
The Forcing Relation for Horseshoe Braid Types
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This paper presents evidence for a conjecture concerning the
structure of the set of braid types of periodic orbits of Smale’s
horseshoe map, partially ordered by Boyland’s forcing order.
The braid types are partitioned into totally ordered subsets,
which are defined by parsing the symbolic code of a periodic
orbit into two segments, the prefix and the decoration: The set
of braid types of orbits with each given decoration is totally or-
dered, the order being given by the unimodal order on symbol
sequences. The conjecture is supported by computer experi-
ment, by proofs of special cases, and by intuitive argument in
terms of pruning theory.

1. INTRODUCTION

This paper presents strong evidence for a conjecture con-

cerning the order in which periodic orbits can appear

in the creation of Smale’s horseshoe [Smale 67]. Since

any C1+² surface diffeomorphism with positive topolog-

ical entropy has horseshoes in some iterate [Katok 80],

an understanding of the mechanism of horseshoe cre-

ation provides insight into the mechanism of transitions

to positive entropy for general surface diffeomorphisms.

As such, this problem has received a good deal of atten-

tion over the last 20 years.

The conjecture is stated in terms of Boyland’s forcing

order [Boyland 84] on the set of braid types of periodic

orbits of the horseshoe (see Section 2.1). Loosely stated,

the periodic orbit P forces the periodic orbit Q if an orbit

of the same type as Q must be present in the dynamics

of any homeomorphism which has an orbit of the same

type as P .

The conjecture is based on a parsing of the symbolic

code of each horseshoe periodic orbit into two segments,

the prefix and the decoration (see Section 3.1). Writing

Dw for the family of all periodic orbits with a given dec-
oration w, the main claims of the conjecture are:

(a) Each family Dw is totally ordered by the forcing or-
der, and this order coincides with the unimodal order

on symbol sequences.
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(b) All of the orbits in each given family Dw have the
same topological train track type (see Section 3.3).

(c) The forcing order between different families Dw can
be understood in terms of homoclinic orbits associ-

ated to the families.

As will be discussed in more detail below, Thurston’s

classification theorem for isotopy classes of surface hom-

eomorphisms [Thurston 88], used in conjunction with

a train track algorithm such as that of Bestvina and

Handel [Bestvina and Handel 95], makes it theoretically

possible–if practically very time consuming–to decide

whether and how two orbits are related by the forcing

order. Despite this attractive theoretical background, it

has proved very difficult to describe the global structure

of the forcing order.

The conjecture presented here makes the calculation

of the order nearly trivial within families: simply com-

pare their symbol sequences using the unimodal order.

Moreover, it gives a global description of how the set

of horseshoe braid types is organized, information that

could not be obtained by comparing braids pairwise.

As the terminology suggests, this work has connec-

tions with braid theory. In Section 2.2, it is explained

how the conjecture, if proved, would also provide an effi-

cient partial solution to the conjugacy problem for cyclic

unimodal permutation braids.

Some well-established background to the problem is

presented in Section 2: braid types, Boyland’s forcing

order, Thurston’s classification theorem for surface hom-

eomorphisms, and the notion of the height of a periodic

orbit of the horseshoe. Section 3 is more directly con-

cerned with the conjecture: it describes how symbolic

codes are parsed into prefix and decoration, summarizes

some well-known results arising from the symmetry of

the horseshoe and its inverse, and introduces the notion

of topological train track types. The main conjecture is

stated in Section 3.4. Section 4 is concerned with evi-

dence for the conjecture: proofs of special cases, compu-

tational evidence, and intuitive arguments.

2. BACKGROUND

2.1 Braid Types and the Thurston Classification

Braid types were introduced by Boyland [Boyland 84]

as an algebraic specification of periodic orbits of surface

homeomorphisms: the braid type of a periodic orbit P

of a surface homeomorphism f : S → S is essentially the

isotopy class of f relative to P . For the sake of simplic-

ity, the definition given here is restricted to orientation-

preserving homeomorphisms of the disk, which is the case

of interest in this paper. The definition makes sense for

arbitrary invariant sets, not just for periodic orbits; in

Section 2.2, it is extended to certain homoclinic orbits.

Definitions 2.1. Let D2 be the unit disk in the plane

and let f : D2 → D2 and g : D2 → D2 be orientation-

preserving homeomorphisms having periodic orbits P

and Q, respectively. If P (respectively Q) lies on ∂D2,

then extend f (respectively g) as a homeomorphism over

an exterior collar of D2 (and use the same notation D2

to denote the collared disk). Then (P, f) and (Q, g) have

the same braid type if there is an orientation-preserving

homeomorphism h : D2 → D2 with h(P ) = Q such that

f and h−1 ◦ g ◦ h are isotopic relative to P . This defines
an equivalence relation on the set of all pairs (P, f): the

equivalence class of (P, f) is denoted bt(P, f); the braid

type of the periodic orbit P of f .

The set of all braid types of periodic orbits of

orientation-preserving homeomorphisms of the disk is de-

noted BT. Clearly, two periodic orbits with the same

braid type must have the same period: the set of all

braid types of period n orbits of orientation-preserving

homeomorphisms of the disk is denoted BTn. Given

an orientation-preserving homeomorphism f : D2 → D2,

write

bt(f) = {bt(P, f) : P is a periodic orbit of f}.

The term braid type is appropriate because the group

of isotopy classes of orientation-preserving homeomor-

phisms of the n-punctured disk is isomorphic to the n-

braid group Bn modulo its centre. This isomorphism

induces a canonical bijection between BTn and the set of

conjugacy classes in Bn/Z(Bn), which provides a conve-

nient way of representing braid types.

One of the main endeavours in this area is to under-

stand which braid types must necessarily coexist with a

given braid type; this is formalized by Boyland’s forcing

order on BT [Boyland 84].

Definition 2.2. The forcing order ≤ on BT is defined

as follows: If β, γ ∈ BT, then γ ≤ β if and only if for

all homeomorphisms f : D2 → D2, β ∈ bt(f) =⇒ γ ∈
bt(f). If γ ≤ β, then one says that β forces γ.

It is obvious that ≤ is reflexive and transitive; its an-
tisymmetry was proved by Boyland [Boyland 94]:

Theorem 2.3. (Boyland.) ≤ is a partial order on BT.
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The main tool for understanding the structure of this

partially ordered set is Thurston’s classification theorem

for isotopy classes of surface homeomorphisms [Thurston

88]. This will be stated here for orientation-preserving

homeomorphisms of the punctured disk only.

Definitions 2.4. Let A be a finite subset of D2 \ ∂D2.

A simple closed curve in D2\A is essential if it bounds
a disk containing more than one but fewer than all of the

points of A.

An isotopy class α of orientation-preserving homeo-

morphisms of (D2, A) is reducible if there exists an el-

ement f : (D2, A) → (D2, A) of α and a finite reducing

collection of pairwise disjoint and nonhomotopic essential

simple closed curves which are permuted by f .

A pseudo-Anosov homeomorphism φ : (D2, A) →
(D2, A) is one for which there exists a number λ > 1

and a pair (Fs, µs), (Fu, µu) of transverse measured fo-
liations of D2 such that φ(Fs, µs) = (Fs,λ−1µs) and
φ(Fu, µu) = (Fu,λµu). The foliations can have a finite
number of singular points where they each have p 6= 2

prongs, but 1-pronged singularities can only occur at

points of A and on ∂D2.

The idea is that if an isotopy class α is reducible, then

one can cut along the reducing curves and study the ac-

tion of α on the simpler pieces into which the punctured

disk is divided. Thurston’s classification theorem pro-

vides a canonical representative of each irreducible iso-

topy class.

Theorem 2.5. (Thurston.) Let α be an irreducible iso-

topy class of orientation-preserving homeomorphisms of

(D2, A). Then exactly one of the following occurs:

(i) α contains a finite order homeomorphism φ (i.e.,

φn = id for some n > 0: this implies that φ is con-

jugate to a rigid rotation of D2).

(ii) α contains a pseudo-Anosov homeomorphism φ.

The irreducible isotopy class α is said to be finite order

or pseudo-Anosov according as it contains a finite order

or pseudo-Anosov homeomorphism. The detailed proper-

ties of pseudo-Anosov homeomorphisms will not be used

here: the important property from a dynamical point of

view is that they have minimal dynamics within their

isotopy class. In particular [Fathi et. al. 79, Hall 91],

Theorem 2.6. Let φ be a pseudo-Anosov homeomorphism
of (D2, A) and let f : (D2, A)→ (D2, A) be isotopic to φ.

Then

(i) h(φ) ≤ h(f).
(ii) bt(φ) ⊆ bt(f).

Here h(f) denotes the topological entropy of f [Adler

et al. 65]. Property (ii) is the one which is useful

in understanding the structure of (BT,≤). Since the

Thurston classification is invariant under conjugation,

each braid type β can be classified as reducible, finite

order, or pseudo-Anosov, according to the isotopy class

of f : (D2, P ) → (D2, P ), where bt(P, f) = β. A fi-

nite order braid type β can be realised by a rigid ro-

tation, and hence only forces itself and the braid type of

a fixed point. If β is a pseudo-Anosov braid type, then

let φβ : (D
2, P ) → (D2, P ) be a representative pseudo-

Anosov homeomorphism.

Corollary 2.7. Let β ∈ BT be pseudo-Anosov. Then
{γ ∈ BT: γ ≤ β} = bt(φβ).

Several algorithms (e.g., [Bestvina and Handel 95, Be-

nardete et al. 93, Benardete et al. 95, Franks and Mi-

siurewicz 93, Los 93, de Carvalho and Hall 01]) have

been presented which, given as input an isotopy class of

orientation-preserving homeomorphisms of (D2, A), de-

termine whether it is reducible, finite order, or pseudo-

Anosov, and provide a set of reducing curves or an ex-

plicit construction of a pseudo-Anosov homeomorphism

in the isotopy class in the reducible and pseudo-Anosov

cases, respectively. In principle, these make it possible to

calculate whether or not γ ≤ β for any β, γ ∈ BT. If β
is pseudo-Anosov, the output of the algorithm is an in-

variant train track (see Section 3.3) which enables one to

enumerate all of the periodic orbits of φβ of the appropri-

ate period, and test each in turn to determine whether or

not its braid type is γ. In practice, this takes a very long

time; the tests involve solving the conjugacy problem in

the braid group. Moreover, the ability to carry out such

local calculations does not provide any insight into the

global structure of (BT,≤).

2.2 The Height of a Periodic Orbit of the Horseshoe

It is assumed that the reader is familiar with Smale’s

horseshoe map [Smale 67], with the standard procedure

for introducing symbolic dynamics on its nonwandering

set, and with the unimodal order on the resulting sym-

bol space. This material can be found in many stan-

dard texts on dynamical systems (e.g., [Devaney 89]). In
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FIGURE 1. Symbolic dynamics for the horseshoe.

this paper, symbolic dynamics in Σ2 = {0, 1}Z will be
used on a standard model F : D2 → D2 of the horse-

shoe as depicted in Figure 1. The symbol F will always

denote the horseshoe map, and k : Λ → Σ2 will denote

the itinerary homeomorphism which conjugates the shift

map σ : Σ2 → Σ2 to F |Λ : Λ → Λ, where Λ is the set

of points whose (past and future) orbits lie entirely in

the square S. If x ∈ Λ, then k(x) ∈ Σ2 is called the
itinerary of x. The definitions and results summarized in

this section can be found in [Hall 94a].

A period n orbit P of F will be described by its code

cP ∈ {0, 1}n, which is given by the first n symbols of the
itinerary of its rightmost point p: thus

k(p) = cP · cP
(here and throughout, an overbar denotes infinite repe-

tition, and a · appears before the zeroth symbol of an
element of Σ2). For example, the period 5 periodic orbit

which contains the point with itinerary 01001 has code

10010. Put another way, the word cP ∈ {0, 1}n is the
code of a period n orbit of the horseshoe if and only if the

semi-infinite sequence cP is strictly greater than σ
i(cP )

in the unimodal order for 1 ≤ i < n. This paper is also
concerned with homoclinic orbits H to the fixed point

with code 0: such an orbit will be described by its core

cH , which is the nonzero segment in the itineraries of its

points (so, for example, the homoclinic orbit which con-

tains the point with itinerary 011 · 0010 has core 11001).
In the remainder of the paper, “homoclinic” will always

mean homoclinic to this fixed point. The braid type

bt(P, F ) of a periodic orbit P of the horseshoe will be

denoted bt(P ); and the notation P ≥ Q will be used

as an abbreviation for bt(P ) ≥ bt(Q). Similarly, it is

possible to define the homoclinic braid type hbt(H) of a

homoclinic orbit of the horseshoe: two homoclinic orbits

H and H 0 of homeomorphisms f and g have the same ho-
moclinic braid type if there is an orientation-preserving

homeomorphism h : D2 → D2 with h(H) = H 0 such that
f is isotopic to h−1 ◦ g ◦ h relative to H . The notation
H ≥ H 0 means that every homeomorphism of the disk

which has a homoclinic orbit of homoclinic braid type

hbt(H) also has one of homoclinic braid type hbt(H 0).
Let HS = bt(F ) denote the set of braid types of periodic

orbits of the horseshoe, and HHS the set of homoclinic

braid types of the horseshoe.

The aim of this paper is to describe the structure of

the partially ordered set (HS,≤): this gives information
about the way in which periodic orbits are created in pa-

rameterized families of homeomorphisms leading to the

creation of a horseshoe. According to Conjecture 3.10,

this problem reduces to that of understanding the rela-

tion ≤ on HHS: the set of nonfinite order elements of

HS can be partitioned into totally ordered families on

which the order is well understood; and there is a bijec-

tion between HHS and the set of families, such that the

ordering of braid types in two different families can be

easily determined provided it is known how the corre-

sponding homoclinic braid types are related by ≤. Note
that if HS∗ = HS∪HHS, then ≤ extends in a natural way
to a relation on HS∗. A consequence of Conjecture 3.10
is that this extended relation is also a partial order.

It is well known that two periodic orbits P and Q of

the horseshoe whose codes cP and cQ differ only in their

final symbol have the same braid type. Thus, for exam-

ple, the two orbits with codes 10010 and 10011 have the

same braid type; the code of either one of these orbits

is often written cP = 100101 to reflect the fact that the

distinction between the two is unimportant in so far as

(HS,≤) is concerned. However, this is not the only way in
which two horseshoe orbits can have the same braid type:

the conjecture also gives necessary and sufficient condi-

tions (which may or may not be verifiable in practice) for

two periodic orbits to have the same braid type. In an-

other language, this provides an efficient partial solution

to the conjugacy problem for cyclic unimodal permuta-

tion braids.

The remainder of this section is devoted to describing

the height q(P ) of a horseshoe periodic orbit P of period

greater than 1. The height is a invariant of braid type

with values in (0, 1/2] ∩ Q which plays a central role in

the conjecture. The description is rather complicated at

first sight; a program for computing heights of horseshoe

orbits can be found at [Hall 02], and motivation for the

definition is given in [Hall 94a].

Algorithm 2.8. Let P be a horseshoe periodic orbit which
is not a fixed point, with code c = cP . If the semi-infinite

sequence c does not contain the word 010, then change

the final symbol of c from 1 to 0. Now write

c = 10κ11µ10κ21µ2 . . . ,
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where each κi ≥ 0, each µi is either 1 or 2, and µi = 1

only if κi+1 > 0 (thus κi and µi are uniquely determined

by c). For each r ≥ 1, define

Ir(c) =

µ
r

2r +
Pr

i=1 κi
,

r

(2r − 1) +Pr
i=1 κi

¸
,

and let s ≥ 1 be the least integer such that either µs = 1
or
Ts+1
i=1 Ii(c) = ∅. Write

Ts
i=1 Ii(c) = (x, y]. Then

q(P ) =


x if µs = 2 and w < z

for all w ∈ Is+1(c) and z ∈
Ts
i=1 Ii(c)

y if µs = 1, or µs = 2 and w > z
for all w ∈ Is+1(c) and z ∈

Ts
i=1 Ii(c).

Notice that some µi is equal to 1 (since c contains the

word 010), and hence the algorithm terminates.

Example 2.9. Let P be the period 17 orbit with code

10011011001011010. Then κ1 = 2, µ1 = 2, κ2 = 1,

µ2 = 2, κ3 = 2, and µ3 = 1. Thus I1 = (1/4, 1/3],

I2 = (2/7, 2/6], and I3 = (3/11, 3/10]. Since µ3 = 1,

the algorithm terminates with
T3
i=1 Ii = (2/7, 3/10], and

hence q(P ) = 3/10.

The following theorem is a summary of the relevant

results from [Hall 94a]. Given q = m/n ∈ (0, 1/2] in
lowest terms, define cq ∈ {0, 1}n+1 by

cq = 10
κ1120κ212 . . . 120κm1,

where

κi =

½ bn/mc− 1 if i = 1
bin/mc− b(i − 1)n/mc− 2 if 2 ≤ i ≤ m

(here bxc denotes the greatest integer which does not
exceed x). The words cq are palindromic: that is, κi =

κm+1−i for all i.

Theorem 2.10. Let P and Q be periodic orbits of the

horseshoe.

(i) If P and Q have the same braid type, then q(P ) =

q(Q).

(ii) If P ≥ Q, then q(P ) ≤ q(Q).
(iii) Let q(P ) = m/n in lowest terms. Then P has period

n if and only if it has finite order braid type: in this

case, F is isotopic rel. P to a rigid rotation through

2πm/n. Otherwise, the period of P is at least n+2,

and cP starts with the word cm/n.

In fact, q(P ) has a dynamical interpretation: it is the

lefthand endpoint of the rotation interval of P . The de-

finition of the height can be extended to all sequences

which contain the word 010; this extension will be used

in the statement of Lemma 3.3.

Definition 2.11. Let C denote the subset of {0, 1}N con-
sisting of sequences which contain the word 010. The

height q(c) of an element c ∈ C is defined by q(c) = 1/2 if
c does not begin c = 10 . . ., and by the above algorithm,

otherwise.

The function q : C → (0, 1/2] ∩ Q is decreasing with

respect to the unimodal order on Σ2 and the usual order

on Q.

3. THE CONJECTURE

3.1 Prefix and Decoration

Let P be a periodic orbit of the horseshoe. If P is a fixed

point, then clearly it forces only the fixed point braid

type. If P is not a fixed point, then it has a well-defined

height q(P ) = m/n ∈ (0, 1/2], written in lowest terms. If
P has period n, then, by Theorem 2.10 (iii), it has finite

order braid type with rotation number m/n. In fact,

Holmes and Williams showed [Holmes and Williams 85]

that for each m/n ∈ (0, 1/2), there is exactly one pair
of periodic orbits with this finite order braid type αm/n:

one has code given by the first n symbols of cm/n, and

the other has the same code with the final 1 changed to

a 0. There is just one periodic orbit of braid type α1/2,

namely the period 2 orbit with code 10.

These orbits will be ignored in the remainder of the pa-

per; it is obvious what they force, and it is known which

other orbits force them (P ≥ αq if and only if q is in the

rotation interval of P by a theorem of Boyland [Boyland

92], and an algorithm for computing rotation intervals of

horseshoe orbits is given in [Hall 94a]).

The code of any other periodic orbit P can be written

in the form

cP = cq(P )v

for some word v of length at least 1, by Theorem 2.10 c).

Definition 3.1. Let P be a period N orbit of the horse-

shoe which is not of finite order braid type, with height

q = q(P ) = m/n. The prefix of P is the word cq. The

decoration of P is defined to be ? if N = n+2, and to be

the element w of {0, 1}N−n−3 such that

cP = cq
0
1w

0
1
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if N ≥ n + 3. The notation P = Pwq means that P is a

periodic orbit of height q and decoration w. The choice

of 0 or 1 for the final symbol of cP is almost always

unimportant, but the choice of the symbol before the

decoration can be significant. Where it is, the periodic

orbits with codes cq0w
0
1 and cq1w

0
1 will be denoted Pwq (0)

and Pwq (1), respectively.

Example 3.2. Let P be the period 17 orbit with code cP =
10011011001011010. Then q(P ) = 3/10 as shown in the

previous example. Hence, P has prefix 10011011001 =

c3/10 and decoration 1101. Thus P = P
1101
3/10 . Where the

distinction is important, P could be denoted P 11013/10 (0).

Hence, every periodic orbit which is not of finite order

braid type can be written as Pwq , where q = q(P ) and

w is the decoration of P . This means precisely that the

orbit has one of the four codes cq
0
1w

0
1, unless w = ?, in

which case it has one of the two codes cq
0
1. It is convenient

to extend this notation to homoclinic orbits, writing Pw0
for the homoclinic orbits with core 101w

0
11 (and P ?0 for

the homoclinic orbits with core 1011). This description

omits only those homoclinic orbits whose core has length

2 or less: these are precisely the homoclinic orbits of

translation homoclinic braid type, which force no other

homoclinic or periodic braid types. In the next subsec-

tion, we show that the four homoclinic orbits described

by the symbol Pw0 all have the same homoclinic braid

type. Likewise, it is shown in [de Carvalho and Hall 02a]

that all of the (four or fewer) periodic orbits described

by the symbol Pwq have the same braid type.

Only certain heights q are compatible with each given

decoration. Since the code cP of a period N orbit P cor-

responds to its rightmost point, it must be maximal: that

is, σi(cP ) must be strictly less than cP in the unimodal

order for all integers i with 1 ≤ i < N . The set of heights
compatible with a given decoration w is described by the

following lemma. Although this lemma plays a central

role in the paper, its proof depends on technical results

from [Hall 94a], and as such has been relegated to an

appendix.

Lemma 3.3. Let w be a decoration, and define qw ∈
(0, 1/2] ∩Q by q? = 1/2 and

qw = min
0≤i≤k+2

q
¡
σi
¡
10w0

¢¢
if w ∈ {0, 1}k. Then each of the four codes cq01w0

1 (or each

of the two codes cq
0
1 when w = ?) is maximal of height q

when 0 < q < qw, and none is maximal of height q when

qw < q ≤ 1/2.

Example 3.4. When q = qw, some, none, or all of the

codes cq
0
1w

0
1 may be maximal. For example, let w = ?:

then qw = 1/2. Since c1/2 = 101, the two codes con-

cerned are 1011 (which is maximal), and 1010 (which is

not). Thus the periodic orbit P with code cP = 1011

is the only periodic orbit with height 1/2 and decora-

tion ?. If w = 0, then qw = 1/4, and c1/4 = 10001.

Of the four codes 10001101, 10001001, 10001101, and

10001000, only the last is not maximal. If w = 110

then qw = 1/3, and c1/3 = 1001. All of the four codes

100111101, 100101101, 100111100, and 100101100 are

maximal. On the other hand, if w = 10011010, then

qw = 1/3, but none of the four codes 10011100110101,

10010100110101, 10011100110100, and 10010100110100

is maximal.

The point of the phrase “of height q” in the statement

of this lemma is that cq
0
1w

0
1 may be a maximal code for

q > qw, but with a different height (and hence a different

decoration). For example, if w = ∅ then qw = 1/3. Let
q = 2/5 > qw: then cq1

0
1 = 1011011

0
1 is maximal, but has

height 3/8, and is the code of a finite order orbit (and

hence has no decoration).

A program for computing qw can be found at [Hall 02].

Note that qw is the height of the periodic orbit contain-

ing the point of itinerary 10w0–this orbit need not, of

course, have code 10w0.

For each decoration w, let Dw denote the set of all

periodic and homoclinic orbits of the horseshoe with dec-

oration w: thus

Dw = {Pwq : 0 ≤ q <= qw},

where the symbol <= denotes that q = qw is possible for

some decorations, but not for others.

Convention 3.5. In what follows, whenever the symbol
Pwq is used it is assumed that the height q is compatible

with the decoration w.

Summarizing the results of this section: the union of

the sets Dw is precisely the set of all periodic and homo-
clinic orbits of the horseshoe less the periodic orbits of

finite order braid type and the homoclinic orbits of trans-

lation homoclinic braid type. One of the main claims of

Conjecture 3.10 is that each Dw is totally ordered by the
forcing order ≤.
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3.2 Reversing Horseshoe Codes

Let P be a period N orbit of the horseshoe with code

cP , and let ccP denote the reverse of the code cP . Let bP
be the period N orbit containing the point of itineraryccP ·ccP . The code cP is therefore a cyclic permutation ofccP .
Example 3.6. Let P be the periodic orbit with code

1001011. Then bP is the periodic orbit which contains

the point with itinerary 1101001 · 1101001: thus it has
code 1001110.

Let βP be the N -braid representing the period N orbit

P which is obtained from the natural suspension of the

horseshoe (see [Hall 94a] for more details): thus bt(P )

is represented by the conjugacy class of βPZ(BN ) in

BN/Z(BN ). Given β ∈ BN , let bβ be the element of

BN obtained by writing β in terms of the standard Artin

generators σi of BN , and then reversing the order of these

generators (this is a well-defined operation, since the rela-

tions between the Artin generators are symmetric under

order reversal). It is a well-known consequence of the

symmetry of the horseshoe map F and its inverse that

βP =
cβ0P , where β0P is the braid obtained by looking at

the natural suspension of P from the right rather than

from the front of the horseshoe (and is thus conjugate to

βP ). That is,

Lemma 3.7. If bt(P ) is represented by the braid βP , then
bt( bP ) is represented by the braid cβP . In particular, if
two horseshoe orbits P and Q have the same braid type,

then bP and bQ have the same braid type.

Because the braids β and bβ close to the same knot, it
is in general difficult to determine whether or not they

are conjugate. In particular, traditional dynamical in-

variants cannot distinguish between them by the follow-

ing lemma, which follows easily from the previous one

and the uniqueness of pseudo-Anosov representatives of

pseudo-Anosov isotopy classes.

Lemma 3.8. Suppose that P is a horseshoe periodic

orbit of pseudo-Anosov braid type, and let φP be a

pseudo-Anosov homeomorphism in the isotopy class of

F : (D2, P )→ (D2, P ). Then bP also has pseudo-Anosov

braid type, and

φP = h
−1 ◦ φ−1P ◦ h

for some orientation-reversing homeomorphism

h : (D2, bP )→ (D2, P ).

It seems unlikely that P and bP always have the same
braid type for any horseshoe orbit P , although the au-

thors know of no example for which these braid types are

different (there are none up to period 9). They would be

grateful to hear from anyone who can resolve this prob-

lem. (In the language of braid theory, the question is

whether or not there exist cyclic unimodal permutation

braids β which are not conjugate to bβ.) It is proved

in [Hall 94a] that q(P ) = q( bP ) for all horseshoe orbits P ;
this fact will be used in Section 3.4.

The fact, mentioned earlier, that two periodic orbits P

and Q whose codes differ only in their final symbol have

the same braid type, follows from the observation that

their natural braid representatives βP and βQ are equal.

The same observation shows that for any decoration w 6=
?, the two homoclinic orbits with cores 11w0

11 have the

same homoclinic braid type, as do the two with cores

10w0
11. By the same reversal construction as for periodic

orbits, the fact that the orbits with cores 11 bw0
11 have the

same homoclinic braid type means that the orbits with

cores 101w11 have the same homoclinic braid type. Hence,

all four homoclinic orbits with cores 101w
0
11 have the same

homoclinic braid type. That is,

Lemma 3.9. Let w be a decoration. If w 6= ?, then

the four homoclinic orbits represented by Pw0 all have the

same homoclinic braid type. Likewise, the two homoclinic

orbits represented by P ?0 have the same homoclinic braid

type.

It is proved in [de Carvalho and Hall 02a] that for

each decoration w and each q < qw, all of the (four or

fewer) periodic orbits represented by Pwq also have the

same braid type.

3.3 Topological Train Track Types

Let P be a periodic orbit of the horseshoe of pseudo-

Anosov braid type. A Bestvina-Handel train track for

P is a pair (G, g), where G is a connected finite graph

without valence one or two vertices embedded in D2 \ P
and g : G→ G is a graph map such that

(a) G has a peripheral subgraph Π, consisting of a loop

around each point of P , and g restricts to a homeo-

morphism Π→ Π. There is exactly one vertex of G

on each component of Π.

(b) The subgraph T of G consisting of edges not in Π

is a tree. This implies that there exists a retraction

r : D2 \ P → G.
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(c) g : G→ G sends vertices to vertices and is homotopic

to r ◦ F |G : G→ G.

(d) g : G→ G is efficient; that is, every iterate gn : G→
G is locally injective away from the vertices of G.

In [Bestvina and Handel 95], Bestvina and Handel give

an algorithm for constructing such a train track for any

periodic orbit P of pseudo-Anosov braid type (the condi-

tion that each component of Π contains only one vertex

of G can be ensured when P is a single periodic orbit by

starting the algorithm with a graph which satisfies this

condition). The pseudo-Anosov homeomorphism φ in the

isotopy class of F : (D2, P ) → (D2, P ) is semiconjugate

to g : G → G. Indeed, a Markov partition for φ can be

constructed by thickening up the edges of G into Markov

boxes with nonnegative widths and lengths given by the

row and column eigenvectors corresponding to the max-

imal eigenvalue of the transition matrix of g : G → G,

providing a construction of the invariant measured folia-

tions of φ.

This paper is concerned with an equivalence relation

on horseshoe periodic orbits of pseudo-Anosov braid type

which corresponds to their train tracks being “essentially

the same.” Since two periodic orbits of different periods

have different numbers of loops in the peripheral sub-

graphs of their train tracks, the first step is to restrict

attention to the trees obtained when the edges of the

peripheral subgraph are removed.

Let P be a horseshoe periodic orbit of pseudo-Anosov

braid type, and let (G, g) be a Bestvina-Handel train

track for P . The corresponding reduced train track for P

is the pair (T, t), where T is the tree embedded in D2 \P
whose edges are the nonperipheral edges of G and which

has no valence two vertices (i.e., any vertices of G which

become valence two vertices of T are deleted), and t : T →
T is the tree map obtained from g : G→ G by restricting

to T and deleting peripheral loops in image edge-paths.

Note that t is locally injective away from vertices of T and

preimages of points where the peripheral loops of G were

attached. An initial edge of T is one whose counterpart

in G has one end (its free end) on the peripheral loop

surrounding the leftmost point of P .

Let P and Q be two horseshoe periodic orbits of

pseudo-Anosov braid type. Write P ¤Q if P and Q have

reduced train tracks (TP , tP ) and (TQ, tQ), respectively,

each with only one initial edge (denoted eP and eQ, re-

spectively), such that there is an orientation-preserving

homeomorphism ψ : (D2, P )→ (D2, Q) sending TP onto

TQ, with

(a) tQ(x) = ψ ◦ tP ◦ ψ−1(x) for all x ∈ TQ \ eQ.

(b) There is an embedding θ : eQ → eQ sending the non-

free end of eQ to itself such that tQ(x) = ψ ◦ tP ◦
ψ−1 ◦ θ(x) for all x ∈ eQ.

Intuitively, the reduced train track of Q is the same

as the reduced train track of P , except that the image of

its initial edge has been shortened. It is therefore clear

that if P ¤ Q, then P ≥ Q. P and Q are said to have

the same topological train track type if either P ¤ Q or

Q¤ P .

In particular, if P and Q have the same topologi-

cal train track type, then the invariant foliations of the

corresponding pseudo-Anosov homeomorphisms have the

same number of interior singularities with each number

v > 2 of prongs, and the prongs are permuted in the

same way by the actions of the pseudo-Anosovs.

Note that Bestvina-Handel train tracks, and hence re-

duced train tracks, are not unique. In particular (cf.

the discussion in Section 3.3 of [Bestvina and Handel

95]), the train track graph can have vertices which don’t

correspond to singularities of the measured foliations, or

whose valence is different from the number of prongs at

the corresponding singularity. In this paper, train tracks

will always be chosen so that this is not the case. Thus

the invariant foliations of a pseudo-Anosov homeomor-

phism ψ : (D2, P ) → (D2, P ) with reduced train track

(T, t) have a one-pronged singularity at each point of P ;

an interior v-pronged singularity for each vertex of T of

valence v ≥ 3; and a boundary singularity at which the
number of prongs depends on the period of P . Such train

tracks can always be found (see [Franks and Misiurewicz

93], for example).

A convenient notation for describing a reduced train

track (T, t) is to start at the free end of the initial edge

of T and move around T in the positive direction, num-

bering edges sequentially as they are encountered and

listing each edge in the order in which it is encountered;

and then listing in turn the image edge paths. Thus, for

example, for the topological train track type correspond-

ing to w = 1 in Table 1, T would be described by the

list 1223445531, and t by (1223, 4, 553, 1, 2). A program

which takes as input a decoration, and returns the cor-

responding topological train track type in this format,

can be found at [Hall 02]. Note that, in constrast to

standard Markov partition conventions, the image of the

initial edge need only intersect the interior of, rather than

cover, the first edge in its image edge-path. If P and Q

have the same topological train track type (say P ¤Q),

then the descriptions of the trees TP and TQ are equal,

while those of the tree maps tP and tQ differ only in that
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the image edge path of the initial edge of Q is obtained

from that of P by deleting i ≥ 0 initial symbols.

3.4 Statement of the Conjecture

Given two decorations w1 and w2, write w1 ∼ w2
if hbt(Pw10 ) = hbt(Pw20 ); and write w1 º w2 if

hbt(Pw10 ) ≥ hbt(Pw20 ) (notice that hbt(Pw0 ) is well-

defined by Lemma 3.9). Recall that Dw denotes the set
of all periodic and homoclinic orbits which have decora-

tion w and that in the notation Pwq it is assumed that

the height q is compatible with the decoration w (i.e.

q <= qw).

Conjecture 3.10. Let w and w0 be decorations. Then

(i) bt(Pwq ) = bt(P
w0
q0 ) if and only if q = q

0 and w ∼ w0.
(ii) If 0 < q < qw, then P

w
q has pseudo-Anosov braid

type.

(iii) All of the periodic orbits in {Pwq : 0 < q < qw} have
the same topological train track type.

(iv) The family Dw is totally ordered by ≤, with Pwq ≤
Pwr if and only if q ≥ r.

(v) If q < q0 and w º w0, then Pwq ≥ Pw
0

q0 .

The five parts of this conjecture have each been stated

in full without common hypotheses because there are dif-

ferent types and amounts of evidence for the different

statements, and it is therefore desirable to be able to

treat them separately. Notice in particular that part (v)

implies part (iv), that part (iii) depends on part (ii), and

that if part (i) is false, then the statements of the other

parts would have to be changed to reflect this.

Conjecture 3.10 could also be stated for periodic or-

bits only, leaving out the homoclinic orbits Pw0 . The

reason for their inclusion is that they appear naturally

when the problem is considered in terms of pruning the-

ory (Section 4.3), which was the original motivation for

the conjecture.

The conjecture addresses two problems: if P and Q

are horseshoe periodic orbits, is it true (a) that bt(P ) =

bt(Q), and (b) that P ≤ Q? (Being able to answer (b) in
general provides an answer to (a), since bt(P ) = bt(Q) if

and only if P ≤ Q and Q ≤ P .) It does this by rephrasing
them in terms of the same questions for homoclinic orbits,

which are not, in general, any easier to answer than the

original question. Nevertheless, if the conjecture can be

proved, it will add considerably to our understanding of

the problem in two distinct ways:

���

�

�

�

���

FIGURE 2. A schematic illustration of the conjecture.

1. On the theoretical level, it provides a better un-

derstanding of the global structure of (HS,≤): the
partial order has been “factored” into a total or-

der (within families with fixed decoration) and the

partial order on decorations. Figure 2 provides a

schematic illustration: each periodic orbit of the

horseshoe is parameterised by its height q and dec-

oration w. Each family of orbits with a given ∼-
equivalence class of decorations is represented by a

vertical line: the orbits in such a family are cre-

ated monotonically from bottom to top as a horse-

shoe is created. The complication in (HS,≤) has
been shuffled away in this figure by imagining that

¹ is a total order (perhaps we have restricted to

those periodic orbits corresponding to a given chain

of decorations)–it is assumed that w1 º w2 when-
ever w1 is to the left of w2. Thus progress through a

given family to height q implies progress through all

families to its right to at least height q, and hence a

partially formed horseshoe can be represented by an

upward sloping line through the families (as depicted

in the figure).

2. On a practical level, showing that two periodic or-

bits Pw1q and Pw2q of relatively small period have the

same braid type implies that Pw1q0 and Pw2q0 have the

same braid type for all 0 < q, q0 <= qw1 = qw2 .

For example, it can be shown directly (by construct-

ing a conjugacy between the corresponding braids)

that the periodic orbits P 101/3 and P
01
1/3 with codes

10011101 and 10011011 have the same braid type.

It follows from the conjecture that the orbits with

codes cq
0
110

0
1 and cq

0
101

0
1 have the same braid type for

all q with 0 < q ≤ q10 = 1/3.

Under the assumption that part (iii) of the conjec-

ture is true, Table 1 shows the topological train track

types (including images) corresponding to decorations of

lengths 3 or less. Decorations which are equivalent under

∼ are shown in the same row. The train tracks have been
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w qw Train track Image

? 1/2

∅ 1/3

0 1/4

1 1/2

00 1/5

01, 10 1/3

11 2/5

000 1/6

001, 100 1/4

110, 010, 011 1/3

101 1/2

111 1/2

TABLE 1. Topological train track types for short decorations.

drawn in such a way that the free endpoint of the initial

edge and its preimage are connected by a horizontal line.

The question, posed in Section 3.2, of whether there

exists a horseshoe orbit P whose braid type is distinct

from that of bP is, under the assumption that part (i) of

the conjecture is true, very closely related to the question

of whether there exists a decoration w which is not ∼-
equivalent to its reverse bw. To see why this is so, note

first that qw = qw for all decorations w. By Lemma 3.3,

qw is the height of the periodic orbit containing the point

with itinerary 10w0, and as stated in Section 3.2, this is

the same as the height of the orbit containing the reverse

itinerary 0 bw01: applying Lemma 3.3 again, this is equal
to qw. Now let P = Pwq be any horseshoe orbit with

q < qw. Then P has code cq
0
1w

0
1, and so bP contains the

point with itinerary 0
1 bw0

1bcq. Since cq is palindromic and
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q < qw = qw, bP has code cq
0
1 bw0

1, i.e., bP = Pwq . Hence P
and bP have the same braid type if and only if w ∼ bw.
4. EVIDENCE FOR THE CONJECTURE

The current evidence for the conjecture is of three types:

proofs of some special cases, computational evidence for

low period orbits with short decorations, and an intuitive

justification using pruning theory [de Carvalho 99, de

Carvalho and Hall 01].

4.1 Proofs of Special Cases

The simplest case, in which w = ?, was treated in [Hall

94a], where it was shown that parts (i), (ii), (iii), and (iv)

of the conjecture hold for this decoration. (Note that,

since ? is not equivalent to any other decoration, in this

case part (i) says that the pair of periodic orbits P ?q are

the only horseshoe periodic orbits of their braid type for

each q ∈ Q∩(0, 1/2).) Using the techniques of this paper,
it doesn’t seem hard to show that parts (ii), (iii), and (iv)

of the conjecture hold for any given decoration w, simply

by calculating the appropriate isotopy classes and show-

ing that they leave invariant train tracks of the given

type. For example, parts (ii), (iii), and (iv) are proved

in [Hall 94b] for decorations of the form w = 12i−1,
where i ≥ 1 is an integer: it is also shown there that

for each q < qw = 1/2, the four orbits P 1
2i−1

q are the

only horseshoe orbits of their braid type (the topologi-

cal train track types which arise are discussed later in

this section). However, treating individual cases in this

way seems a rather pointless endeavour; the challenge in

proving the conjecture is to develop techniques which are

applicable when no information about topological train

track type is available.

Part (v) of the conjecture only makes sense when a

family of decorations is considered simultaneously. In [de

Carvalho and Hall 02b], it is shown that all five parts of

the conjecture hold when attention is restricted to the

set {wq : q ∈ (0, 1/2) ∩ Q} of decorations, where wq is
the word obtained from cq by deleting the initial symbols

10 and the final symbols 01 (it satisfies qwq = q). In this

case, the forcing order can be simply expressed:

Pwqr ≥ Pwq0r0 if and only if [r, q] ⊇ [r0, q0].

The conjecture says nothing about the particular topo-

logical train track types corresponding to particular dec-

orations. However, studying Table 1 and its extensions

to longer decorations makes it very tempting to produce

conjectures, the simpler of which seem relatively easy to

prove by brute force calculations of the action of the ap-

propriate isotopy classes on trial train tracks. Thus, for

example, in [Hall 94b] it is shown that if w = 12i−i for
some integer i ≥ 1, then the reduced train track has a
single period 2 orbit of valence i + 2 vertices (see w = 1

and w = 111 in Table 1). That is,

T = 12233 . . . (i+ 1)(i+ 1)(i+ 2)(i+ 3)(i+ 3)

(i+ 4)(i+ 4) . . . (2i+ 3)(2i+ 3)(i+ 2)1,

and

t =
¡
12233 . . . (i+ 1)(i+ 1)(i+ 2), (i+ 3),

(i+ 4), . . . , (2i+ 2), (2i+ 3)(2i+ 3)

(i+ 2), 1, 2, 3, . . . , (i+ 1)
¢
.

Likewise in [de Carvalho and Hall 02b], it is shown that

if q = m/n ∈ (0, 1/2), and the length n−3 decoration wq
is obtained from cq by deleting the initial 10 and the final

01, then T has a single fixed valence n vertex, and the

action of t on noninitial edges of T is rotation by m/n

(see w = ∅, 0, 00, 11 and 000 in Table 1, corresponding to
q = 1/3, 1/4, 1/5, 2/5, and 1/6, respectively).

Examining the topological train track types corre-

sponding to w = 1, 10, and 100 also leads to an obvious

conjecture about the case w = 10n, which can be proved

with a lot of work but not much difficulty. A more in-

teresting conjecture, however, is that if P is a period n

horseshoe orbit with code cP , and if w is obtained from

cP by deleting the final symbol, then the corresponding

topological train track type has a single period n orbit

of valence 3 vertices, and the braid type of this periodic

orbit is that of P . This conjecture remains unproved.

4.2 Computational Evidence

The main tool which the authors have used for compu-

tational investigation of Conjecture 3.10 is an implemen-

tation by the first author of the Bestvina-Handel train

track algorithm. Using this, parts (ii), (iii), and (iv) of

the conjecture have been checked directly for all periodic

orbits whose decoration is of length 8 or less, and whose

height has denominator 10 or less. Specifically, it was

verified that for each such decoration w,

(a) All of the orbits Pwq (0) and P
w
q (1) with q < qw have

pseudo-Anosov braid type and the same topological

train track type.

(b) The pseudo-Anosov representatives of the orbits

Pwq (0) and P
w
q (1) have the same topological entropy

for each q < qw.
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FIGURE 3. A pruning disk in the horseshoe.

(c) For each q1 < q2 < qw, the pseudo-Anosov repre-

sentative of the orbit Pwq1(0) has greater topological

entropy than that of the orbit Pwq2(0).

This check involved calculating train tracks for 15566 pe-

riodic orbits. Naturally there is no constraint other than

time preventing the continuation of this search; the pro-

gram used is available on the web [Hall 02]. Part (i) is

much harder to check computationally however, since de-

termining whether or not two decorations w and w0 are
equivalent is essentially the same problem as the conju-

gacy problem in the braid group, and as such becomes

impractical for quite short decorations. The authors do

not have any good computational approach to part (v)

of the conjecture.

4.3 Pruning Theory

Pruning is a mechanism for destroying dynamics of sur-

face homeomorphisms in a controlled manner. The fol-

lowing account avoids some technical details: a full de-

scription can be found in [de Carvalho 99, de Carvalho

and Hall 01].

Let F : D2 → D2 be a homeomorphism (which here

will always be the horseshoe). A pruning region for F is

an F -invariant open set R such that there exists an iso-

topy supported in R which destroys the dynamics there;

that is, if FR denotes the homeomorphism obtained at

the end of the isotopy, then every point of R is wander-

ing under FR. Since the isotopy is supported in R, FR
is equal to F outside R.

Example 4.1. Consider the disk shown in Figure 3 (a),
which is bounded by segments of the stable and unstable

manifolds of the fixed point of the horseshoe with code 1.

Then R =
S
n∈Z F

n(Int(D)) is a pruning region for F

(see [de Carvalho 99] for the construction of the isotopy

in this case).

As in this example, pruning regions are usually pre-

sented as saturations of open sets under the dynamics.

Such a generating open set is called a pruning front, and

these will be used to describe pruning regions in what

follows.

Pruning fronts are themselves unions of pruning disks

which are, roughly speaking, open disks bounded by seg-

ments of the stable and unstable manifolds of (possibly

different) periodic points, as in the example above. The

figures shown in the remainder of this section all contain

a square, which represents the nonwandering set of the

horseshoe (after collapsing gaps in the Cantor set). Prun-

ing disks will be depicted with shaded boxes: together,

they make up the pruning front, which in turn yields the

pruning region under saturation. The schematic repre-

sentation of the pruning disk in the above example is

shown in Figure 3 (b).

A general pruning disk can be specified by the hori-

zontal and vertical coordinates of its edges. The simplest

type of pruning disk is a vertical pruning disk, which

extends all the way from the bottom to the top of the

square, and from some point up to the right of the square.

A vertical pruning disk can be specified by the horizontal

coordinate of its left edge, which will be referred to as its

horizontal coordinate.

In [de Carvalho and Hall 01], the Bestvina-Handel

algorithm is recast in the language of pruning to give

an alternative algorithmic proof of Thurston’s classifi-

cation theorem for surface homeomorphisms. Given a

periodic orbit P (or indeed any finite invariant set) of

the horseshoe, this algorithm yields a maximal prun-

ing region R = R(P ) for F relative to P with the

property that, after collapsing wandering domains, FR
is the Thurston representative in the isotopy class of

F : (D2, P ) → (D2, P ). The pruning region is maximal

relative to P in the sense that no further dynamics can

be destroyed by pruning without destroying the periodic

orbit P itself. The same algorithm appears to work for
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homoclinic orbits of the horseshoe. A proof that this is

the case might be obtained by combining the techniques

of [de Carvalho and Hall 01] with those of [Hulme 00].

Note that maximal pruning regions are not unique.

The reason is that there are different regions of the dy-

namics of the horseshoe which are conjugate to each

other; in carrying out the algorithm, one has to decide

which of two conjugate regions should be destroyed. Dif-

ferent choices lead to homeomorphisms FR1
and FR2

which, though conjugate, are described by different prun-

ing regions. This phenomenon will be illustrated in Ex-

ample 4.3 (d). This nonuniqueness is probably the main

cause of difficulty in proving the conjectures in this pa-

per.

The following conjecture, if proved, would provide the

main technical ingredient for proving parts (iv) and (v)

of Conjecture 3.10. It uses the notation Dsw to denote the
family of orbits {Pwq (s) : 0 < q <= qw}, where s ∈ {0, 1}.

Conjecture 4.2. Let w and w0 be decorations with w º w0,
and consider (any particular choices of) the homoclinic

orbits Pw0 and Pw
0

0 . Then there exist s, s
0 ∈ {0, 1} and

maximal pruning regions Rw and Rw0 for F relative to

Pw0 and Pw
0

0 respectively, such that:

(i) Rw0 is disjoint from Ds0w0 and Rw is disjoint from

both Dsw and Ds
0
w0.

(ii) Let q < qw and q0 < qw0. Then a maximal prun-

ing region for the periodic orbit Pwq (s) (respectively

Pw
0

q0 (s
0)) can be obtained by adding to Rw (respec-

tively Rw0) the saturation of the vertical pruning

disk with horizontal coordinate cqsw
0
1 (respectively

cq0s0w001).

These statements could be rephrased in terms of equiv-

alent decorations. For example, in (i) above, instead of

saying that it is possible to find Rw disjoint from Dsw,
it could be said that given any maximal pruning region

Rw for F relative to P
w
0 , there exists a decoration v ∼ w

and s ∈ {0, 1} such that Rw is disjoint from all orbits

in the family Dsv. The point is that a maximal pruning
relative to Pw0 may destroy some orbits of the relevant

braid types, but cannot destroy all of them.

If Conjecture 4.2 holds, then Conjecture 3.10 (v) fol-

lows (and hence so also does Conjecture 3.10 (iv)). For

suppose q < q0 and w º w0, and let Rw, Rw0 , s, and s
0

be as given by Conjecture 4.2. The fact that q < q0 im-
plies that cqsw

0
1 is greater than cq0s0w001 in the unimodal

order, and hence that the vertical pruning disk V with

horizontal coordinate cqsw
0
1 contains no point in the pe-

riodic orbit Pw
0

q0 (s
0). By part (i) of the conjecture Rw is

also disjoint from Pw
0

q0 (s
0), and hence by part (ii), there

is a maximal pruning region for Pwq (s) which is disjoint

from Pw
0

q0 (s
0). Thus the pseudo-Anosov representative of

the braid type of Pwq (s) contains a periodic orbit of the

braid type of Pw
0

q0 (s
0), that is, Pwq ≥ Pw

0
q0 .

The motivation for this conjecture is again computa-

tional. It seems very natural once one has calculated

maximal pruning regions for homoclinic and periodic or-

bits with many different decorations. The following ex-

amples are illustrative of such computations.

Example 4.3.

(a) Let w = ∅. Figure 4 (a) depicts the homoclinic orbit
P ∅0 (with core 1001), together with a maximal prun-
ing front F∅ (which generates R∅ under saturation).
In Figure 4 (b), the periodic orbits P ∅1/4 and P

∅
2/7

(with codes 1000100 and 1001100100) are shown (de-

picted • and ◦ respectively), together with a maxi-
mal pruning front F∅1/4 relative to P ∅1/4, which is pre-
cisely F∅ together with a vertical pruning disk with
horizontal coordinate 1000100. Since 2/7 > 1/4, the

rightmost point of P ∅2/7 lies to the left of this vertical

pruning disk, and hence no point of P ∅2/7 falls into

F∅1/4. It follows that P ∅1/4 forces P ∅2/7.
The fixed point of code 1 is also depicted (with 2) in

Figure 4 (a). The fact that F∅ has this fixed point
on its boundary accounts for the topological train

track type corresponding to the decoration ∅ having
a fixed valence 3 vertex (see Table 1).

(b) A similar treatment of the decoration w = 110 yields

Figure 5. In (a) the homoclinic orbit P 1100 with core

1011001 is depicted together with a maximal prun-

ing front F110. Note that in this case the maximal
pruning front consists of two pruning disks. The

fixed point of code 1 and the period 3 orbit of code

100 are also shown. The fact that they lie on the

boundary of F110 accounts for the topological train
track type corresponding to the decoration 110 hav-

ing four valence three vertices, one fixed, and the

others lying on a period 3 orbit.

In Figure 5 (b), a maximal pruning front F1101/4 rela-

tive to the periodic orbit P 1101/4 with code 1000101100

is shown; it is exactly F110 together with a vertical
pruning disk with horizontal coordinate 1000101100.
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(a) (b)

FIGURE 4. Maximal pruning fronts for the decoration ∅.

(a) (b)

FIGURE 5. Maximal pruning fronts for the decoration 110.

(c) This example illustrates part (v) of Conjecture 3.10.

Let w = 1. Figure 6 (a) depicts the homoclinic or-

bit P 10 (with core 10101, shown as •), together with
a maximal pruning front F1. The homoclinic or-
bit P ∅0 is also shown (◦); since it lies outside F1, it
follows that the decoration 1 forces the empty deco-

ration, i.e., 1 Â ∅. In Figure 6 (b), the periodic or-
bits P 11/4(1) and P

∅
2/7(0) (with codes 10001111 and

1001100100, respectively) are shown (depicted • and
◦, respectively), together with a maximal pruning
front F11/4 relative to P 11/4, which is precisely F1 to-
gether with a vertical pruning disk with horizontal

coordinate 10001111. Since 2/7 > 1/4, the orbit

P ∅2/7 is disjoint from this vertical pruning disk; and

since 1 Â ∅, it was possible to choose F1 to be dis-
joint from D0∅. Thus P ∅2/7 is disjoint from F11/4, i.e.
P 11/4 ≥ P ∅2/7.

(d) The final example illustrates the nonuniqueness of

maximal pruning fronts. Let w = 010. As noted in

Table 1, the three decorations 010, 110, and 011 are

all equivalent, i.e., 010 ∼ 110 ∼ 011. The simplest

maximal pruning front relative to the homoclinic or-

bit H = P 0100 consists of two pruning disks, and is

depicted in Figure 7. H itself is not depicted in this

figure: instead, the periodic orbit P 0101/5 (0) is shown.

It can be seen that this periodic orbit lies in the

pruning region, and hence is destroyed during the

pruning isotopy. (In fact the same is true for all of

the periodic orbits in D010.)
There are two ways to resolve this problem. The

first, following the original formulation of Conjec-

ture 4.2, is to find a different maximal pruning front

which is disjoint from the periodic orbits in D0010.
Such a maximal pruning front exists, but it consists

of infinitely many pruning disks. The second, follow-

ing the restatement of Conjecture 4.2, is to observe

that the maximal pruning front of Figure 7 avoids

the orbits of the family D0110 (although it meets those
of D1110). Although this is a much simpler resolution
in this particular case, it does not appear to be a

practical approach in general, since computation of

the equivalence relation ∼ on decorations seems to
be quite intractable.
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(a) (b)

FIGURE 6. Maximal pruning fronts for the decoration 1.

FIGURE 7. Maximal pruning front for the decoration 010.

The nonuniqueness of maximal pruning regions, as

shown in Example 4.3(d), is a major obstacle to proving

the conjecture. On the one hand, there are some natural

choices for a maximal pruning region relative to Pw0 as

one follows the algorithm described in [de Carvalho and

Hall 01]. However these natural pruning regions some-

times contain the family Dw. If, on the other hand, one
tries to obtain a maximal pruning region which avoids

this family, the construction may require infinitely many

steps, and may indeed cease to be algorithmic. The alter-

native approach, to find an equivalent family Dv which is
untouched by the natural maximal pruning region, would

require a far deeper understanding of the relation ∼ than
seems possible at present.

5. APPENDIX: PROOF OF LEMMA 3.3

The following technical lemma from [de Carvalho and

Hall 02b] is required in the proof.

Lemma 5.1. Let 0 < m/n < 1/2, and write cm/n =

10κ1120κ212 . . . 120κm1. Let 1 ≤ r ≤ m. Then the word

c = 10κr+1120κr+1120κr+212 . . . 120κm1

disagrees with cm/n within the shorter of their lengths,

and is greater than it in the unimodal order.

The next observation, which follows immediately from

the fact that the height algorithm terminates at an iso-

lated 1, is used several times in the proof: it is therefore

stated as a lemma for ease of reference.

Lemma 5.2. Let c ∈ {0, 1}N contain the word 010, and
let v be the shortest initial subword of c which ends 010.

Then any c0 ∈ {0, 1}N which has v as an initial subword
satisfies q(c0) = q(c).

It is also necessary in the proof of Lemma 3.3 to extend

the definition of height to elements c ∈ {0, 1}N which
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do not contain the word 010. The following definition

(see [Hall 94a] for motivation) can be used:

q(c) = inf{q ∈ (0, 1/2] ∩Q : q = 1/2 or cq0 ≺ c},
where ≺ is the unimodal order on {0, 1}N. With this

definition, q : {0, 1}N → [0, 1/2] is a decreasing function

which agrees with the previous definition of height on the

subset C of {0, 1}N.
The final idea which is required in the proof is that

of paired periodic orbits of the horseshoe. If c ∈ {0, 1}n
for some n, write c̃ for the element of {0, 1}n obtained by
changing the final symbol of c. It is well known (see [Hall

94a] for more details) that for every horseshoe periodic

orbit P , exactly one of the words cP c̃P and c̃P cP is the

code of a periodic orbit. Denote this orbit D(P ), the
doubling of P–its (reducible) braid type is that obtained

when a periodic orbit of the braid type of P undergoes a

period-doubling bifurcation. From this observation and

the fact that q(P ) is the lefthand endpoint of the rotation

interval of P (or arguing directly with the symbolics), it

follows that q(P ) = q(D(P )). Moreover, given a horse-
shoe orbit Q, the word c̃Q is not the code of a periodic

orbit of the same braid type as Q if and only if Q = D(P )
for some P . In this case, Q is said to be unpaired; other-

wise it is paired with the orbit of code c̃Q.

The idea of the proof of Lemma 3.3 is as follows: the

case cq0w0 is relatively straightforward: the words of the

form 010 at the start and end of 0cq0 act as ‘stops’ for the

height algorithm, making it possible to apply Lemma 5.2

to argue directly from the definition of qw. Provided

cq0w0 is paired, the result for cq0w1 follows immediately:

in the unpaired case, the form of the code of a paired orbit

makes it possible to relate w to a shorter decoration, and

hence to argue inductively on the length of the decora-

tion. Since cq is palindromic, reversing cq0 bw1 gives a shift
of cq1w0, and the result can be established in this case

using the reversal properties of horseshoe itineraries dis-

cussed in Section 3.2. Finally, the result can be extended

to cq1w1 by again making use of pairing arguments.

Proof of Lemma 3.3. The lemma can be checked directly

when w = ? or w = ∅, so it will be assumed in the
remainder of the proof that w has length k ≥ 1. The

proof is by induction on k.

(i) It will be shown first that the code cq0w0 is max-

imal of height q when q < qw, and is not maxi-

mal of height q when q > qw. Suppose first that

q > qw, and let 0 ≤ i ≤ k + 2 be an integer such

that q(σi(10w0)) = qw. Let v be the shortest ini-

tial subword of σi(10w0) which ends 010. Then v is

also a subword of cq0w0, and hence by Lemma 5.2,

there is some j such that q(σj(cq0w0)) = qw < q.

Since q : {0, 1}N → [0, 1/2] is decreasing, it follows

that cq0w0 is not maximal.

Next suppose that q = m/n < qw, and let si =

σi(cq0w0) for 0 < i < k + n + 3. Then cq0w0 is

maximal if and only if cq0w0 Â si for each i. Now

the 1s at the beginning and the end of cq are both

isolated in cq0w0, while the other 1s in cq are not

isolated. It follows that if i < n+1, then si disagrees

with cq0w0 in the first n + 1 − i symbols, and so
si ≺ cq0w0 (this follows from the maximality of cq0).
On the other hand, if i ≥ n+ 1, then q(si) ≥ qw >
q = q(cq0w0) by Lemma 5.2, and so si ≺ cq0w0.

Hence cq0w0 is maximal. Since the height algorithm

for cq0w0 terminates at the isolated 1 at the end of

cq, it has height q.

(ii) Now consider the code cq0w1, and suppose first that

q < qw. Then cq0w0 is maximal of height q by i),

and hence the same must be true of cq0w1, provided

only that cq0w0 is a paired orbit. However, if cq0w0

is unpaired, then it is the doubling of some orbit

with code cq0v1 of height q and decoration v. Thus

cq0w0 = cq0v1cq0v0, and w = v1cq0v. Since w con-

tains the word cq, it follows that qw ≤ q; a contra-
diction.

Now suppose that q > qw. If cq0w1 were maximal

of height q, then it couldn’t be a paired orbit, since

if it were, then cq0w0 would be maximal of height q,

contradicting (i). Suppose then that cq0w1 is maxi-

mal, of height q, and unpaired; hence it is the dou-

bling of some orbit with code cq0v0 of height q and

decoration v, and q ≤ qv by the inductive hypoth-
esis. Thus cq0w1 = cq0v0cq0v1, and w = v0cq0v.

Let i be such that qw = q(σi(10v0cq0v0)). Since

qw < q, the shortest initial word of σi(10v0cq0v0)

which ends 010 is also contained in 10v0, and hence

qv ≤ qw. This contradicts q ≤ qv.

(iii) Next consider the orbit with code cq1w0. Suppose

first that q < qw. Since qw = qw, it follows by (ii)

that cq0 bw1 is maximal of height q; since cq is palin-
dromic and q(R) = q( bR) for any horseshoe peri-
odic orbit R, it follows that the periodic orbit which

contains the point of itinerary cq1w0 has height q.

Hence if cq1w0 is not maximal of height q, then

there is some i with 1 ≤ i < n + k + 2 such that

c = σi(cq1w0) Â cq1w0; and q(c) = q. How-

ever, i ≤ n + 2, since otherwise the shortest initial



de Carvalho and Hall: The Forcing Relation for Horseshoe Braid Types 287

word v of c which ends 010 would be contained in

10w0, giving qw ≤ q by Lemma 5.2, contradicting

q < qw. Similarly, i = n+2 is impossible, since then

c = 1w0cq, and 10w0 Â 1w0cq. Hence there is some
r with 2 ≤ r ≤ m such that

c = 10κr120κr+112 . . . 120κm12w0cq1.

Since q(c) = q and c Â cq1w0, it follows that

c = 10κr120κr+112 . . . 120κm 12w0cq1

= 10κ1120κ2 12 . . . 120κm−r+1120κm−r+212

. . . 120κm1 . . .

Thus (observing that the word 0cq starts 010)

w = 0κm−r+212 . . . 120κm−1 . . ., and so

10w0 = 10κm−r+2+1120κm−r+3120κm−r+412

. . . 120κm1 . . . ,

giving q(10w0) ≤ q by Lemma 5.1, contradicting

q < qw. Hence cq1w0 is maximal of height q as

required.

Suppose on the other hand that q > qw. If cq1w0

were maximal of height q, a similar argument to the

above would show that cq0 bw1 would also be maximal
of height q, contradicting ii) and the fact that qw =

qw.

(iv) That cq1w1 is maximal of height q if q < qw, and is

not maximal of height q if q > qw follows from (iii)

in the same way that (ii) follows from (i).

REFERENCES

[Adler et al. 65] R. Adler, A. Konheim, and M. McAndrew.
“Topological entropy.” Trans. Amer. Math. Soc. 114
(1965), 309—319.

[Benardete et al. 93] D. Benardete, M. Gutiérrez, and
Z. Nitecki. “A combinatorial approach to reducibility
of mapping classes.” In Mapping class groups and mod-
uli spaces of Riemann surfaces (Göttingen, 1991/Seattle,
WA, 1991), pp. 1—31, Amer. Math. Soc., Providence, RI,
1993.

[Benardete et al. 95] D. Benardete, M. Gutiérrez, and
Z. Nitecki. “Braids and the Nielsen-Thurston classifica-
tion.” J. Knot Theory Ramifications 4:4 (1995), 549—618.

[Bestvina and Handel 95] M. Bestvina and M. Handel.
“Train-tracks for surface homeomorphisms.” Topology
34:1 (1995), 109—140.

[Boyland 84] P. Boyland. emphBraid types and a topologi-
cal method of proving positive entropy, Preprint, Boston
University (the results of this preprint are included in
the published paper [Boyland 94]), 1984.

[Boyland 92] P. Boyland, “Rotation sets and monotone pe-
riodic orbits for annulus homeomorphisms.” Comment.
Math. Helv. 2 (1992), 203—213.

[Boyland 94] P. Boyland. “Topological methods in surface
dynamics.” Topology Appl. 58:3 (1994), 223—298.

[de Carvalho 99] A. de Carvalho. “Pruning fronts and the for-
mation of horseshoes.” Ergodic Theory Dynam. Systems
19:4 (1999), 851—894.

[de Carvalho and Hall 02a] A. de Carvalho and T. Hall.
“Conjugacies between horseshoe braids.” Preprint.

[de Carvalho and Hall 02b] A. de Carvalho and T. Hall,
“Star shaped train tracks.” Preprint.

[de Carvalho and Hall 01] A. de Carvalho and T. Hall,
“Pruning theory and Thurston’s classification of surface
homeomorphisms.” J. European Math. Soc. 3:4 (2001),
287—333.

[Devaney 89] R. Devaney. An introduction to chaotic dynam-
ical systems, Second ed., Addison-Wesley Publishing
Company Advanced Book Program, Redwood City, CA,
1989.

[Fathi et. al. 79] A. Fathi, F. Laudenbach, and V. Poénaru.
“Travaux de Thurston sur les surfaces.” In Société
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