sist entirely of tight monomials. But this is not the case

for most other types. In this section, we study (experi-

mentally) the number of elements of B of small weight

that are tight monomials for a few examples of root sys-

tems. (We note that different monomials can define the

same element of U−, so that the number of tight mono-
mials is usually higher than the number of elements of B

that are tight monomials.)

We use a rather crude algorithm for computing all

tight monomials of a given weight ν. First, we write

down all monomials in the generators Fαi of weight ν.

Then, we calculate the setBν of elements of the canonical

basis of weight ν. Finally, we check which monomials are

contained in Bν , by writing each monomial on the PBW-

type basis used to represent the elements of Bν .

We consider the root systems of type D4, E6, F4, and

G2. In each case, for a few small weights, we compute

the number of elements of B that are tight monomials.
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type weight ν dim U−ν time (s) tight
D4 (2, 2, 2, 2) 37 2.6 37
D4 (1, 2, 3, 4) 27 5.5 23
D4 (3, 2, 3, 3) 37 6.4 27
D4 (3, 3, 3, 3) 128 78.6 120
E6 (1, 1, 2, 2, 1, 1) 110 8.1 110
E6 (1, 1, 2, 3, 1, 1) 146 21.4 116
E6 (1, 1, 2, 3, 2, 1) 354 112.0 318
F4 (1, 3, 2, 1) 28 1.5 18
F4 (2, 2, 2, 2) 50 3.9 50
F4 (1, 2, 3, 4) 84 32.5 64
F4 (4, 3, 2, 1) 56 8.7 48
G2 (3, 3) 8 0.7 6
G2 (4, 4) 13 12.4 8
G2 (5, 5) 20 1017.2 10

TABLE 1. The number of tight monomials of small weight.
The third column lists the dimension of U−ν , and the fourth
column the time taken (in seconds) to calculate Bν . The
last column contains the number of elements of Bν that
are tight monomials.

The computations were done using the GAP4 package

QuaGroup, on a Linux system with a 600MHz Pentium

III processor and 32MB of working memory for GAP.

The results are listed in Table 1, where we represent a

weight by giving its coefficients when written as a linear

combination of simple roots. We have used the same

ordering of simple roots as in [Bourbaki 68].

We see that the time needed to compute Bν can in-

crease rapidly when the height of ν increases. This is seen

most dramatically in the case of G2. The most time-

consuming part of the algorithm is the “straightening”

algorithm, that writes the monomials Mη as linear com-

binations of PBW-monomials. The average cost of this

algorithm is less for the higher rank cases.

In all cases, except G2, by far the most elements of

Bν are tight monomials. The question is whether this

remains true for weights of higher level. In the case of G2,

the percentage of tight monomials drops rather sharply

as the level of ν increases.
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