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CONTENTS

1. Introduction
2. C0-Sufficiency of Jets anf the Integral Closure of an Ideal
3. The Integral Closure and the Multiplicity of an Ideal
Acknowledgements
References

2000 AMS Subject Classification: Primary 58A20; Secondary 13H15

Keywords: Integral closure of ideals, Lojasiewicz inequalities,

C0-sufficiency of jets

In this paper we develop a method for an estimation of the
degree of C0-sufficiency of an analytic function germ f :

(Cn, 0) → (C, 0). The difference between the estimation we
give and the degree of C0-sufficiency of f will be ≤ 1, by
virtue of the results of Chang-Lu and Bochnak-Kucharz.

1. INTRODUCTION

The problem of determining the degree of C0-sufficiency

s(f) of a given analytic function germ f : (Cn, 0) →
(C, 0) is well known in singularity theory. There is some
previous work which gives an upper estimate for this

number (see Section 2 for its definition). For instance,

in the paper [Lichtin 81], the case n = 2 is considered.

In the paper [Fukui 91], an estimate for the degree of

C0-sufficiency of Newton non-degenerate function germs

(in the sense of [Kouchnirenko 76]) is obtained for any n,

thus generalizing the cited work of Lichtin.

In this paper, we use some facts from commutative

algebra, particularly from multiplicity theory, to give

a method providing an estimation for s(f), where f :

(Cn, 0) → (C, 0) is any analytic function germ with an

isolated singularity at the origin. The number thus ob-

tained differs from s(f) at most by one unit.

As we shall see, the characterization of s(f) using

ÃLojasiewicz type inequalities given by the results of

[Chang and Lu 73] and [Bochnak and Kucharz 79] will

play a fundamental role in our approach. The link be-

tween the algebraic tools we use and the language of

ÃLojasiewicz type inequalities comes from [Lejeune and

Teissier 74] characterizing the integral closure of an ideal

in the ring On of analytic function germs (Cn, 0) → C
(see Theorem 2.4).
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2. C0-SUFFICIENCY OF JETS AND THE INTEGRAL
CLOSURE OF AN IDEAL

Let x1, . . . , xn be a coordinate system in Cn that shall
be fixed throughout the text. If k = (k1, . . . , kn) ∈ Nn,
where N is the set of nonnegative integers, then we denote
by xk the monomial xk11 · · ·xknn . Let f : (Cn, 0)→ (C, 0)
be an analytic function germ and let f(x) =

P
k akx

k be

the Taylor expansion of f near the origin. If r is a positive

integer then the r-jet of f is defined as the polynomial

jrf(x) =
P

|k|≤r akx
k, where |k| = k1 + · · ·+ kn.

Definition 2.1. We say that the r-jet jrf is C0-sufficient
if, for each analytic map germ g : (Cn, 0) → (C, 0) such
that jrg(x) = jrf(x), there exists a germ of homeomor-

phism ϕ : (Cn, 0)→ (Cn, 0) such that f = g ◦ ϕ. We call
degree of C0-sufficiency of f , denoted by s(f), the least

r ∈ N such that jrf is C0-sufficient.

If f ∈ On, let us denote by J(f) the ideal of On gen-
erated by the partial derivatives of f and by grad f the

map germ (Cn, 0)→ (Cn, 0) given by

grad f =

µ
∂f

∂x1
, . . . ,

∂f

∂xn

¶
.

The next theorem is a nice characterization of the no-

tion of C0-sufficiency.

Theorem 2.2. Let f : (Cn, 0)→ (C, 0) be an analytic map
germ, then the r-jet of f is C0-sufficient if and only if
there exist some C, δ > 0 such that

|x|r−δ ≤ C ¯̄(grad f)(x)¯̄,
for all x in some open neighbourhood of 0 in Cn.

The if part of the above theorem is proved in [Chang

and Lu 73] and the only if part is proved in [Bochnak and

Kucharz 79].

In the hypotheses of Theorem 2.2, we denote by α0(f)

the greatest upper bound of those α > 0 such that

|x|α ≤ C ¯̄(grad f)(x)¯̄,
for all x in some open neighbourhood of 0 in Cn and some
constant C > 0. This number exists by [ÃLojasiewicz 76,

p. 136] and it is a rational number by [Risler 74]. There-

fore, s(f) = [α0(f)] + 1, where [a] denotes the greatest

integer ≤ a.
Now, we are going to give the definition of integral

closure of an ideal. As we shall see, this concept is related

to the type of inequalities shown above.

Definition 2.3. Given a noetherian ring R and an ideal

I ⊆ R, we say that h ∈ R is integral over I when h

satisfies a relation of the form hm+a1h
m−1+· · ·+am−1h+

am = 0, where m ≥ 1 and ai ∈ Ii, for all i = 1, . . . ,m.

The set of those elements which are integral over I forms

an ideal I ⊆ R called the integral closure of I.

Obviously, we have I ⊆ I. When the equality I = I

holds, the ideal I is said to be integrally closed. The inte-

gral closure of an ideal can be characterized in analytical

terms, as the following theorem shows.

Theorem 2.4. Let I ⊆ On be an ideal and h ∈ On. Let
g1, . . . , gs be a system of generators of I. Then h ∈ I if
and only if there exists a constant C > 0 and an open
neighbourhood U of 0 in Cn such that

|h(x)| ≤ C sup{|gi(x)| : i = 1, . . . , s},

for all x ∈ U [Lejeune and Teissier 74, p. 602].

The above result can also be found in [Teissier 81, p.

338]. We recall that an ideal I in a local ring (R,m) is

said to be m-primary, where m is the maximal ideal of

R, when there exists some ` ≥ 1 such that m` ⊆ I. If mn

denotes the maximal ideal of On, then an ideal I ⊆ On is
mn-primary if and only if V (I) = {0}, where V (I) is the
zero set of I. In turn, this is equivalent to saying that

dimCOn/I <∞ ([Eisenbud 94, p. 74]). We shall refer to

the number dimCOn/I as the codimension of I. Given
an mn-primary ideal I ⊆ On, we set α(I) = min{` ≥ 1 :
m` ⊆ I}.
If f : (Cn, 0) → (C, 0) is an analytic function germ

with an isolated singularity at the origin (which means

that J(f) is an mn-primary ideal), then α(J(f)) is the

least integer greater than or equal to α0(f), by Theorem

2.4. Hence, if α0(f) /∈ N, then s(f) = α(J(f)) and,

if α0(f) ∈ N, then s(f) = α(J(f)) + 1. Therefore the

number α(J(f)) + 1 gives an estimate of s(f) differing

from s(f) at most by 1. The next section is devoted

to computing α(I), for an arbitrary mn-primary ideal in

On. This computation can be done, for instance, using
the program “Singular” [Greuel et al. 98].

3. THE INTEGRAL CLOSURE AND THE MULTIPLICITY
OF AN IDEAL

The integral closure of an ideal is a notion closely related

to the concepts of multiplicity and reduction of an ideal.

Given two ideals J ⊆ I in a local ring (R,m), we say

that J is a reduction of I when there exists an integer
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r ≥ 1 such that Ir+1 = JIr. If I is an m-primary ideal
of R, then we denote by e(I) the multiplicity of I in the

Hilbert-Samuel sense, this number can be seen as follows

([Matsumura 86, p. 107]):

e(I) = lim
n→∞

d!

nd
`(R/In),

where d = dimR (the Krull dimension of R) and `(R/In)

denotes the length of R/In as an R-module, for all n ≥ 0.
Suppose that J ⊆ I is another m-primary ideal, then we
observe that e(J) ≥ e(I).
A ring R is said to be equidimensional if dimR =

dimR/P , for every minimal prime ideal P of R (see

[Eisenbud 94, p. 458]). The following result is known

as Rees’ theorem.

Theorem 3.1. Let R be an equidimensional local ring and
let J ⊆ I ⊆ R be a pair of m-primary ideals of R, then
the following statements are equivalent: [Rees 61]

(1) J is a reduction of I;

(2) I = J ;

(3) e(I) = e(J).

We have the following immediate consequence of the

above theorem.

Corollary 3.2. Let I be an m-primary ideal of R and

h ∈ R. Then h ∈ I if and only if e(I) = e(I + hR).

The following theorem, the proof of which can be

found in [Matsumura 86, p. 112] and [Northcott and Rees

54, p. 153], is essential in order to apply computational

methods to obtain the number α(I).

Theorem 3.3. Let I = hg1, . . . , gsi ⊆ On be

an mn-primary ideal of On. Then there exists a

Zariski open set W ⊆ Cs × Cn such that whenever

(a11, . . . , a1s, . . . , an1, . . . , ans) is an element of W , then

the ideal of On generated by hi =
P

j aijgj , i = 1, . . . , n,

is a reduction of I.

If I = hg1, . . . , gsi ⊆ On is an ideal and a =

(a11, . . . , a1s, . . . , an1, . . . , ans) ∈ Cs × Cn, then we de-
note by I(a) the ideal of On generated by hi =

P
j aijgj ,

i = 1, . . . , n.

Corollary 3.4. Let I = hg1, . . . , gsi ⊆ On be a mn-
primary ideal of On. Then there exists a Zariski open

set W ⊆ Cs × Cn such that whenever a ∈W , then

e(I) = dimC
On
I(a)

.

Proof: If W is the Zariski open set given in Theorem

3.3, then I(a) is a reduction of I, for all a ∈ W , and
by Theorem 3.1 both ideals have the same multiplicity.

But the multiplicity of I(a) is equal to its codimension

dimCOn/I(a), since it is generated by n elements in On
(see Theorem 17.11 of [Matsumura 86]).

By the above corollary, if I = hg1, . . . , gsi is an mn-

primary ideal in On, the multiplicity of I is the minimum
value of the codimensions dimCOn/J of those ideals J
generated by n general linear combinations of g1, . . . , gs.

It is worth to remark that e(I) ≥ dimCOn/I and that the
equality holds if and only if I is generated by n elements.

Definition 3.5. If g(x) =
P

k akx
k ∈ On, the support of

g, denoted by supp(g), is the set of those k ∈ Nn such that
ak 6= 0. Given any set S ⊆ On, we define the support of
S as the union of the supports of the elements belonging
to S and we denote this set by supp(S). The Newton
polyhedron of S is defined as the convex hull in Rn+ of
{k + v : k ∈ supp(S), v ∈ Rn+}, where R+ = [0,+∞[.
If I is any ideal of On, it is easy to check that Γ+(I) is
equal to the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gs), where
g1, . . . , gs is any finite generating system of I.

If J ⊆ I are two ideals in On, then we observe that
Γ+(J) ⊆ Γ+(I). Hence, if I is an mn-primary ideal of

On then Γ+(I) intersects all the coordinate axis in Rn,
since there is some power of mn contained in I.

We say that an ideal I of On is monomial when it is
generated by monomials xk = xk11 · · ·xknn , ki ∈ N.

Lemma 3.6. Let I ⊆ On be a monomial ideal, then I is
equal to the ideal generated by those monomials xk such

that k ∈ Γ+(I). [Eisenbud 94, p. 141]

Corollary 3.7. Let I ⊆ On be any ideal, then Γ+(I) =
Γ+(I).

Proof: It is obvious that I ⊆ I. Let I0 be the ideal

generated by those monomials xk such that k ∈ Γ+(I).
Then, we have that Γ+(I0) = Γ+(I0), by Lemma 3.6. In

particular, it follows that

Γ+(I) ⊆ Γ+(I) ⊆ Γ+(I0) = Γ+(I0) = Γ+(I).



84 Experimental Mathematics, Vol. 11 (2002), No. 1

We will denote by KI the ideal of On generated by
those monomials xk belonging to I. Observe that this is

an integrally closed ideal, by Lemma 3.6. We also denote

by e1, . . . , en the canonical basis in Rn.

Lemma 3.8. Let I ⊆ On be an mn-primary ideal of On
and let αi = min{α > 0 : αei ∈ Γ+(KI)}, for all i =
1, . . . , n. Then α(I) = max{α1, . . . ,αn}.

Proof: Let r = max{α1, . . . ,αn}, if m`
n ⊆ I, for some

` ≥ 1, then ` ≥ αi, for all i = 1, . . . , n. In particular, we

have that ` ≥ r. On the other hand, the set of all mono-
mials xk whose exponents are in the Newton polyhedron

determined by xα11 , . . . , x
αn
n , belong to KI , by Lemma

3.6. In particular, this means that mr
n ⊆ I and that

r ≥ α(I).

Given an mn-primary ideal I = hg1, . . . , gsi ⊆ On
and an element h ∈ On, we shall denote by e(I, h)
the multiplicity of the ideal generated by g1, . . . , gs, h.

We also define the vector β(I) = (β1, . . . ,βn), where

βi = min{β > 0 : βei ∈ Γ+(I)}, for all i = 1, . . . , n.
We now describe an algorithm to determine the num-

ber α(I):

(1) First, we compute e(I) as follows. If s = n, then

e(I) = dimCOn/I. If s > n, then we compute

the codimension of the ideal generated by n generic

linear combinations of g1, . . . , gs using the library

LIB"random.lib" of Singular, thus obtaining e(I),

by Corollary 3.4.

(2) Consider the vector β(I) = (β1, . . . ,βn). Let us fix

an index i = 1, . . . , n.

(3) We compute e(I, xβii ) as in item (1).

(4) We know that e(I) ≥ e(I, xβii ). If e(I) = e(I, xβii ),

we set αi = βi. Otherwise, we compute e(I, x
βi+1
i ).

(5) If e(I) = e(I, xβi+1i ) then we define αi = βi + 1.

Otherwise, we apply the same process to βi + 2.

(6) Since the ideal KI is also an mn-primary ideal, the

Newton polyhedron of KI intersects all the coordi-

nate axis. Then, this process stops and we obtain

the number αi = min{α > 0 : αei ∈ Γ+(KI)} =
min{α > 0 : e(I) = e(I, xαi )}.

(7) We compute the number αi, for all i = 1, . . . , n,

following items (3)-(6).

(8) Finally, α(I) = max{α1, . . . ,αn}, by Lemma 3.8.

In the next example, we apply the above ideas to our

initial objective, that is, the one of giving a sharp upper

estimate to the degree of C0-sufficiency of an arbitrary

function germ f : (Cn, 0) → (C, 0) with an isolated sin-
gularity at the origin.

Example 3.9. Consider the map germ f : (C3, 0)→ (C, 0)
given by f(x, y, z) = x8 + y7 + xz5 + yz3 + (xy2 − x2y)2.
It is easy to check that f has an isolated singularity
at the origin and that β(J(f)) = (7, 6, 3). On the
other hand, using “Singular,” the Milnor number of f
is dimCOn/J(f) = 79. If we apply the process de-
scribed above, we find that x7, y6 ∈ J(f), z3 /∈ J(f)
and z4 ∈ J(f). Then α(J(f)) = 7 and this means
that j8f is C0-sufficient (see the comment before Sec-
tion 3).

For the sake of completeness, we also give the explicit
computations that have lead us to state that z3 /∈ J(f):
>ring R= 0,(x,y,z),ds;

>poly f=x8+y7+xz5+yz3+(xy2-x2y)∧2;
>ideal I=jacob(f);

>LIB"random.lib";

>ideal A=I, z3;

>ideal B=randomid(A,3);

>ideal C=std(B);

>vdim (C);

>77

We see that e(J(f), z3) = 77 < 79 = e(J(f)), then

z3 /∈ J(f) by Corollary 3.2. Analogously we also conclude
that e(J(f), z3) = 79, so z4 ∈ J(f).

Remark 3.10. The map given in Example 3.9 is not New-
ton non-degenerate in the sense of [Kouchnirenko 76];

therefore the result in [Fukui 91] on the estimation of

α0(f) can not be applied in this case. Moreover, the de-

scribed method to compute α(J(f))+ 1 can be used as a

tool to test the sharpness of other results estimating the

number α0(f).

By the papers [Kuo 69] and [Kuiper 72], the if part of

Theorem 2.2 also holds for real analytic function germs

(see [Bochnak and ÃLojasiewicz 71] for the version of The-

orem 2.2 for real variables). If f : (Rn, 0) → (R, 0)
is analytic, we can complexify the coordinates in Rn
in order to obtain a complex analytic function germ

fC : (Cn, 0)→ (C, 0).
Suppose that fC defines an isolated singularity at the

origin. Then the number α(J(fC)) + 1 is also an upper
bound for the degree of C0-sufficiency of f .
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