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What’s the best way to represent an isometry of hyperbolic 3-
space H3? Geometers traditionally worked in SL(2,C), but for
software development many now prefer the Minkowski space
model of H3 and the orthogonal group O(3,1). One powerful
advantage is that ideas and computations in S3 using matrices in
O(4) carry over directly to H3 and O(3, 1). Furthermore, O(3,1)
handles orientation reversing isometries exactly as it handles
orientation preserving ones. Unfortunately in computations one
encounters a nagging dissimilarity between O(4) and O(3,1):
while numerical errors in O(4) are negligible, numerical errors
in O(3,1) tend to spiral out of control. The question we ask (and
answer) in this article is, “Are exponentially compounded errors
simply a fact of life in hyperbolic space, no matter what model
we use? Or would they be less severe in SL(2,C)?” In other
words, is numerical instability the Achilles’ heel of O(3,1)?

1. INTRODUCTION

What’s the best way to represent an isometry of hyper-

bolic 3-space H3? More often than not, geometers have
chosen to work in SL(2,C). With the advent of wide-
spread computing, however, many geometers have aban-

doned the Poincaré ball model and switched their think-

ing to the Minkowski space model of H3. That is, they
visualize H3 as the set {v ∈ E1,3|hv, vi = −1 and vo > 0},
where E1,3 is the Minkowski space defined as R4 with a
metric of signature (−+ ++). The isometries of H3 are
then just matrices in the orthogonal group O(3, 1).

The orthogonal group O(3, 1) has some powerful ad-

vantages over SL(2,C). First and foremost are the strong
ties between the Minkowksi space model of Hn and the
usual picture of an n-sphere as {v ∈ En+1|hv, vi = +1}.
Most theorems you prove about the geometry of Sn

transfer easily to theorems about Hn, and indeed their
proofs transfer almost word-for-word, the only modifica-

tions being the introduction of an occasional minus sign.

Similarly, most computations that you do in Sn using ma-

trices in O(n+1) carry over directly to Hn using matrices
in O(n, 1). For example, in computer graphics, modern

PCs all come with 3D graphics cards that are hard-wired
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to do the matrix operations necessary for real time ani-

mations in E3. These same off-the-shelf graphics cards,
when fed transformation matrices in O(4) or O(3, 1), will

correctly render scenes in Sn or Hn, because the compu-
tations are the same [Weeks 01b].

A further advantage of O(3, 1) over SL(2,C) is

O(3, 1)’s egalitarian approach to orientation reversing

isometries, which it handles exactly as it handles ori-

entation preserving ones. SL(2,C), by contrast, is built
for the orientation preserving case, and handles orien-

tation reversing isometries awkwardly, via the complex

conjugate, i.e. an orientation reversing isometry is given

by z 7→ (az̄ + b)/(cz̄ + d). (This awkwardness may par-

tially explain the shameless neglect of nonorientable 3-

manifolds in much of the existing literature.)

Many geometers, especially those with an interest in

computing, have embraced O(3, 1) for most or all of their

work, generally with good results. However, when one

gets into the thick of the computations one encounters a

nagging dissimilarity between O(4) and O(3, 1). While

numerical errors in O(4) are generally negligible, numer-

ical errors in O(3, 1) have the nasty habit of spiraling out

of control, especially if the computation involves matri-

ces with large entries. The question we ask (and answer)

in this article is “Are the problems with numerical error

the Achilles’ heel of O(3, 1)?” In other words, would the

problems with numerical error be less severe in SL(2,C)?
Or are exponentially accumulating errors simply a fact of

life in hyperbolic space, no matter what model we use?

To answer this question, first consider the multiplica-

tion of two real numbers x and y. In theory the answer is

simply the product xy. But in numerical computations

we know the factors only approximately, with errors ∆x

and ∆y. The computed product is (x+∆x)(y +∆y) =

xy + x∆y + y∆x + ∆x∆y. Keeping only the first or-

der error terms and dropping the negligible ∆x∆y, the

computed product becomes xy + x∆y + y∆x.

Now consider the product of two n × n matrices M
and N . The ikth entry in the product MN is given by

the sumX
j

(Mij +∆Mij)(Njk +∆Njk)

'
X
j

(MijNjk +Mij∆Njk +∆MijNjk) .

If the original matrices M and N have entries of mag-

nitude 1 (as is the case, for example, with rotation ma-

trices in O(n)), then the errors in the computed product

are similar to the errors in the factors, and all is well.

If, on the other hand, the original matrices have large

entries (as is often the case, for example, with matri-

ces in SL(2,C) or O(3, 1)), then the errors in the com-
puted product are larger than the errors in the factor

matrices, in proportion to the magnitude of the factor

matrix entries. For example, if the matrices M and N

have entries of order 1000, accurate to within an er-

ror ², then the product MN will have entries accurate

to within 1000 × 2n². This result isn’t so bad if M

and N are chosen arbitrarily, because the product MN

will have entries of order 1000000, and the fractional er-

ror 2000n²/1000000 = 2n²/1000 in the product will be

roughly the same as the fractional error ²/1000 in the

factors. In reality, though, we don’t choose our matrices

M and N arbitrarily. On the contrary, many computa-

tions in hyperbolic space require checking whether the

product of several matrices is the identity. In such cases

we might, say, multiply two matrices M and N with en-

tries of order 1000 and get a product MN with entries

of order 1, yet still have errors in the product of order

1000²! This effect–getting a matrix with small entries

but large errors–is what makes numerical computation

in hyperbolic space difficult.

If we multiply not two but three matrices, the effect

is even more pronounced. Say we need to compute the

product of three matrices M , N , and P , each of which

has entries of order 1000, with errors of order ². The

entries in the partial product MN will, as shown above,

have errors of order 1000², and so the entries in the final

product MNP will have errors of order 1000000². More

generally, the size of the errors grows exponentially with

the number of matrix multiplications.

Both O(3, 1) and SL(2,C) contain matrices with large
entries, and both suffer the aforementioned problem with

error compounding. The question is, does O(3, 1) suffer

worse than SL(2,C)? As an example, consider the O(3, 1)
matrix 

cosh d sinh d 0 0
sinh d cosh d 0 0
0 0 1 0
0 0 0 1


and the corresponding SL(2,C) matrixµ

ed/2 0
0 e−d/2

¶
,

each of which describes a translation of distance d along

a geodesic through the origin in hyperbolic 3-space. The

entries in the O(3, 1) matrix are of order at most ed,

while those in the SL(2,C) matrix are of order at most
ed/2. In the next section we’ll see that this example is
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typical: matrices in O(3, 1) with entries of order ed corre-

spond to matrices in SL(2,C) with entries of order ed/2.
The difference between ed and ed/2 is enormous for all

but the smallest values of d, and we conclude that errors

compound much more slowly in SL(2,C) than in O(3, 1).
Accumulating error really is the Achilles’ heel of O(3, 1).

2. THE TWO ACTIONS AND THE ESTIMATES

One of the standard models of hyperbolic 3-space is the

upper half-space of R3, considered as the subspace U =
{z + tj : z ∈ C, t > 0} of the quaternions, with metric
ds2

t2 . The group SL(2,C) of 2× 2 complex matrices with
determinant 1 acts as isometries on U byµ

a b
c d

¶
(z + tj) = (a(z + tj) + b)(c(z + tj) + d)−1.

The kernel of this action is {±I}, and the quotient group
PSL(2,C) is isomorphic to the group of orientation-

preserving isometries of H3. See, for example, [Beardon
83, Chapter 4].

Another standard model for H3 is the hyperboloid
model. Consider the Minkowski space E1,3, which as a
topological space is just E4 but which is equipped with
the inner product h , i defined by

h(v0, v1, v2, v3), (w0, w1, w2, w3)i
= −v0w0 + v1w1 + v2w2 + v3w3.

The group O(3, 1) acts on E1,3 preserving the inner

product, and each element of O(3, 1) preserves the hy-

perboloid {v ∈ E1,3 : hv, vi = −1}. The hyperboloid

model for H3 is the top sheet H = {v ∈ E1,3 : hv, vi =
−1 and v0 > 0} of this hyperboloid, with metric ds2 =
−dv20+dv21+dv22+dv23 . The set of elements of O(3, 1) that
preserve H is a subgroup O+(3, 1) of O(3, 1) of index 2,

and this subgroup is the isometry group of H (and hence

of H3). The group of orientation-preserving isometries of
H3 is the subgroup SO+(3, 1) of O+(3, 1) of elements of
O(3, 1) with determinant 1.

Before giving the estimates, we first compute the sta-

bilizers of the natural basepoints j and (1, 0, 0, 0) of the

two actions. Consider an element

A =

µ
a b
c d

¶
of SL(2,C). Then A(j) = j if and only if (aj + b)(cj +
d)−1 = j, which is true if aj + b = j(cj + d) =

−c̄ + d̄j. Hence the stabilizer of j is the special uni-

tary group SU(2). It is easy to check that the stabilizer

of (1, 0, 0, 0) in O(3, 1) is the image of the monomorphism

ι : O(3) → O(3, 1) defined (with abuse of notation) by

ι(A)(v0, v1, v2, v3) = (v0, A(v1, v2, v3)).

Lemma 2.1. The maximum modulus of an entry in a

matrix A ∈ SL(2,C) lies in the interval [ 12ed/2−1, ed/2+
1], where d is the hyperbolic distance that A moves the

natural basepoint j in U .

Proof: If d = 0, then A ∈ SU(2) and the lemma is clear.
Suppose d > 0. The matrix

τ (d) =

µ
ed/2 0
0 e−d/2

¶
translates the basepoint j in U hyperbolic distance d.

By composing τ(d) with a rotation ρ1, we can use the

product ρ1τ (d) to translate the basepoint j to any point

that is hyperbolic distance d from j. By pre-composing

with another rotation ρ2, we can express any element

A of SL(2,C) as a product ρ1τ (d)ρ2. Algebraically, the
rotations ρ1 and ρ2 are given by matrices in SU(2), as

explained above. Hence

A =

µ
a −b̄
b ā

¶µ
ed/2 0
0 e−d/2

¶µ
u −v̄
v ū

¶

=

µ
aued/2 − b̄ve−d/2 −av̄ed/2 − b̄ūe−d/2
bued/2 + āve−d/2 −bv̄ed/2 + āūe−d/2

¶
,

where |a|2+|b|2 = 1 and |u|2+|v|2 = 1. It is now straight-
forward to check that every entry of A has modulus less

than ed/2+1, and at least one entry has modulus greater

than 1
2e
d/2 − 1, thus proving the lemma.

Lemma 2.2. The maximum absolute value of an entry

in a matrix A ∈ SO+(3, 1) is cosh d, where d is the

hyperbolic distance that A moves the natural basepoint

(1, 0, 0, 0) in H.

Proof: Again we can assume that d > 0, since if d = 0

then A ∈ ι(O(3)) and the lemma is clear. The matrix

T (d) =


cosh d sinh d 0 0
sinh d cosh d 0 0
0 0 1 0
0 0 0 1


translates the basepoint (1, 0, 0, 0) in H hyperbolic dis-

tance d. By composing T (d) with an element of ι(O(3)),

we can translate (1, 0, 0, 0) to any point that is hyper-

bolic distance d from (1, 0, 0, 0). By pre-composing with

another element of ι(O(3)), we can express any element
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A of SO+(3, 1) as a product ρ1T (d)ρ2, where ρ1 and ρ2
are in ι(O(3)). It is now straightforward to check that the

maximum absolute value of each entry of such a matrix

ρ1T (d)ρ2 is at most cosh d and the 1, 1 entry is exactly

cosh d.

To use the lemmas, we need to know how we’ll com-

pare matrices in the two groups. Since we’ve only seen

one isomorphism between PSL(2,C) and SO+(3, 1) given
in print, we will make our comparisons with that one and

will call it the standard isomorphism. The construction

of the isomorphism, which is via an action of SL(2,C) on
the space of 2× 2 Hermitian matrices, can be found, for
example, in [Shafarevich 90, Section 15] and in [Thurston

97, Section 2.6]. An implementation of this isomorphism

can be found in the source file matrix conversion.c of

SnapPea [Weeks 01a]. We will not construct the stan-

dard isomorphism here, but note that it is easy to see

from the construction that it preserves the distance that

an element moves the natural basepoint. Hence matrices

in SL(2,C) with entries of order ed/2 correspond under
the standard isomorphism to matrices in O(3, 1) with en-

tries of order ed.

3. EXAMPLES

Our expectation from the estimates is that as the trans-

lation distances increase the computational errors in tak-

ing products in O(3, 1) will be drastically worse than the

computational errors in taking the products of the corre-

sponding matrices in PSL(2,C). But above we just gave
upper bounds, and it is conceivable that in actual prac-

tice the numerical errors could be much less. We give

some examples to illustrate what actually happens. All

examples were done in Mathematica1 Version 4.0.2.0 on

a IBM-compatible PC with a Pentium P3 processor and

Windows 2000. All but the last example were computed

with floating point arithmetic with 16 decimal digits of

precision.

One sees dramatic errors just in comparing the prod-

uct τ(d1)τ (d2) and the product T (d1)T (d2), its image

under the standard isomorphism. In particular, consider

the product τ(d)τ (−d) and the product T (d)T (−d). If d
is large, then a computer using floating point arithmetic

can no longer distinguish between cosh d and sinh d, and

so the latter product will not be close to the identity. But

in some sense this is an unfair comparison, because τ (d)

is diagonal and there is no appreciable error in PSL(2,C)
1A computer software system available from Wolfram Research,

Inc., 100 Trade Center Drive, Champaign, IL 61820, USA.

in taking the product of the diagonal matrices τ (d) and

τ(−d). So let us consider the product AA−1 for a generic
matrix A in PSL(2,C) or SO+(3, 1).
In order to construct a generic element of Isom(H3), it

is convenient to choose generators for the rotation group

Isom(S2) = SU(2) and for its image under the standard

isomorphism f : PSL(2,C) → SO+(3, 1). Given t ∈ R,
let

r1(t) =

µ
cos t sin t
− sin t cos t

¶
, R1(t) =


1 0 0 0
0 cos 2t − sin 2t 0
0 sin 2t cos 2t 0
0 0 0 1

 ,

r2(t) =

µ
cos t i sin t
i sin t cos t

¶
, R2(t) =


1 0 0 0
0 cos 2t 0 sin 2t
0 0 1 0
0 − sin 2t 0 cos 2t

 ,

r3(t) =

µ
eti 0
0 e−ti

¶
, andR3(t) =


1 0 0 0
0 1 0 0
0 0 cos 2t sin 2t
0 0 − sin 2t cos 2t

 .
These matrices describe rotations of S2 about the x, y,

and z axes. To see that they generate all of Isom(S2),

note that they suffice to take the north pole to any point

of S2, with any desired rotation angle. It is also easy to

check that Ri(t) = f(ri(t)) for i = 1, 2, 3.

For concreteness we choose a particular family of ma-

trices, parameterized by the distance d that they move

the origin. Let

AP (d) = r1(π/3)τ (d)r2(4π/3),

BP (d) = A(d)
−1 = r2(−4π/3)τ(−d)r1(π/3),

AO(d) = f(AP (d)) = R1(π/3)T (d)R2(4π/3),

and

BO(d) = AO(d)
−1 = f(BP (d)) = R2(−4π/3)T (d)R2(π/3).

Note that neither

AP (8) =

 − e44 − 3
4e4 i −

√
3

4e4 −
√
3e4

4 i
√
3e4

4 −
√
3

4e4 i − 1
4e4 +

3e4

4 i


≈
µ−13.6495− 0.0137367i −0.0079309− 23.6417i

23.6417− 0.0079309i −0.00457891 + 40.9486i
¶
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nor

AO(8) =


cosh(8) −12 sinh(8) 0

√
3
2 sinh(8)

−12 sinh(8) 1
4 cosh(8) −

√
3
2 −

√
3
4 cosh(8)

√
3
2 sinh(8) −

√
3
4 cosh(8) − 12 3

4 cosh(8)

0 −
√
3
2 0 − 12



≈


1490.48 −745.239 0 1290.79
−745.239 372.62 −0.866025−645.396
1290.79 −645.396 −0.5 1117.86
0 −0.866025 0 −0.5


is close to a diagonal matrix. For a fixed integer d, AP (d),

AO(d), BP (d), and BO(d) are first computed symboli-

cally, and then are converted to floating point matrices

before computing AP (d)BP (d) and AO(d)BO(d).

Consider taking the product of two n× n matrices M
and N . Recall that the ikth entry in the product MN is

given by the sumX
j

(Mij +∆Mij)(Njk +∆Njk)

'
X
j

(MijNjk +Mij∆Njk +∆MijNjk)

=
X
j

µ
MijNjk +MijNjk

∆Njk
Njk

+MijNjk
∆Mij

Mij

¶
.

Hence the absolute error in each entry of the product

MN cannot exceed an upper bound on the order of

Max(Mij)Max(Nij) ²max,

where ²max is the greatest fractional error occurring in

the entries of M and N . For optimal data, ²max roughly

equals the machine precision 5 × 10−16, but in practice
it can be much greater, because errors accumulate as

we pass data from one step to the next of a multi-step

computation.

Applying the results of the preceding paragraph to the

special case that M = AP (d) and N = BP (d), we get an

error bound on the order of

βP (d) = e
d/2ed/210−16 = ed10−16,

while for M = AO(d) and N = BO(d), we get an error

bound on the order of

βO(d) = e
ded10−16 = e2d10−16.

Figure 1 plots the error estimates βP (d) and βO(d) and

compares them to the actual errors

errP (d) = Max(|AP (d)BP (d)− I2|)

10 20 30 40 50

-20

20

40

60

d

log(err(d))

FIGURE 1. The logs of the actual errors log(errP (d)) and
log(errO(d)) for the product AA

−1 closely track the theo-
retical estimates log(βP (d)) and log(βO(d)).

and

errO(d) = Max(|AO(d)BO(d)− I4|)
for d = 1, . . . , 50. The actual errors track the theoretical

estimates fairly closely, and it is clear from the data that

the numerical error is much greater for the product in

SO+(3, 1).

Now consider the error in evaluating the product of

matrices corresponding to a relator R in a discrete sub-

group of Isom(H3). We take a very special case of a

relator and consider the products

RP (d) = ((AP (d)AP (d))BP (d))((BP (d)BP (d))AP (d))

and

RO(d) = ((AO(d)AO(d))BO(d))((BO(d)BO(d))AO(d)),

where BP (d) = AP (d)
−1 and BO(d) = AO(d)−1 are the

same as in the previous example. For a fixed integer d

we first compute AP , AO, BP , and BO symbolically, then

convert them to floating point matrices before evaluating

the relations RP (d) and RO(d). Since RP (d) and RO(d)

should be the identity, we get estimates of error from

errP (d) = Max(|RP (d)− I2|) and

errO(d) = Max(|RO(d)− I4|).

Table 1 shows some computations of errP (d) and errO(d)

for d = 1, . . . , 14.

As predicted by the theoretical upper bounds, the er-

rors in the O(3, 1) products are much greater than the

errors in the PSL(2,C) products. Even though the hyper-
bolic translation distance d is relatively small, in O(3, 1)

the error quickly becomes unmanageable while the cor-

responding errors in PSL(2,C) stay small.
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d errP (d) errO(d)
1 3.7× 10−16 4.6× 10−16
2 1.3× 10−15 3.8× 10−14
3 4.8× 10−15 1.2× 10−12
4 4.3× 10−14 9.2× 10−11
5 1.4× 10−13 1.6× 10−8
6 5.2× 10−13 3.8× 10−7
7 2.1× 10−11 6.7× 10−5
8 1.4× 10−10 9.5× 10−4
9 2.5× 10−9 8.6× 10−2
10 1.2× 10−8 2.1× 100
11 3.3× 10−8 1.6× 102
12 6.8× 10−7 1.2× 104
13 1.1× 10−6 1.3× 105
14 1.4× 10−5 5.1× 107

TABLE 1. Computations of errP (d) and errO(d).

Lemma 2.1, Lemma 2.2, and the first example suggest

that errP (d) might be comparable to errO(d/2). Table 2

gives the ratio errO(d/2)/errP (d). for d = 2, 4, 6, 8, 12, 14.

Recall from the proof of Lemma 2.1 that a matrix

A ∈ SL(2,C) that translates the natural basepoint j
in U hyperbolic distance d can be written as a prod-

uct ρ1τ (d)ρ2 for some matrices ρ1 and ρ2 in SU(2).

We next consider the effect of changing the matrices

ρ1 and ρ2. We fix the translation distance d to be 8.

Given integers i1, i2, i3, i4, i5, and i6 in {1, 2, 3, 4, 5},
we let ρ1 = r1(2πi1/5)r2(2πi2/5)r3(2πi3/5), ρ2 =

r1(2πi4/5)r2(2πi5/5)r3(2πi6/5), AP = ρ1τ (8)ρ2, AO =

f(AP ), BP = A−1P , and BO = A−1O , where AO, BP ,

and BO are each computed as the product of seven

appropriate matrices corresponding to the decompo-

sition of AP as a sevenfold product. Each of AP ,

AO, BP , and BO are first computed symbolically and

are then converted to floating point matrices. The

products RP = ((APAP )BP )((BPBP )AP ) and RO =

((AOAO)BO)((BOBO)AO) would be identity matrices if

we worked with infinite precision. Let errP = Max(|RP−

d errO(d/2)/errP (d)
2 0.36
4 0.90
6 2.4
8 0.64
10 1.4
12 0.56
14 4.8

TABLE 2. The ratio errO(d/2)/errP (d).

I2|) and errO = Max(|RO−I4|). Figure 2 shows the scat-
ter plot of points (log(errP ), log(errO)) for the 5

6 choices

of the ij ’s. Note that the largest value of errP is eight

orders of magnitude smaller than the smallest value of

errO.

-24 -23 -22 -21 -20

-12

-11

-10

-8

-7

-6

-5

log(errO)

log(errP)

FIGURE 2. A scatter plot of the points (errP , errO) for the
products ((AA)A−1)((A−1A−1)A).

In our example, (ρ1 = r1(π/3) and ρ2 = r2(4π/3)),

(log(errP (8)), log(errO(8))) ≈ (−22.3392,−6.74756).
This is in the dense central portion of the scatter

plot of Figure 2. The scatter plot is clustered tightly

enough that we continue to restrict our attention to that

one example, i.e. AP (d) = r1(π/3)τ (d)r2(4π/3) and

AO(d) = f(AP ) = R1(π/3)T (d)R2(4π/3). This time

we consider the effect on RP (d) and RO(d) of chang-

ing d. For d ∈ {1, 2, . . . , 50}, we compute the points
(d, log(errP (d))) and find that the best linear fit for them

is g1(d) = −41.1529 + 2.15727d. We then compute the
points (d, log(errO(d))) and find that the best linear fit

for them is g2(d) = −54.2391 + 5.37681d. For each n,
log(errO(d)) > log(errP (d)). The two collections of data

points and the graphs of g1 g2 are shown in Figure 3.

Note that log(errO(d)) is growing significantly faster than

log(errP (d)). Furthermore, the slopes are much greater

than 1 for g1 and 2 for g2. This is because each exam-

ple is a sixfold product of floating point matrices, and

so there is much greater error accumulation than would

occur for a single product.

In order to investigate the effect of increasing the nu-

merical precision, in the next example we no longer work

with Mathematica’s floating point arithmetic. We first

compute AP (8), AO(8), BP (8), and BO(8) symbolically,

and then use the SetPrecision command in Mathemat-

ica to set their precision at 100 decimal digits. Then,

given an integer n with 8 ≤ n ≤ 60, we multiply each

of their elements by a uniformly distributed pseudoran-

dom number, with 100 decimals of precision, in the in-
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10 20 30 40 50

-50

50

100

150

200

d

log(err(d))

FIGURE 3. The best linear fits for log(errP (d)) and
log(errO(d)).

terval [1 − 1
210
−n+1, 1 + 1

210
−n+1]. We then compute

log(errP (8)) and log(errO(8)), plot each one as a function

of n, and find the best linear fit for each plot. The best

linear fits are h1(n) = 15.6801−2.29848n for log(errP (8))
and h2(n) = 30.5171 − 2.30692n for log(errO(8)). Fig-
ure 4 shows the plots and the graphs of the linear fits

for both examples. Since the slopes of the two lines are

close to each other, for n ∈ [8, 60] we expect the ra-

tio errO(8)/errP (8) to have roughly the same order as

e30.5171−15.6801 ≈ 2.77733 × 106. In fact, for each inte-
ger n with 8 ≤ n ≤ 60 the ratio errO(8)/errP (8) is in

the interval [1.1× 105, 1.5× 107]. So while increasing the
numerical precision predictably improves the accuracy, it

does not change the relative degree to which the compu-

tations are more accurate in PSL(2,C) than they are in
SO+(3, 1).
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