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In a previous article, the authors described an algorithm to deter-
mine whether a finite metric polyhedral complex satisfied vari-
ous local curvature conditions such as being locally CAT(0).The
proof made use of Tarski’s theorem about the decidability of first
order sentences over the reals in an essential way, and thus it
was not immediately applicable to a specific finite complex. In
this article, we describe an algorithm restricted to 3-dimensional
complexes which uses only elementary 3-dimensional geome-
try. After describing the procedure, we include several exam-
ples involving Euclidean tetrahedra which were run using an
implementation of the algorithm in GAP.

1. INTRODUCTION

In this article we describe an algorithm to determine

whether or not a finite 3-dimensional Mκ-complex is lo-

cally CAT(κ). The procedure is based purely on ele-

mentary 3-dimensional geometry, and has considerable

computational advantages over the algorithm for Mκ-

complexes of arbitrary dimension which was described

by the authors in [Elder and McCammond 01]. After de-

scribing the procedure, we include several examples in-

volving Euclidean tetrahedra which were run using an

implementation of the algorithm in GAP. The imple-

mentation is available from the authors upon request.

The article is structured as follows: Section 2 con-

tains a brief review of polyhedral and comparison geom-

etry which is included for completeness, but can easily by

skipped by readers familar with the area. In Section 3,

we review the notion of a gallery as introduced in [Elder

and McCammond 01]. A gallery in our sense is a gen-

eralization of the notion of gallery used in the study of

Coxeter complexes.

Sections 4—7 contain the core of the argument. In

these sections we describe how to detect a closed geo-

desic of length less than 2π in each of the four types of
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circular galleries which can occur in dimension 3: annu-

lar, Möbius, disc and necklace. In Section 8 we describe

a technique for enumerating the precise finite list of cir-

cular galleries which can be built from a specified list of

building blocks and contain a closed geodesic of length

less than 2π. We then show in Section 9 how to apply

this list of forbidden galleries to test whether a particular

finite complex is locally CAT(κ).

In Section 10 we describe theGAP routines mentioned

above; in Section 11 we give three examples of the results

this software has produced, and in Section 12 we describe

some directions for future research.

2. PRELIMINARIES

A metric space (K,d) is called a geodesic metric space if

every pair of points in K can be connected by a geodesic.

The geodesic metric spaces in which we are primarily in-

terested, will be cell complexes constructed out of convex

polyhedral cells in Hn, En or Sn. We will start by de-
scribing these spaces, then quickly review their relation-

ship with comparison geometry. Details can be found in

[Ballman 95], [Bridson 91] and [Bridson, Haefliger 99].

Definition 2.1. (Polyhedral cells.) A convex polyhedral

cell in Hn or En is the convex hull of a finite set of points.
The convex hull of n+ 1 points in general position is an

n-simplex. A polyhedral cone in En is the positive cone
spanned by a finite set of vectors. If the original vectors

are linearly independent, it is a simplicial cone. A cell

(simplex) in Sn is the intersection of a polyhedral cone
(simplicial cone) in En with Sn.
A spherical cell which does not contain a pair of an-

tipodal points is proper. All Euclidean and hyperbolic

cells are considered proper. Notice that every spherical

cell can be subdivided into proper spherical cells by cut-

ting along the coordinate axes. If σ denotes a proper

convex polyhedral cell, then σ◦ will denote its interior
and ∂σ will denote its boundary. For 0-cells, σ◦ = σ, by

definition and ∂σ is empty.

Definition 2.2. (Mκ-complexes.) An H-complex [E-
complex, S-complex] is a connected cell complex K made

up of proper hyperbolic [Euclidean, spherical] cells glued

together by isometries along faces. A cell complex which

has an H-complex, an E-complex, or an S-complex struc-
ture, will be called a metric polyhedral complex, or Mκ-

complex for short where κ denotes the curvature con-

stant common to all of its cells. More generally, an Mκ-

complex is formed from polyhedral cells with constant

curvature κ.

Convention 2.3. (Subdivisions.) As noted above, every
spherical cell can be subdivided into proper spherical

cells. Since proper spherical cells are required in an S-
complex, a subdivision will occasionally be necessary in

order to convert a complex built out of pieces of spheres

to be considered an S-complex.

Definition 2.4. (Shapes.) If K is an Mκ-complex, then

the isometry types of the cells of K will be called the

shapes of K, and the collection of these isometry types

will be denoted Shapes(K). When Shapes(K) is finite,

K is said to have only finitely many shapes. Notice that

since cells of different dimensions necessarily have differ-

ent isometry types, finitely many shapes implies that K

is finite dimensional. It does not, however, imply that K

is locally finite. Notice also that if K is an Mκ-complex

with only finitely many shapes, then there is a subdivi-

sion K 0 of K where the cells of K0 are proper and sim-
plicial, and Shapes(K 0) remains finite.

Definition 2.5. (Paths and loops.) A path γ in a metric

space K is a continuous map γ : [0, `] → K. A path is

closed if γ(0) = γ(`). A loop is a closed path where the

basepoint γ(0) has been forgotten. Technically, a loop is

viewed as a continuous map from a circle to K.

Definition 2.6. (Piecewise geodesics.) Let K be an

Mκ-complex. A piecewise geodesic γ in K is a path

γ : [a, b]→ K where [a, b] can be subdivided into a finite

number of subintervals so that the restriction of γ to each

closed subinterval is a path lying entirely in some closed

cell σ ofK and the path is the unique geodesic connecting

its endpoints in the metric of σ. The length of γ, denoted

length(γ), is the sum of the lengths of the geodesics into

which it can be partitioned. A closed piecewise geodesic

and a piecewise geodesic loop are defined similarly. The

intrinsic metric on K is defined as follows:

d(x, y) = inf{length(γ)|γ is a piecewise geodesic from x to y}

In general d is only a pseudometric, but when K has

only finitely many shapes, d is a well-defined metric and

(K, d) is a geodesic metric space [Bridson, Haefliger 99,

Theorem 7.19].

Definition 2.7. (Size.) The size of a piecewise geodesic

γ : [0, `] → K is the number of open cells of K through

which γ([0, `]) passes, with multiplicities. Technically,
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the size of γ is the minimal number of subintervals (open,

half-open, or closed) into which [0, `] must partitioned so

that the image of each subinterval lies in a single open

cell of K. Note that some of these subintervals may be

single points. The fact that γ is a piecewise geodesic

ensures that the size of γ is finite.

Definition 2.8. (Links.) Let K be an Mκ-complex with

only finitely many shapes and let x be a point in K. The

set of unit tangent vectors to K at x is naturally an S-
complex called the link of x in K, or link(x,K). If K

has only finitely many shapes, then link(x,K) has only

finitely many shapes.

When x lies in the interior of a cell B of K, link(x,B)

is a sphere of dimension k = dimB − 1 sitting inside
link(x,K). Moreover, the complex link(x,K) can be

viewed as a spherical join of Sk and another S-complex,
denoted link(B,K), which can be thought of as the unit

tangent vectors to x in K which are orthogonal to B.

The complex link(B,K) is called the link of the cell B

in K. Once again, if K has only finitely many shapes,

then link(B,K) has only finitely many shapes as well.

Definition 2.9. (Local geodesics.) A piecewise geodesic

γ in anMκ-complex K is called a local geodesic if for each

point x on γ, the incoming and outgoing unit tangent

vectors to γ at x are at a distance of at least π from each

other in link(x,K). Similarly, a closed geodesic is a loop

which is a local geodesic at each point.

The size and length of local geodesics are closely re-

lated. Bridson proves that for every ` > 0 there exists

an integer N > 0, depending only on Shapes(K), such

that every local geodesic of size at least N has length

at least ` [Bridson 91, Theorem 1.11] [Bridson, Haefliger

99, Theorem I.7.28]. We can in fact compute such an N

directly. See Section 8.

Metric polyhedral complexes are particularly useful in

the creation of metric spaces of non-positive curvature.

Definition 2.10. (Globally CAT(κ)). Let K be a geo-

desic metric space, let T be a geodesic triangle in K,

and let κ = −1, [or 0, or 1]. A comparison triangle for

T is a triangle T 0 in H2, [or E2 or S2] with the same
side lengths as T . Notice that for every point x on T ,

there is a corresponding point x0 on T 0. The space K is

called globally CAT(κ), if for any geodesic triangle T in

K [of perimeter less than 2π when κ = 1] and for any

points x and y on T , the distance from x to y in K is

less than or equal to the distance from x0 to y0 in H2 [or

E2 or S2]. Finally, a space K is called locally CAT(κ) if

every point in K has a neighborhood which is globally

CAT(κ). Locally CAT(0) spaces are often referred to as

non-positively curved.

Theorem 2.11. In a globally CAT(0) space, every pair of
points is connected by a unique geodesic, and a path is a

geodesic if and only if it is a local geodesic.

The next two results about Mκ-complexes show how

global properties such as CAT(κ) can be reduced to local

properties and how local properties can be reduced to the

existence of geodesics in S-complexes.

Theorem 2.12. Let K be an Mκ-complex which contains

only finitely many shapes.

1. If K is an H-complex, then K is globally CAT(−1)
if and only if it is locally CAT(−1) and simply-
connected.

2. If K is an E-complex, then K is globally CAT(0)

if and only if it is locally CAT(0) and simply-

connected.

3. If K is an S-complex, then K is globally CAT(1)

if and only if it is locally CAT(1) and there are no

geodesic cycles of length < 2π.

Theorem 2.13. If K is an Mκ-complex, then K is locally

CAT(κ) if and only if the link of each vertex in K is

globally CAT(1) if and only if the link of each cell of

K is an S-complex which contains no closed geodesic of
length less than 2π.

Thus showing that H-complexes are CAT(−1) or that
E-complexes are CAT(0) ultimately depends on being
able to show that various S-complexes contain no short
geodesic cycles.

3. GALLERIES

As a consequence of Theorem 2.13, the main goal of the

algorithm will be to detect short closed geodesics in the

link of a cell. In a 3-dimensional complex the link of a

3-cell is empty, the link of a 2-cell is a discrete set of

points (and thus never contains a short closed geodesic),

and the link of a 1-cell is a finite metric graph which is

easy to test for short closed loops. Thus, the entire focus

will be on the link of a 0-cell which is a 2-dimensional

spherical complex.
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FIGURE 1. The 2-complex and linear gallery described in Example 3.1.

Let K be a 2-dimensional S-complex, let γ be a local
geodesic in K, and consider the sequence of open cells

through which γ passes (we will assume throughout that

K has been subdivided so that all of its cells are proper

spherical simplices). This sequence is essentially what

we call a linear gallery. If γ is instead a closed geodesic,

then this sequence is given a cyclic ordering and the se-

quence is called a circular gallery. Before giving a precise

definition, we begin with an example.

Example 3.1. Let K be the 2-dimensional S-complex
formed by attaching the boundaries of two regular spher-

ical tetrahedra along a 1-cell. The complex K is shown

in the upper left corner of Figure 1 (where the spherical

nature of the 2-cells has been left to the reader’s imag-

ination). Let γ be the geodesic shown which starts at

x, travels across the front of K, around the back, over

the top, and ends at y. The linear gallery determined by

γ is shown in the upper right corner, its interior in the

lower left corner, and its boundary in the lower right of

Figure 1.

We will now give a semi-formal definition of a gallery.

For precise definitions and proofs of the properties listed

see [Elder and McCammond 01].

Definition 3.2. (Linear gallery determined by a geo-
desic.) Let S be a finite set of proper spherical sim-
plices, and assume that if σ is a shape in S then every
face of σ is also in S. As noted in the previous section,
σ◦ will denote the open cell corresponding to a closed cell
σ ∈ S.
Let K be an S-complex such that each simplex in K

is isometric to a cell in S. If γ is a local geodesic in K,
then the sequence {σ◦i }ki=1 of open cells through which
γ passes, corresponds to a sequence {σi}ki=1 of closed

cells in S. The cells σ1 and σk are called the start cell

and end cell G, respectively. Moreover, because γ is a
local geodesic, it is easy to see that the dimensions of

consecutive cells in this sequence are distinct and that

these dimensions alternate, going up and down as the

sequence progresses. If the dimension of a cell σi is larger

than that of σi−1 and σi+1 (if these exist), then σi is

called a top cell. If its dimension is smaller than that of

its neighbors, then it is a bottom cell. Notice also that

each bottom cell can be identified with a particular cell

in the boundary of each neighboring top cell in a unique

way which is determined by the path γ.

The linear gallery determined by γ is technically the

complex G which results from taking the cells σi, i =

1, . . . , k and gluing the bottom cells into the boundaries

of the neighboring top cells according to these identifica-

tions. Figure 1 should help to make this rough descrip-

tion precise.

Notice that even though cells in K may be traversed

more than once by different portions of γ (such as tri-

angle CEF in the example), the corresponding cells in

the gallery are not identified. The interior of G is the
union of the open cells σ◦i , while the boundary of G is the
complement of the interior in G. We note two properties
of linear galleries which are essentially immediate from

the definition.

Lemma 3.3. If K is an S-complex and G is a linear gallery
determined by a local geodesic γ in K, then the interior

of G immerses into K and retracts onto the lift of γ to

G.

Note that G itself may not immerse into K. In the
example, the map G → K is not a local embedding at

the vertex labeled A.
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Definition 3.4. (Circular gallery determined by a geo-
desic.) Let K be an S-complex built out of the shapes
in S, and let γ be a closed geodesic in K. There is a
circular gallery determined by γ whose definition is es-

sentially the same as that of a linear gallery, only the

cells are given a cyclic ordering. In dimension 2, typical

circular galleries will be annuli and Möbius strips. The

full list of possibilities are given in Definition 3.7.

The definitions of top cell, bottom cell, interior, and

boundary are as above. As with linear galleries, we record

the following properties.

Lemma 3.5. If K is an S-complex and G is a circular
gallery determined by a closed geodesic in K, then the

interior of G immerses into K and retracts onto the loop

which is the lift of γ to G.
Definition 3.6. (Linear and Circular Galleries.) More

generally, a linear gallery, or a circular gallery, is any

complex built out of the shapes in S which has this type
of linear/circular ordering to its cells. See [Elder and

McCammond 01] for precise details.

We say that a linear gallery G contains a geodesic γ if
γ is a local geodesic which starts in the start cell, ends in

the end cell, and remains in the interior of G throughout.
In particular, the sequence of open cells through which γ

passes must be exactly the sequence which determined G
in the first place. Similarly, a circular gallery G contains
a closed geodesic γ if the cyclic sequence of open cells

through which γ passes is the same as the sequence which

determines G. As a result, γ will remain in the interior
of G throughout.
A gallery occurs in a complex K if there is a cellular

map G → K which restricts to an immersion on the in-

terior of G. Notice that a local geodesic in G need not
be sent to a local geodesic in K under this map. Finally,

note that a circular gallery can be viewed as a linear

gallery where the start and end cells have been identified

by an isometry.

Definition 3.7. (Types of circular galleries.) In the 3-

dimensional case there are four distinct types of circular

galleries. If all of the bottom cells are edges, then the

circular gallery is either an annulus, a Möbius strip, or a

disc, and we refer to these as annular galleries, Möbius

galleries, and disc galleries, respectively. A disc gallery

is created precisely when all of the cells in the gallery

share a common 0-cell.

On the other hand, if at least one of the bottom cells

is a vertex, then the gallery can be split uniquely into a

sequence of linear galleries whose start and end cells are

vertices and which have no bottom cells which are in-

between vertices. In this case, the gallery is a “necklace”

of these vertex-to-vertex pieces, and we will refer to it as

a necklace gallery.

The next four sections will examine circular galleries

of each type in turn. The goal will be to determine which

circular galleries could have been determined by a closed

geodesic (of length less than 2π) in some complex K.

Equivalently, we will seek to determine which circular

galleries G themselves contain such a closed geodesic (in
the sense of Definition 3.6).

4. ANNULAR GALLERIES

If G is an annular gallery, then by definition all of its top
cells are 2-cells and all of its bottom cells are 1-cells. Let

{f1, e1, f2, e2, . . . , fn, en} denote the sequence of cells in
G where the ei are the bottoms cells and the fi are the
top cells. In order to determine whether there exists a

closed geodesic in G of length less than 2π, we will “cut
open” G and then develop the resulting linear gallery onto
the 2-sphere. In particular, let G0 be the linear gallery
whose sequence of cells is {f1, e1, f2, e2, . . . , fn, en, f 01},
where f 01 is simply another copy of f1. The idea is that
G0 is a linear gallery such that identifying f1 and f 01 by
an isometry should convert G0 into the circular gallery G.
We say that G0 is obtained by cutting open G.
Next, we define a map φ from G0 to S2 cell by cell. To

start, pick an arbitrary isometric embedding f1 → S2.
This restricts to a map from e1 → S2. Then, we define
an isometric embedding f2 → S2 which extends the map
e1 → S2 and which is a immersion on the interior of
the linear gallery {f1, e1, f2}. Note that there is only

one such map. Continuing in this way, we define a map

φ : G0 → S2 which is an immersion on the interior of G0
and which is uniquely determined once the initial map

f1 → S2 has been chosen. In other words, it is unique
up to an isometry of S2. This unique map φ is called the
developing map for G0, and the following is one of its key
properties.

Lemma 4.1. Let G is an annular gallery, let G0 be a linear
gallery obtained by cutting open G, and let φ : G0 → S2
be the developing map. If G contains a closed geodesic γ
whose lift to G0 is denoted γ0, then φ(γ0) is an arc lying in
a great circle of S2. Moreover, the unique isometry of S2
which takes the image of the start cell of G0 to the image
of the end cell (according to the way they are identified
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FIGURE 2. An annular gallery, cut open and developed.

to produce G) will be a rotation around the line through
the origin perpendicular to the plane containing this great

circle.

Proof: Using the definitions, it is easy to see that the

image of γ0 must be a local geodesic in S2. For the second
assertion, note that the geodesic passes through the start

and end cells of G0 in the exact same way, since under
the isometric gluing to produce the circular gallery G, it
forms a closed geodesic. Thus, in S2, the images of the
start and end cells lie across the great circle containing

this geodesic in the same way. A rotation of S2 around
the pole corresponding to this great circle is clearly an

isometry of S2 which takes φ(f1) to φ(f 01) in the correct
way, and because these cells are non-degenerate proper

spherical triangles, this is the unique isometry of S2 with
this property.

If γ0 and G0 are as described above, then there are
exactly two position vectors in S2 which are perpendic-
ular to the great circle containing φ(γ0). The pole of γ0

is selected from these two options by orienting γ0 (and
its image under φ) from start cell to end cell and then

choosing the pole by the right-hand rule.

We are now ready to describe a procedure to determine

whether G contains a closed geodesic γ of length less than
2π. Continuing with the notation established above, let

a, b, and c be the position vectors in S2 of the 0-cells
of f1 under φ and let a

0, b0 and c0 be the corresponding
position vectors of the images of the 0-cells of f 01. See
Figure 2 for an illustration.

Step 1: By Lemma 4.1, if G contains a closed geodesic
in its interior, then there is a position vector p on S2 such
that the angle between p and a is the same as the angle

between p and a0. The set of such points is {x ∈ S2 : x ·
a = x·a0} = {x ∈ S2 : x·(a−a0) = 0}. Similar restrictions
hold for b, b0 and c, c0. Thus the pole, if it exists, will be
orthogonal to the span of the vectors (a−a0), (b−b0) and

(c − c0). The possible dimensions of Span{(a− a0), (b −
b0), (c− c0)} are 0, 1, 2, or 3.
Step 2: If the dimension is 3, then the pole p cannot

exist and G contains no closed geodesics. If the dimen-
sion is 2, then there is a unique line through the origin

which is perpendicular to this span and thus a unique

great circle which could contain the image of this hypo-

thetical geodesic. We will examine this case in Step 3. If

the dimension is 1, then there is a unique plane through

the origin which is perpendicular to the vectors a − a0,
b− b0 and c− c0. Also, since a and a0 lie on S2, this plane
must bisect the line segment connecting a to a0 and simi-
larly for the other two pairs. This shows that a reflection

through this plane is an orientation-reversing isometry of

S2 which takes φ(f1) to φ(f 01), contradicting Lemma 4.1.
Thus, there is no closed geodesic in G in this case. Fi-
nally, if the dimension is 0, then a = a0, b = b0, and
c = c0. If G contains a closed geodesic with these prop-
erties then φ(γ0) will travel around the 2-sphere at least
once, and the length of the closed geodesic in G cannot
be less than 2π. This shows that a 2-dimensional span is

the only case of interest.

Step 3: When the span is 2-dimensional, it is easy to

calculate the position vector p ∈ S2 which is the pole of
the great circle containing φ(γ0), if it exists. In particular,
p is a scalar multiple of (a−a0)×(b−b0) or (a−a0)×(c−c0),
whichever is nonzero. If this great circle passes through

the image of the interior of G0, then, working backwards,
we can create a geodesic in G0 which glues together to
form a closed geodesic in G. Conversely, if this great

circle passes through the image of the boundary of G0
then G does not contain a closed geodesic, since the only
possible pole for its image has been eliminated. Notice

that the length condition is also easy to check by looking

at the image of G0 under the developing map.
Step 4: To check whether the image of the boundary

of G0 intersects the great circle, it is sufficient to check
that for every bottom cell ei of G0, the vertices of this
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FIGURE 3. A Möbius gallery, cut open and developed.

edge are sent to different sides of the great circle under

consideration. In other words, if the vertices of ei are v

and v0, we simply check whether p ·φ(v) and p ·φ(v0) have
opposite signs. Dot products equal to 0 are not allowed

since this would indicate that the supposed geodesic con-

tains a boundary point of G0.
To summarize, testing an annular gallery G for a closed

geodesic of length less than 2π involves developing the

cut-open linear gallery G0 onto S2, and then checking the
dimension of the span of a− a0, b− b0 and c− c0. If this
dimension is 2, we calculate the only possible pole of the

image of the hypothetical geodesic, and check whether

this possibility is feasible or not. Otherwise we conclude

that G cannot contains such a closed geodesic. Notice
that each of these steps involves only elementary compu-

tations.

5. MÖBIUS GALLERIES

If G is a Möbius gallery, then by definition all of its top
cells are 2-cells and all of its bottom cells are 1-cells. Let

{f1, e1, f2, e2, . . . , fn, en} denote the sequence of cells in
G where the ei are the bottoms cells and the fi are the top
cells. As in the annular case, we define a linear gallery

G0 whose cell sequence is {f1, e1, f2, e2, . . . , fn, en, f 01},
where f 01 is another copy of f1, and we define a devel-
oping map φ : G0 → S2. The only difference is that,

in this case, because identifying f1 with f
0
1 produces a

Möbius strip, the triangles φ(f1) and φ(f
0
1) will occur in

S2 with opposite orientations. As before, the developing
map is unique up to an isometry of S2. Its key properties
are summarized in the following lemma.

Lemma 5.1. Let G be an Möbius gallery, let G0 be a linear
gallery obtained by cutting open G, and let φ : G0 → S2
be the developing map. If G contains a closed geodesic γ
whose lift to G0 is denoted γ0, then φ(γ0) is an arc lying in
a great circle of S2. Moreover, the unique isometry of S2
which takes the image of the start cell of G0 to the image

of the end cell (according to the way they are identified

to produce G) will be a rotation around the line through
the origin perpendicular to the plane containing this great

circle followed by a reflection through this plane.

Proof: Using the definitions, it is easy to see that the

image of γ0 must be a local geodesic in S2. For the sec-
ond assertion, note that the geodesic passes through the

start and end cells of G0 in the exact same way, since un-
der the isometric gluing to produce the circular gallery G,
it forms a closed geodesic. Thus, in S2, the images of the
start and end cells lie across the great circle containing

this geodesic in the same way, but flipped. A rotation

of S2 around the pole corresponding to this great cir-
cle followed by a reflection through the plane containing

the great circle is clearly an isometry of S2 which takes
φ(f1) to φ(f

0
1) in the correct way, and because these cells

are non-degenerate proper spherical triangles, this is the

unique isometry of S2 with this property.

We are now ready to describe a procedure to determine

whether G contains a closed geodesic γ of length less than
2π. The pole of γ and the position vectors a, b, c, a0, b0,
and c0 are defined as in the annular case. See Figure 3
for an illustration.

Step 1: By Lemma 5.1, if G contains a closed geodesic
in its interior, then there is a position vector p on S2 such
that the angle between p and a equals the angle between

−p and a0, and similarly for the other two pairs b,b0 and
c,c0. One way to see this is to think of the great circle as
the equator and to realize that a point a at some latitude

in the northern hemisphere will be taken by the isometry

of S2 described in the lemma to a point in the southern
hemisphere with the same latitude. Thus p, if it exists,

must be in the set {x ∈ S2 : x · a = −x · a0} = {x ∈ S2 :
x · (a + a0) = 0}. In other words, p will be orthogonal
to the span of the vectors a + a0, b + b0 and c + c0. The
possible dimensions of Span{(a+a0), (b+b0), (c+c0)} are
0, 1, 2, or 3.
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Step 2: If the dimension is 3, then the pole p cannot

exist and G contains no closed geodesics. If the dimension
is 2, then there is a unique line through the origin which

is perpendicular to this span and thus a unique great

circle which could contain the image of this hypothetical

geodesic. We will examine this case in step 3A. If the

dimension is 1, then there is a unique plane through the

origin which is perpendicular to the vectors a+ a0, b+ b0

and c + c0. If S2 is oriented so that this plane contains
the equator, then the fact that a and a0 are unit vectors
whose sum is vertical, implies that they lie at the same

latitude, and their longitudes differ by exact π radians.

Similar arguments apply to the pairs b,b0 and c,c0. Thus a
rotation through π radians around the line perpendicular

to this plane is an orientation-preserving isometry of S2
which takes φ(f1) to φ(f 01), contradicting Lemma 5.1.
Thus, there is no closed geodesic in G in this case. Finally,
if the dimension is 0, then a = −a0, b = −b0, and c = −c0
and the triangle φ(f1) is antipodal to the triangle φ(f

0
1).

This case will be examined in Step 3B.

Step 3A: When the span is 2-dimensional, it is easy

to calculate the position vector p ∈ S2 which is the pole of
the great circle containing φ(γ0), if it exists. In particular,
p is a scalar multiple of (a+a0)×(b+b0) or (a+a0)×(c+c0),
whichever is nonzero. Once the only possible pole, p, has

been found, we check whether this determines a feasible

geodesic as in the annular case. See Step 4 in Section 4.

Step 3B: When the span is 0-dimensional, the pairs

a, a0, b, b0 and c, c0 are antipodal and the unique isometry
of S2 taking φ(f1) to φ(f 01) is the antipodal map. The
main difficulty in this case is that when a solution exists,

it is underdetermined. Concretely, the isometry sending

the start to the end cell does not help narrow the search

for poles of geodesics in G, so we must take a different ap-
proach. The approach we adopt is to determine directly

the set of all poles of all possible geodesics contained in

the interior of G0. The vertices of G0 can be divided into
two classes which we will call upper and lower vertices.

Let e1 be the first bottom cell of G0 and arbitrarily call
one of its vertices an upper vertex and the other one a

lower vertex. The next bottom cell e2 shares a vertex

in common with e1 since f2 is a triangle. Label the un-

labeled vertex so that e2 has one upper and one lower

vertex as well. Continuing in this way through all of the

bottom cells of G0 labels all but two of its vertices as
upper or lower. The two remaining are in the triangles

f1 and f
0
1. Label these according to the opposite of the

label of the vertex in the other triangle with whichn it

gets identified when forming the circular gallery G. This

switch in label is due to the twist in the Möbius strip. In

order for p to be the pole of a great circle which contains

the image of a geodesic contained in G0, p must satisfy
the equations p · φ(v) > 0 for each upper vertex and

p · φ(v) < 0 for each lower vertex in G0. Conversely, each
point p which satisfies these conditions will determine a

closed geodesic in G since the antipodal nature of φ(f1)
and φ(f 01) ensures that the great circle corresponding to
p passes through the two triangles in the same way. As

a result, the preimage of this great circle in G0 will form
a closed geodesic in G under the identification map.
Another way to see this is to consider the double cover

G2 of the original circular gallery G. In general, develop-
ing maps from circular galleries to S2 do not exist because
the final 2-cell is placed in the wrong position to complete

the cycle, but in this case, there is a well-defined devel-

oping map from G2 to S2 which is an immersion on the
interior of this annulus. We illustrate this in Figure 4.

Notice that a hypothetical geodesic in G will lift to a geo-
desic twice as long in G2 and immerse to a path which
wraps an integral number of times around a great circle

in S2. We will only be interested in the cases where the
geodesic wraps around exactly once, since this is the only

case where the original geodesic has length less than 2π.

In this situation, we can identify the geodesic with the

great circle to which it is sent.

P

-a

a

b

c -be

d

P -b

-d

c

a

e

FIGURE 4. Side view and top view of an antipodal situation.

For each bottom cell in G2, the hypothetical geodesic
must separate its endpoints in S2. More specifically, one
boundary cycle of the annulus must be sent to one side

of the great circle and the other boundary cycle must be

sent to the other. A position vector p is a pole of a great

circle which satisfies these conditions if p ·φ(v) > 0 for all
v in one boundary cycle of G2. This system is equivalent

to the previous system since roughly half of the vertices

in this boundary cycle are sent to points antipodal to the

images of the lower vertices of G0. See Figure 4.
In either formulation this linear system is easy to solve,

and the solution set is either empty, or an open spherical

cell. If we orient S2 so that the image of some closed
geodesic in G2 is sent to the equator, then the solution
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set of P will be found hovering around one of the poles.

Thus, we call this the polar region. See Figure 4 for an

illustration. For each p ∈ P , the 2-sphere can be tilted so
that p is the north pole and the equator corresponds to

a closed geodesic of length 2π in the interior of G2, and
thus to a closed geodesic of length π in the interior of G.
To summarize, testing a Möbius gallery G for a closed

geodesic of length less than 2π involves developing the

cut-open linear gallery G0 onto S2, and then checking the
dimension of the span of a+ a0, b+ b0 and c+ c0. If this
dimension is 2, we calculate the only possible pole of the

image of the hypothetical geodesic, and check whether

this possibility is feasible or not. If this dimension is 0,

we calculate a feasibility region for the pole and check

whether this is empty or not. In all other cases, we con-

clude that G cannot contain such a closed geodesic. As
in the annular case, each of these steps involves only el-

ementary computations.

6. DISC GALLERIES

If G is a disc gallery, then by definition all of its bottom
cells are edges which share a common vertex, v. In this

short section we show that if a disc gallery contains a

short closed geodesic then the link of v is not CAT(1).

Let G be a disc gallery with common vertex v, let G0
be a linear gallery obtained by cutting open G, and let
φ : G0 → S2 be the developing map. It is easy to see
that the unique isometry of S2 which takes the image
of the start cell of G0 to the image of the end cell of
G0 (according to the way they are identified to form G)
must be a rotation of S2 about the origin and through v.
As a result, the only possible geodesic in G will lift to a
path in G0, which is sent to a path in the 2-sphere and
the image of this lifted path will be entirely contained in

the great circle perpendicular to v.When this path in the

great circle stays inside the image of G0, the arc length of
the path inside a particular spherical triangle is the same

as the angle of this triangle at v. Thus a closed geodesic

of length ` in G immediately leads to a closed geodesic of
length ` in the link of v. In particular, a 2-dimensional S-
complex which contains a disc gallery with a short closed

geodesic will not even be locally CAT(1). And since

the complete process of checking curvature conditions on

a complex will be done inductively by dimension, disc

galleries will not need to be examined at all.

7. NECKLACE GALLERIES

If G is a necklace gallery, then by definition at least one
of its bottom cells is a vertex. Let G1, . . . ,Gk be the

unique linear vertex-to-vertex galleries into which G can
be decomposed. Instead of analyzing whether G contains
a closed geodesic, it is sufficient to analyze whether each

Gi contains a geodesic from start vertex to end vertex.

If all of the Gi contain a geodesic, then these geodesic
pieces can be concatenated to produce a closed geodesic

in G. Whether this closed geodesic in G remains geodesic
when it is included in a 2-dimensional S-complex is a
different issue entirely, and one which will be addressed

in Section 9.

Vertex-to-vertex galleries come in two types: either Gi
has a top cell which is an edge, or all of its top cells are

2-cells and all of its bottom cells (excluding the start and

end cells) are edges. In the former situation, Gi is a linear
gallery whose sequence of cells is {v, e, v0} and it is clear
that this gallery contains a geodesic from v to v0, namely,
the edge e itself. In the latter case, Gi is a linear gallery
whose sequence of cells is {v, f1, e1, . . . , en−1, fn, v0} for
some n ≥ 1. As in the previous sections, there is a de-
veloping map φ : Gi → S2 which starts with an isometric
embedding f1 → S2 and proceeds through the gallery,
all the while requiring that the map be an immersion on

the interior of the gallery. Such a map exists and it is

unique up to an isometry of S2. The key property of this
developing map is the following.

Lemma 7.1. Let Gi be a vertex-to-vertex gallery which
contains a 2-cell and let φ : Gi → S2 be the developing
map. If Gi contains a geodesic γ in its interior from start
vertex to end vertex, then φ(γ) is an arc lying in a great

circle of S2.

Proof: Once again, it is easy to see that the image of γ

must be a local geodesic in S2.

We are now ready to describe a procedure to deter-

mine whether Gi contains a geodesic. The pole of γ will
be defined as in the annular case. Let a and a0 denote
the position vectors of the images of the start and end

vertices, respectively. See Figure 5 for an illustration.

Step 1: By Lemma 7.1, if Gi contains a geodesic from
start cell to end cell, then there is a position vector p on

S such that p is the pole of a great circle containing a and
a0. In other words, p is orthogonal to the span of a and
a0. The possible dimensions of Span{a, a0} are 1 and 2.
Step 2: If this span is 2-dimensional, then there is a

unique line through the origin which is perpendicular to

this span and thus a unique great circle which could con-

tain the image of this hypothetical geodesic. We will ex-

amine this case in Step 3A. If this span is 1-dimensional,
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FIGURE 5. A developed vertex-to-vertex gallery.

then a = ±a0. If a = a0 then any geodesic in Gi will
travel around the 2-sphere at least once and the length

of the geodesic cannot be less than 2π. The case where

a = −a0 will be examined in Step 3B.
Step 3A: When the span is 2-dimensional, the only

possible pole is a scalar multiple of a × a0 and we check
whether this possibility is feasible as in the previous

cases. For later use, we note that it is easy to calculate

the unit tangent vector at a which represents the direc-

tion with which the geodesic between a and a0 leaves a,
and the unit tangent vector at a0 which represents the
direction with which the geodesic between a and a0 ap-
proaches a0.

Step 3B: When a and a0 are antipodal, we proceed
as in the antipodal Möbius case. More specifically, we

label the vertices of Gi as upper or lower as in that case,
starting with e1 and continuing through all of the bottom

cells of Gi. The start and end vertices are neither upper
nor lower since their images are supposed to lie on the

great circle containing the hypothetical geodesic. The

polar region is defined as in the Möbius case except that

we can add the restriction that p · a = p · a0 = 0. This

restricts our polar region from the start to the great circle

perpendicular to a and a0. If this 1-dimensional polar
region is non-empty it will be an open interval in this

great circle. If we identify this great circle with the set

of unit tangent vectors at a, then the elements in this

region can be thought of as the directions it is possible

to leave a, remain in the interior of (the image of) the

gallery Gi and arrive safely at a0. Notice also that the
length of any such geodesic will always be π since a and

a0 are antipodal.

Step 4: The output for each vertex-to-vertex gallery

will include the length of the geodesic, and the incoming

and outgoing angle of the geodesic (or range of angles for

the antipodal case). The first will be used immediately;

the second will be used in Section 9.

The necklace gallery G will contain a closed geodesic
of length less than 2π if and only if each of its vertex-

to-vertex pieces contain a geodesic and the sum of the

lengths of these geodesics is less than 2π. As described

above, each of these steps involves only elementary com-

putations.

8. ENUMERATING GALLERIES

Let S be a finite set of proper spherical simplices (of

dimension at most 2), and assume that if σ is a shape in

S then every face of σ is also in S. In this section we show
how to construct a finite list which consists precisely of

the circular galleries built out of the shapes in S which
contain closed geodesics of length less than 2π and which

can occur in locally CAT(1) complexes built out of the

shapes in S. The latter restriction merely rules out the
need to examine disc galleries. The steps in the procedure

will be interspersed with comments.

Step 1: Since S is a finite set, there exists an n such
that each angle in each spherical triangle in S has radian
measure at least π/n. Moreover, it is easy to calculate

such an n explicitly given the triangles.

Let G be a circular gallery which is not a disc gallery.
If the sequence of cells for G contains a subsequence of
the form {e1, f2, e2, . . . , fk, ek} where the fi are triangles
which are top cells, the ei are edges which are bottom

cells, and all of the ei share a common vertex v in G,
then this portion of G is said to be spinning around v.
Notice that if k > n then when this linear portion of G
is developed on S2 (with developing map φ) there is no
local geodesic in S2 which starts in the interior of φ(e1),
passes through the interiors of φ(ei) and φ(fi) in order

and then ends in the interior of φ(ek). This is because the

cells involved are proper and the angle at φ(v) between

φ(e1) and φ(ek) is greater than π. Thus, we only need to

consider circular galleries which do not spend too much

time spinning around a single vertex.
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Step 2: Let L1 be a list of linear galleries G built
out of cells in S whose sequence of cells is of the form
{e1, f2, e2, f3, e3}, where the fi are triangles which are
top cells, the ei are edges which are bottom cells, and G
does not spin around a vertex. The list L1 is clearly finite

since S is finite. For each G in L1 the images of e1 and
e3 under the developing map φ are disjoint, and we can

calculate the minimum distance between φ(e1) and φ(e3).

In particular, it is easy to show that the arc exhibiting

the minimum distance either connects an endpoint of one

edge to an endpoint of the other edge, or it connects an

endpoint of one edge to a point in the interior of the other

edge where the arc itself is perpendicular to the other

edge. Each of these eight distances can be calculated

explicitly by elementary means. Let δ be the minimum

of these minimum distances for the linear galleries in L1.

Let G be a linear gallery which contains a geodesic γ
or a circular gallery which contains a closed geodesic γ.

If G contains a linear portion G0 which is in the list L1,
then the portion of γ which lies in G0 has length at least δ.
Thus, if G contains at least `/δ such linear portions which
are disjoint, then the length of γ will be longer than `.

Step 3: Let L2 be the list of annular and Möbius

galleries built out of shapes in S which do not contain
2π/δ disjoint linear portions which occur in the list L1.

Because of the bound on the number of edges which can

spin around a vertex, this list is finite, and it must also

contain every annular or Möbius gallery which contains

a geodesic of length less than 2π. Using the procedures

in the previous sections, we can narrow this list so it

contains exactly those annular and Möbius galleries built

out of shapes in S which do in fact contain geodesics of
length less than 2π.

Step 4: Let L3 be the list of vertex-to-vertex galleries

built out of shapes in S which do not contain 2π/δ dis-
joint linear portions which occur in the list L1. This list

is also finite, and it must contain every vertex-to-vertex

gallery which contains a geodesic of length less than 2π.

Using the procedure in Section 7 we can narrow this list

so it contains exactly the vertex-to-vertex galleries built

out of shapes in S which do in fact contain geodesics of
length less thean 2π. Moreover, the procedure also out-

puts the length of the geodesic(s) contained in each such

gallery.

Step 5: Using the finite list of vertex-to-vertex gal-

leries produced by Step 4 (and the lengths of their geo-

desics), we can easily produce a finite list of all necklace

galleries which contain a closed geodesic of length less

than 2π.

Since every circular gallery is either annular, Möbius,

disc, or necklace, the union of the lists produced by Steps

3 and 5 form a nearly complete list of all circular gal-

leries built out of shapes in S which contain a closed

geodesic of length less than 2π. The only exceptions are

those contained in disc galleries and, as mentioned above,

this will be ruled out in other ways. This proves that

such a list can be produced mechanically, but the proce-

dure outlined above initially produces finite lists which

are prohibitively large in actual computations. Thus, in

the GAP implementation mentioned in the introduction,

a completely different method of enumerating potential

galleries has been utilized. The linear galleries are enu-

merated in a depth-first way by adding triangles onto the

end of the linear gallery under consideration. We stop

adding triangles as soon as we can show that the gallery

is too long to contain a geodesic of length less than 2π.

At this point we backtrack by removing a triangle from

the end and try to add a different triangle. Since the

size and shape of the spherical triangles being added will

vary greatly, the number of triangles in a gallery when

it becomes too long will vary quite a bit from one linear

gallery to another, and as a result, many fewer galleries

will be examined during the construction of the final list.

9. TESTING A COMPLEX

Given a finite set of 2-dimensional spherical shapes S,
we have shown how to create the finite list L of an-

nular, Möbius and necklace galleries built out of these

shapes which contain closed geodesics of length less than

2π. In this section we show how to use this list to

test whether a particular finite, 2-dimensional, locally

CAT(1) S-complex K built out of the shapes in S, con-
tains a closed geodesic of length less than 2π.

The first thing to note is that if K contains such a

closed geodesic, then it determines a circular gallery G in
L, and as a result there is a cellular map from G to K
which is an isometry on each cell and an immersion on

the interior of G. Since the list L is finite and the complex
K is finite, there are only a finite number of such maps

from G ∈ L to K and we can easily determine which ones

have these properties. For annular and Möbius gallery in

L the mere existence of such a map is sufficient.

Lemma 9.1. Let K be a 2-dimensional S-complex and let
G be either an annular or Möbius gallery which contains
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a closed geodesic γ or a vertex-to-vertex gallery which

contains a geodesic γ. If there is a cellular map φ : G →
K which is an isometry on each cell and an immersion

on the interior of G, then the image of γ under φ is a
local geodesic in K.

Proof: If G is a 1-dimensional vertex-to-vertex gallery,
then this result is immediate so assume G is 2-

dimensional. Since K itself is 2-dimensional, φ(γ) will

clearly be locally geodesic on the interior of its 2-cells.

Let x be a point in G where γ crosses a bottom cell e.

The link of x in G is a circle of length 2π and the in-
coming and outgoing unit tangent vectors to γ at x will

be antipodal points in this circle since γ is a locally geo-

desic in G at x. On the other hand, the link of φ(x) in
K will be a finite graph with two vertices and a num-

ber of arcs connecting one vertex to the other, each of

length π. The fact that φ is an isometry on cells and an

immersion on the interior of G ensures that link(x,G)
isometrically embeds in link(φ(x),K) and that the im-

ages of the incoming and outgoing unit tangent vectors

remain a distance π apart under this embedding.

When G is a necklace gallery with geodesic γ, the sit-
uation is more complicated. By Lemma 9.1, the portion

of the geodesic in the interior of each vertex-to-vertex

gallery is sent to a local geodesic in K, but the lemma is

silent about the places where γ passes through a vertex

v of G.
If G contains a single closed geodesic of length less than

2π then we merely need to construct the metric graph

link(φ(v), K), find the points in this link corresponding

to the incoming and outgoing unit tangent vectors of φ(γ)

at φ(v), and then check whether they are a distance of

at least π apart. If this is true for every vertex v in γ,

then φ(γ) is a local geodesic in K and conversely.

On the other hand, if G contains an antipodal vertex-
to-vertex gallery then it will contain a continuum of

closed geodesics and a different procedure is needed.

Since geodesics in antipodal vertex-to-vertex galleries all

have length π, G contains at most one such gallery. Call
this gallery G1. If v is a vertex in γ which is not an end
cell of G1, then the check can proceed as above. If v is
one of the end cells of G1 but not both, then we can con-
struct the metric graph link(φ(v),K) and identify the

point corresponding to either the incoming or outgoing

unit tangent vector of φ(γ) at φ(v). For the other point,

all we know is that it lies somewhere in an open subin-

terval of an edge of this graph. Calculating the distance

in the graph from the known point to each of the end-

points of the edge containing the unknown point, we can

determine precisely the portion of this open subinterval

which will make φ(γ) a local geodesic at φ(v). Once this

information has been calculated for each end cell of G1,
we simply check whether the two feasible regions have

any points in common. Finally, if G is formed by identi-
fying the end cells of G1 to a single vertex v, we construct
the metric graph link(φ(v),K) as above. This time we

only know the two open subintervals contained in distinct

edges of link(φ(v),K) which correspond to the incoming

and outgoing unit tangent vectors. After calculating the

pairwise distances between the endpoints of these edges,

we can determine whether there are points in these inter-

vals which are a distance of at least π apart and which

arise from the two ends of the same geodesic in G1.
To summarize, given a map from G ∈ L to K which

is an isometry on each cell and an immersion on the in-

terior of G, it is possible to check whether any of the
short closed geodesics in G have images which remain lo-
cal geodesics in K. For annular and Möbius galleries no

additional check is needed, while for necklace galleries,

the situation at the vertices must be determined. Using

this, it is possible to determine whether or notK contains

a geodesic of length less than 2π.

10. THE SOFTWARE

As mentioned in the introduction, the algorithms de-

scribed have been implemented on GAP for Euclidean

tetrahedra. In this section we give a brief description

of these software routines and the assumptions and lim-

itations involved. In short, the user inputs a list of

Euclidean tetrahedra by entering the six edge lengths

of each shape, and the program outputs the list of an-

nular, Möbius, and 2-dimensional vertex-to-vertex gal-

leries which contain geodesics of length less than 2π that

might arise in a 2-dimensional spherical link of a ver-

tex in a complex built out of Euclidean tetrahedra with

these metrics. Such a list is slightly smaller than the

list produced by the arguments described in the previous

sections. See Remark 10.1 below.

The first and most important restriction is that GAP

only uses exact arithmetic: arbitrary precise real num-

bers are not implemented. We chose GAP for its speed

and ease of use and determined that these benefits far

outweighed the restriction imposed.

After loading the program, the user inputs a list of 6-

tuples of rationals where each 6-tuple represents a Euclid-

ean tetrahedron and the 6 rationals represent the squares

of the 6 edge lengths. The set of tetrahedra which can
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be described in this way is rather large since it includes

every tetrahedron which ever arises in a simplicial de-

composition of a rational polytope. The program then

calculates all possible ways of orienting these tetrahedra

in E3 so that one vertex is at the origin, a second is on
the positive x-axis, a third is in the first quadrant of the

xy-plane and the last has positive z-coordinate. For each

orientation it calculates the coordinates of the vertices.

Each coordinate lies in a quadratic extension of the ratio-

nals, and the field generated by all of these coordinates

is an algebraic extension of the rationals of the form

F = Q(
p
d1,
p
d2, . . . ,

p
dn)

where the integers di are distinct primes. All of the cal-

culations made by the software will take place in this

field.

When asked for a list of annular, Möbius and vertex-

to-vertex galleries which contain short (closed) geodesics,

the program starts with a tetrahedron placed in E3 with
these coordinates and then starts gluing tetrahedra to

its faces so that the link of the origin looks like a linear

gallery developed on S2. When we say that all of the
calculations take place in F, we primarily mean that all
of the coordinates of vertices in tetrahedra which have

been developed around the origin in this way will lie in

F. Finally, we should note that the speed of the program
is greatly effected by the number of primes involved in

the definition of F since the degree of this extension over
the rationals is 2n where n is the number of primes. In

practice, n greater than 3 or 4 is currently impractical.

The reason for developing tetrahedra around the origin

instead of triangles on S2 is addressed by the following
remark.

Remark 10.1. The spherical complexes of greatest inter-
est are, of course, those which arise as a link of a vertex

in a complex built out of a specified list of tetrahedra.

Let S1 be a list of Euclidean tetrahedra and S2 be a list
of the proper spherical cells which occur as corners of

the shapes in S1. The list of circular galleries containing
geodesics of length less than 2π which can appear in the

link of a vertex in a complex built out of the shapes in

S1 is often strictly shorter than the list of circular gal-
leries containing geodesics of length less than 2π which

can appear in S-complexes built out of the shapes in S2.
A 3-dimensional Euclidean example of this phenomenon

is given in Example 11.2 below. The reason is that a

pair of spherical triangles can meet along an edge in such

a complex if and only if they are corners of tetrahedra

where the corresponding faces are isometric.

The current implementation searches for and finds

only the smaller list which is, of course, of greater in-

terest to researchers. Part of the reason for this is that

the number of things to be checked grows exponentially

with the length of the galleries. To illustrate this point,

consider the computations described in Example 11.3 be-

low. Even though only 3 tetrahedral shapes are involved,

they can be arranged in E3 (as described above) in 10 dis-
tinct ways. As we are developing a linear gallery there

is also a choice at each stage of adding the new tetrahe-

dra onto the left or right face of the previous one. Thus,

when trying to construct all linear galleries of size n, one

is lead to consider in the neighborhood of (20)n different

galleries where n is often in the mid-teens. This type of

exponential behavior is often the rule in problems of this

type and the technical name is a combinatorial explosion.

Strategies for keeping the search tightly focused become

crucial in such contexts.

11. EXAMPLES

In this section we will give three examples which illus-

trate both the procedures described in this article and

the type of results which can be expected from the soft-

ware described in Section 10.

Example 11.1. (Regular tetrahedra.) Our first exam-

ple will involve complexes built out of regular Euclid-

ean tetrahedra. Notice that any 3-dimensional simplicial

complex can be given a metric of this type simply by as-

signing each simplex a regular Euclidean metric with all

edge lengths equal to the same constant. Since the dihe-

dral angle in a regular tetrahedra is slightly less than 2π
5

(actually arccos(1/3) ≈ .39π), the link of each edge must
be a graph which does not contain any cycles of length

less than 6. The link of a vertex is a spherical 2-complex

made up of equilateral triangles with edge length π
3 .

The results are shown in Figures 6, 7 and 8 where the

reader is left to imagine that the triangles pictured are

spherical triangles with side length π/3. In Figure 6, the

heavy edges on the left and right of the gallery depicted

need to be identified to form an annular gallery. Simi-

larly, in Figure 7 the heavy edges on the left and right

are to be identified (with a half-twist) to form a Möbius

gallery. In Figure 8, the geodesic connects the vertex on

the far left to the vertex on the far right.

As can be seen from the illustrations, there are 10

annular galleries to avoid, 8 Möbius galleries to avoid,

and 6 vertex-to-vertex galleries which are 2-dimensional.

With the addition of the one vertex-to-vertex gallery
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FIGURE 6. Annular galleries in the regular case.

FIGURE 7. Möbius galleries in the regular case.
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FIGURE 8. Vertex-to-vertex galleries in the regular case.

of the form {v, e, v0}, which we will denote A, these 7
vertex-to-vertex galleries can be combined in 29 distinct

ways to form necklace galleries which must be avoided.

Specifically, the 29 necklace galleries which string to-

gether vertex-to-vertex galleries in the sequences: A, A2,

A3, A4, A5, B, BA, BA2, BA3, BA4, B2, B2A, B2A2,

BABA, B3, C, CA, CA2, CA3, CB, CBA, C2, D, DA,

DA2, DB, E, EA, and F , form necklace galleries which

contain closed geodesics of length less than 2π and these

are the only ones.

Example 11.2. (Coxeter shapes.) Our second example in-
volves complexes in which every tetrahedra has a Euclid-

ean metric such that four of its edges have length
√
3 and

two non-adjacent edges have length 2. This shape is the

isometry type of the Coxeter cell in a Coxeter complex

for the eA3 Coxeter group. Complexes of this type have
also arisen in the work of Tom Brady and the second

author on CAT(0) structures for various Artin groups of

finite type. In such a complex, the link of a length 2 edge

is a graph where each arc has length π/2, and the link

of a length
√
3 edge is a graph where each arc has length

π/3. Thus these graphs must have no cycles of length

less than 4 or 6, respectively. The link of a vertex is a

2-dimensional S-complex built out of triangles whose an-
gles are π/2, π/3, and π/3. If a 2-dimensional S-complex
K built out of this triangle arises as a link of a vertex

in a 3-complex C built out of these Euclidean tetrahe-

dra, then the vertices of K can be colored depending on

whether they arose from edges of length 2 or
√
3 in C. In

the triangle with angles π/2, π/3, and π/3, the corners

with angle π/3 will be one color and the corner with an-

gle π/2 will be another. Thus if K is the link of a vertex

in C, all of the triangles meeting at a vertex in K will

have the same angle incident at that vertex. The list of

circular galleries described below will only include those

which satisfy this extra restrction.

The list of annular, Möbius, and 2-dimensional vertex-

to-vertex galleries which can be built out of this spherical

triangle and which contain a geodesic of length less than

2π are shown in Figures 9, 10, and 11. The conventions

are the same as in the figures for Example 11.1. Once

again, the figures should be viewed as representing spher-

ical triangles. The angles in the triangles which look like

π/2 angles are in fact π/2 angles, while the angles which

look like π/4 angles represent π/3 angles. Thus, in the

third figure of Figure 11 both sides connecting the spec-

ified end cells are actually geodesics. The application of

this list to the study of finite-type Artin groups will be

developed in [Brady and McCammond 02].

As can be seen from the illustrations, there are 2

annular galleries to avoid, 4 Möbius galleries to avoid,

and 3 vertex-to-vertex galleries which are 2-dimensional.

This time there are two vertex-to-vertex galleries of
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FIGURE 9. Annular galleries in the Coxeter case.

FIGURE 10. Möbius galleries in the Coxeter case.
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FIGURE 11. Vertex-to-vertex galleries in the Coxeter case.

the form {v, e, v0} of length arccos(1/√3) ≈ .304π and

arccos(1/3) ≈ .392π. We will denote these A and B,

respectively. These 5 vertex-to-vertex galleries can be

combined in 26 distinct ways to form necklace galleries

which contain a geodesic of length less than 2π and which

can occur in a vertex link of a complex built out of tetra-

hedra with this metric. Specifically, the 26 necklace gal-

leries which string together vertex-to-vertex galleries in

the sequences: A2, A4, A6, A2B, A2B2, A2B3, ABAC,

A2C, A2C2 A2D, A2E A4B, CA4 B, B2, B3, B4, B5,

BE, B2E, C, C2, C3, CD, D, and E form necklace gal-

leries which contain closed geodesics of length less than

2π, and these are the only ones.

Example 11.3. Our final example is slightly more compli-
cated and is included to show how the software may be

of use in the investigation of standard topics in geometric

group theory and low dimensional topology. As a special

case of the (weak) hyperbolization conjecture that might

be more tractable, Thurston has proposed the following:

Conjecture 11.4. (Thurston.) Let M be a compact tri-

angulated 3-manifold without boundary such that the link

of every edge is either a 5-cycle or a 6-cycle and such

that any two edges whose links are 5-cycles do not lie in

a common 2-cell. Under these hypotheses, the fundamen-

tal group of M should be word-hyperbolic in the sense of

Gromov.

The authors, in collaboration with John Meier, have

been investigating the following stronger conjecture.

Conjecture 11.5. Let M be as above. If the edges whose

links are 5-cycles are assigned a length of
√
3, the other

edges are assigned a length of 2, and the 2-cells and 3-

cells are given Euclidean metrics corresponding to these

edge lengths, then the resulting metric on M should be

locally CAT(0). Moreover, since M under this metric

will contain no immersed flat planes, this would imply

that π1M is word-hyperbolic.

It is easy to check that each tetrahedra in M is as-

signed one of three metrics, and that the links of edges

in M are circles of length at least 2π. Thus it only re-

mains to investigate the links of vertices in complexes

which can be built out of these three types of tetra-

hedra. Using the software developed, we are currently

determining the list of annular and vertex-to-vertex gal-

leries which need to be avoided. Möbius galleries are not

being searched since the link of each vertex is a trian-

gulated 2-sphere and Möbius strips cannot immerse into

2-spheres. By current estimates the software will take

approximately two months to determine this list running

on a 500Mhz Dell PC running Linux. At the time of this

writing, the search is 44% complete. In contrast, the lists

given in our first two examples took 5 seconds and 3 sec-

onds respectively. The time difference is the result of the

combinatorial explosion described in Section 10.

Given this list, which we expect to contain on the or-

der of 100, 000 galleries, there are various ways to show

that most of these possibilites cannot occur in triangu-

lated 2-spheres such as the ones which will occur as links

of vertices inM . If all the items can be eliminated, Con-

jecture 11.5 will become a theorem. And if not, there

will at least be a partial result which states that if M

has a triagulation of this type which avoids the galleries

remaining in the list, then it will be CAT(0) and π1M

will be word-hyperbolic.

12. CONCLUSION

In this final section we discuss two limitations of the ele-

mentary approach adopted in this article and some open

problems which seek to address these limitations.
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Limitation 1: Dimension. The procedures de-

scribed for determining whether particular circular gal-

leries contain short closed geodesics rely implicitly on the

fact that the set of vectors orthogonal to a plane in E3
is a line. If we try to mimic these procedures for S-
complexes of dimension n > 2, circular galleries G can
still be cut open and developed on Sn. A hypotheti-

cal geodesic in G can still, in many instances at least,
be sent to an arc lying in a great circle of S2, but the
set of all great circles in Sn is more complicated than
the set of great circles in S2. The set of great circles
in Sn is equivalent to the set of 2-planes in En+1 which
is the Grassmannian manifold Gn+1,2. The special case

n = 2 is easier to work with because of the well-known

homeomorphisms Gn,k ∼= Gn,n−k (via orthogonal com-
plements) and Gn,1 ∼= RPn−1 (i.e., real projective space).
Despite the fact that Gn,2 is slightly more complicated

than G3,2 ∼= RP2, there should exist an elementary geo-
metric procedure in higher dimensions. By results in [El-

der and McCammond 01], it is at least known that an

algorithm exists. The only question is whether there is

an elementary, geometric algorithm.

Problem 12.1. Find an elementary geometric algorithm
to determine whether a finite S-complex K contains a

closed geodesic of length less than 2π when the dimension

of K is greater than 2.

Limitation 2: Metrics. Some of the complexes

which arise naturally in geometric group theory and low

dimensional topology come equipped with a natural met-

ric, but many others do not. The procedures described

here require that the metric be given from the start.

A natural question is whether a particular simplicial

complex will support some piecewise Euclidean metric of

non-positive curvature. This algorithm is not able to ad-

dress this question since galleries without metrics cannot

be uniquely developed onto the 2-sphere. This leads to

the following research direction.

Problem 12.2. Given a 3-dimensional complex without a
specified metric, find an algorithm to determine whether

it supports a piecewise Euclidean [or piecewise hyper-

bolic] metric of non-positive [resp. negative] curvature.
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