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Abstract. For a large class of nonautonomous linear delay equations with distributed
delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential
dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant
or periodic coefficients and with a simple spectrum these two properties are equivalent.
We also show that any linear delay equation with an exponential dichotomy and its
sufficiently small Lipschitz perturbations are Ulam–Hyers stable.
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1 Introduction

We consider delay equations with distributed delay with the objective of relating hyperbolicity
and Ulam–Hyers stability. More precisely, the aim of our work is twofold. In a first part, we
show that any linear delay equation with an exponential dichotomy and its sufficiently small
Lipschitz perturbations are Ulam–Hyers stable. We emphasize that we consider arbitrary
nonautonomous delay equations with distributed delay. In a second part, we obtain a converse
for a large class of linear equations by showing that hyperbolicity and Ulam–Hyers stability
are equivalent properties. This includes in particular linear delay equations with constant
coefficients, always with distributed delay, provided for example that the generator has a
simple spectrum. We also consider delay equations with periodic coefficients.

Before proceeding, we recall the notion of Ulam–Hyers stability for an autonomous delay
equation (the general nonautonomous case is analogous but is left for the main text). Let
|·| be a norm on Cn. Given r > 0, we denote by C = C([−r, 0], Cn) the Banach space of
all continuous functions φ : [−r, 0] → Cn equipped with the supremum norm ‖·‖. Now let
L : C → Cn be a bounded linear operator and let f : C → Cn be a continuous function. We say
that the equation

v′ = Lvt + f (vt), (1.1)

where vt(θ) = v(t + θ) for θ ∈ [−r, 0], is Ulam–Hyers stable if there exists κ > 0 such that for
each ε > 0 and each continuous function v : [−r,+∞)→ Cn of class C1 on [0,+∞) (taking the
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right-hand derivative at 0) satisfying

sup
t≥0

∣∣v′(t)− Lvt − f (vt)
∣∣ < ε,

there exists a solution w : [−r,+∞)→ Cn of equation (1.1) satisfying

sup
t≥0
‖vt − wt‖ < κε

We detail briefly the origins and developments of Ulam–Hyers stability (sometimes the
names are reordered in the literature), particularly in the context of differential equations and
dynamical systems. Often it is also called Ulam–Hyers–Rassias stability. The concept goes
back to a question of Ulam [37] for functional equations. Hyers [17] soon gave a solution for a
particular functional equation and much later Rassias [34] made a considerable generalization
for a notion of stability that includes the one studied by Hyers as a particular case (we refer the
reader to the book [18] for details and for many additional references). The notion essentially
requires that if there exists an approximate solution of a differential equation, in the sense that
it satisfies the differential equation up to a certain error, then there exists an actual solution
that is sufficiently close to the approximate solution. For many developments of the theory
we refer the reader to the books [10, 20, 36] and the references therein.

The developments described above include in particular many works giving conditions
leading to Ulam–Hyers stability, both for linear and nonlinear differential equations, or even
that are equivalent to Ulam–Hyers stability for some classes of equations. The first to consider
Ulam–Hyers stability in the context of differential equations seem to have been Alsina and
Ger [1] (see [35] for a generalization). Further developments include for example the works
[6, 13, 14, 19, 32, 33] as well as related work for difference equations, such as [5, 11, 31]. There
are various other variants, including for integral equations, differential integral equations, im-
pulsive differential equations, and partial differential equations. There are also some works
for delay equations, such as [16, 21, 26, 27, 38], although to our best knowledge never for dis-
tributed delays and never considering the problem of whether hyperbolicity is equivalent to
Ulam–Hyers stability. These two aspects are precisely the main novelties of our work.

We are mainly interested in the relation between Ulam–Hyers stability and hyperbolicity.
The equivalence between these two properties, under some additional assumptions, has been
established in a few cases. Namely, this was established in [25] for differential equations with
constant coefficients and in [6] for differential equations with periodic coefficients. Related
results for discrete time were obtained, respectively, in [5] for constant coefficients and in [12]
for periodic coefficients. To the possible extent, and similarly also under some additional
assumptions, we want to obtain related results for delay equations. To our best knowledge,
no similar problem was considered before for delays equations.

Certainly, our work is related to all these works since we study similar properties, but the
techniques (either for delays equations or others) cannot be used in our work. This is due to
the fact that we consider distributed delays, for which in particular the variation of constants
formula requires extending some operators to a space of discontinuous functions. Moreover,
unlike in all former works concerning Ulam–Hyers stability for delay equations, which put
their emphasis on Lipschitz properties and then deduce the stability of the equation, our
emphasis is instead on the hyperbolicity of the linear part, which allows us in particular to
give a complete characterization of Ulam–Hyers stability for linear delay equations.

Incidentally, Ulam–Hyers stability can be described, equivalently, as the shadowing of ap-
proximate orbits and specifically as what is called Lipschitz shadowing (we refer the reader
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to the books [28, 29] for details and references). Nonetheless, the two theories first emerged
independently. Shadowing theory was mainly motivated by hyperbolic dynamics. In par-
ticular, Anosov’s closing lemma [2] shows how to shadow pseudo-orbits by periodic orbits.
The general shadowing theorem of Anosov [3] and Bowen [9] leads to the structural stability
of hyperbolic sets. On the other hand, it was shown by Pilyugin and Tikhomirov [30] that
the Lipschitz shadowing property of a diffeomorphism is equivalent to its structural stability.
These closing and shadowing results have important generalizations to nonuniformly hyper-
bolic systems. In particular, a closing lemma was proved by Katok in [22]. It is also a Lipschitz
shadowing result, although some applications require its sharper bounds. We refer the reader
to the book [7] for a detailed presentation of these results, but we refrain from giving further
references since our work concerns only delay equations (with continuous time).

In the remainder of the introduction we recall briefly the notion of hyperbolicity and we
formulate our main results in the particular case of autonomous delay equations. This allows
us to avoid some technicalities that are present in the general nonautonomous case and for
which we refer to the main text.

We consider an autonomous delay equation

v′ = Lvt, (1.2)

where L : C → Cn is a bounded linear operator. For each initial condition v0 = φ ∈ C,
equation (1.2) has a unique solution v on [−r,+∞). These solutions determine a semigroup
S(t) : C → C, for t ≥ 0, defined by

S(t)φ = vt(·, 0, φ) for φ ∈ C.

It is a strongly continuous semigroup with generator A : D(A)→ C given by

Aφ := lim
t↘0

S(t)φ− φ

t
= φ′

in the domain D(A) formed by all φ ∈ C such that φ′ ∈ C and φ′(0) = Lφ. It turns out that
the spectrum σ(A) is composed entirely of eigenvalues.

Now we can formulate prototypes of our results in the particular case of autonomous
equations (we refer to the main text for general results).

Theorem 1.1. If the spectrum σ(A) does not intersect the imaginary axis and the function f : C → Cn

satisfies
| f (φ)− f (ψ)| ≤ K‖φ− ψ‖ for all φ, ψ ∈ C,

then provided that K is sufficiently small the equation v′ = Lvt + f (vt) is Ulam–Hyers stable.

One can take f = 0 to obtain a result for the linear equation v′ = Lvt.

Theorem 1.2. For a linear equation v′ = Lvt, if the spectrum σ(A) does not intersect the imaginary
axis, then the equation is Ulam–Hyers stable.

We also consider the converse problem for a linear delay equation, among other results in
the main text. Again we consider here only autonomous delay equations.

Theorem 1.3. Assume that any λ ∈ σ(A) on the imaginary axis is a simple eigenvalue. Then the
equation v′ = Lvt is Ulam–Hyers stable if and only if the spectrum σ(A) does not intersect the
imaginary axis.
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In addition, we show that for differential difference equations of the form

v′ = A0v +
k

∑
i=1

Aiv(t− τi),

for some positive numbers τ1 < τ2 < · · · < τk and some n× n matrices Ai for i = 0, . . . , k, the
simplicity condition in Theorem 1.3 is an open condition.

A more general condition than the simplicity of the spectrum is considered in the main
text. It corresponds to assume that the Jordan form of each eigenvalue on the imaginary axis
is diagonal. We also consider equations with periodic coefficients and, using the version of
Floquet theory for delay equations, we obtain an appropriate version of the former theorem.

2 Preliminaries

In this section we recall a few notions and results from the theory of delay equations. This
includes the notions of an exponential dichotomy and of an exponential trichotomy. We refer
the reader to the books [8, 15] for details as well as proofs of all the results recalled in this
section.

2.1 Basic notions

Let |·| be a norm on Cn. Given r > 0 (the delay), we denote by C = C([−r, 0], Cn) the Banach
space of all continuous functions φ : [−r, 0]→ Cn equipped with the supremum norm

‖φ‖ = sup
−r≤θ≤0

|φ(θ)|. (2.1)

We consider perturbations of a linear delay equation of the form

v′ = L(t)vt + g(t), (2.2)

writing vt(θ) = v(t + θ) for θ ∈ [−r, 0] and where:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is
strongly continuous on [0,+∞) and

sup
t≥0

∫ t+1

t
‖L(τ)‖ dτ < +∞; (2.3)

2. g : [0,+∞)→ Cn is a bounded continuous function, that is,

sup
t≥0
|g(t)| < +∞.

We recall that a map t 7→ L(t) is said to be strongly continuous on [0,+∞) if t 7→ L(t)φ is
continuous on [0,+∞) for each φ ∈ C. It follows from the uniform boundedness principle
and the strong continuity of the map t 7→ L(t) that

sup
τ∈[s,t]

‖L(τ)‖ < +∞ for all t > s. (2.4)
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Note that condition (2.3) holds for example when the map t 7→ L(t) is bounded and so in
particular when the operators L(t) are independent of t or are periodic in t.

A continuous function v : [s− r, a)→ Cn with a ≤ +∞ is called a solution of equation (2.2) if

v(t) = v(s) +
∫ t

s
(L(τ)vτ + g(τ)) dτ for t ∈ [s, a). (2.5)

Since v is uniformly continuous on bounded intervals, the map τ 7→ vτ is continuous. This
implies that the function

h(τ) = L(τ)vτ + g(τ)

is also continuous. Indeed,

|h(τ)− h(τ)| ≤ |L(τ)vτ − L(τ)vτ|+ |g(τ)− g(τ)|
≤ |L(τ)(vτ − vτ)|+ |L(τ)vτ − L(τ)vτ|+ |g(τ)− g(τ)|

and the right-hand side converges to 0 when τ → τ, in view of (2.4) and the continuity of
the maps τ 7→ vτ, τ 7→ L(τ)vτ and g. Therefore, by (2.5), any solution of equation (2.2) is of
class C1 on [s, a) and satisfies

v′(t) = L(t)vt + g(t) for t ∈ [s, a),

taking the right-hand derivative at s. Moreover, it follows from standard results on the exis-
tence and uniqueness of solutions of a delay equation that equation (2.2) has a unique solution
on [s− r,+∞) for each initial condition vs = φ ∈ C. These solutions can be expressed in terms
of the variation of constants formula (which we recall in the following section).

2.2 Linear equations

Now we consider the particular case of a linear equation

v′ = L(t)vt, (2.6)

with the same hypotheses on the operators L(t) as before. Equation (2.6) determines an
evolution family T(t, s) : C → C, for t ≥ s ≥ 0, defined by

T(t, s)φ = vt(·, s, φ) for φ ∈ C, (2.7)

where v is the unique solution of equation (2.6) on [s− r,+∞) with vs = φ. One can easily
verify that indeed

T(t, s) = Id and T(t, τ)T(τ, s) = T(t, s)

for any t ≥ τ ≥ s ≥ 0. Moreover, one can show that

‖T(t, s)‖ ≤ exp
(∫ t

s
‖L(τ)‖ dτ

)
for any t ≥ s ≥ 0 and so it follows from any of the properties (2.3) and (2.4) that each T(t, s)
is bounded.

It turns out that the linear operators T(t, s) can be extended to a certain space of discon-
tinuous functions. Let C0 be the set of all functions φ : [−r, 0] → Cn that are continuous on
[−r, 0) and for which the limit

φ(0−) = lim
θ→0−

φ(θ)
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exists. This is a Banach space when equipped with the supremum norm ‖·‖ in (2.1). We write
the linear operator L(t) : C → Cn as a Riemann–Stieltjes integral

L(t)φ =
∫ 0

−r
dη(t, θ)φ(θ) (2.8)

for some measurable map η : [0,+∞)× [−r, 0]→ Mn, where Mn is the set of all n× n matrices
with complex entries, such that θ 7→ η(t, θ) has bounded variation and is left-continuous for
each t ≥ 0. We extend the linear operator L(t) to C0 using the integral in (2.8) (we continue to
denote the extension by L(t) since there is no danger of confusion). Finally, given t ≥ 0, we
define a linear operator T0(t, s) on the space C0 by

T0(t, s)φ = vt(·, s, φ) for φ ∈ C0,

where v is the unique solution of equation (2.6) on [s− r,+∞) with vs = φ.
By the variation of constants formula for delay equations, the unique solution v of equa-

tion (2.2) on [s− r,+∞) with vs = φ ∈ C satisfies

vt = T(t, s)φ +
∫ t

s
T0(t, τ)X0g(τ) dτ (2.9)

for all t ≥ s, where X0 : Cn → C0 is the linear operator defined by

(X0 p)(θ) =

{
0 if −r ≤ θ < 0,

p if θ = 0

for each p ∈ Cn. Identity (2.9) means that

v(t + θ) = (T(t, s)φ)(θ) +
∫ t+θ

s

(
T0(t, τ)X0g(τ)

)
(θ) dτ (2.10)

for all t ≥ s and θ ∈ [−r, 0] with t + θ ≥ s. In particular, this formula gives the solution v(t)
taking θ = 0.

2.3 Partial hyperbolicity

We say that the linear equation (2.6) has an exponential trichotomy if:

1. there exist projections P(t), Q(t), R(t) : C → C for t ≥ 0 satisfying

P(t) + Q(t) + R(t) = Id

such that for any t ≥ s ≥ 0 we have

P(t)T(t, s) = T(t, s)P(s), Q(t)T(t, s) = T(t, s)Q(s)

and
R(t)T(t, s) = T(t, s)R(s);

2. the linear operator

T(t, s) := T(t, s)|ker P(s) : ker P(s)→ ker P(t) (2.11)

is onto and invertible for each t ≥ s ≥ 0;
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3. there exist µ, ν, D > 0 with µ < ν such that for any t ≥ s ≥ 0 we have

‖T(t, s)P(s)‖ ≤ De−ν(t−s), ‖T(t, s)Q(s)‖ ≥ D−1eν(t−s)

and
D−1e−µ(t−s) ≤ ‖T(t, s)R(s)‖ ≤ Deµ(t−s).

An exponential dichotomy is an exponential trichotomy with R(s) = 0 for some s ≥ 0 (and so
with R(s) = 0 for all s ≥ 0). For each t ≥ s ≥ 0 we denote the inverse of the operator T(t, s)
in (2.11) by

T(s, t) := T(t, s)−1 : ker P(t)→ ker P(s).

The stable, unstable and center spaces of an exponential trichotomy (or of an exponential
dichotomy) at time t are defined, respectively, by

E(t) = P(t)(C), F(t) = Q(t)(C) and G(t) = R(t)(C).

Clearly,
C = E(t)⊕ F(t)⊕ G(t).

The unstable and center spaces are always finite-dimensional, with dimensions independent
of t (see for example [8, Chapter 10]). For each t ≥ 0 we define linear operators

P0(t), Q0(t), R0(t) : Cn → C0

by
Q0(t) = T(t, t + r)Q(t + r)T0(t + r, t)X0,

R0(t) = T(t, t + r)R(t + r)T0(t + r, t)X0

and
P0(t) = X0 −Q0(t)− R0(t).

Then
P0(t)p ∈ C0 \ C, Q0(t)p ∈ F ⊂ C and R0(t)p ∈ G ⊂ C

for each p ∈ Cn. The following result extends the exponential bounds of an exponential
trichotomy to the space C0.

Proposition 2.1. If condition (2.3) holds and equation (2.6) has an exponential trichotomy, then there
exist µ, ν, N > 0 such that for any t ≥ s ≥ 0 we have

‖T0(t, s)P0(s)‖ ≤ Ne−ν(t−s), ‖T(t, s)Q0(s)‖ ≥ N−1eν(t−s)

and
N−1e−µ(t−s) ≤ ‖T(t, s)R0(s)‖ ≤ Neµ(t−s).

Proposition 2.1 also holds for an exponential dichotomy, in which case we have R(s) = 0
for all s ≥ 0 and so also R0(s) = 0 for all s ≥ 0.

3 From hyperbolicity to Ulam–Hyers stability

In this section we establish the Ulam–Hyers stability of an arbitrary nonautonomous linear
delay equation with an exponential dichotomy and of its sufficiently small Lipschitz pertur-
bations.
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3.1 Basic notions

We first introduce the notion of Ulam–Hyers stability for a delay equation. We consider
general perturbations of a nonautonomous linear delay equation. Namely, we assume that:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is
strongly continuous on [0,+∞) and (2.3) holds;

2. f : [0,+∞)× C → Cn is a continuous function.

We say that the equation
v′ = L(t)vt + f (t, vt) (3.1)

is Ulam–Hyers stable if there exists κ > 0 such that for each ε > 0 and each continuous function
v : [−r,+∞)→ Cn of class C1 on [0,+∞) (taking the right-hand derivative at 0) satisfying

sup
t≥0

∣∣v′(t)− L(t)vt − f (t, vt)
∣∣ < ε, (3.2)

there exists a solution w : [−r,+∞)→ Cn of equation (3.1) satisfying

sup
t≥0
‖vt − wt‖ < κε (3.3)

Before proceeding, we make a few comments on this notion of stability. We must assume
that each function v has derivative on [0,+∞) so that the supremum in (3.2) is well defined.
But in fact one can show that any solution of equation (3.1) is of class C1 on the interval [0,+∞)

(taking the right-hand derivative at 0). Indeed, let w be any solution of the equation and
consider the continuous function g(t) = f (t, wt). Then, as detailed in Section 2.1, any solution
of equation (2.2) is of class C1 on the interval [0,+∞) (taking the right-hand derivative at 0).
But the function w is a solution of this equation, which thus gives the desired result. On the
other hand, this also motivates assuming that the function v in (3.2) is of class C1 on [0,+∞).

3.2 Linear case

The following theorem is our first result relating Ulam–Hyers stability and hyperbolicity.
It considers the particular case of a nonautonomous linear equation (2.6) and shows that the
existence of an exponential dichotomy yields the Ulam–Hyers stability of the equation. The
proof has the advantage of being more direct than in the general nonlinear case since we
construct explicitly the function w in (3.3).

Theorem 3.1. If the equation v′ = L(t)vt has an exponential dichotomy, then it is Ulam–Hyers stable.

Proof. Take ε > 0 and a continuous function v : [−r,+∞) → Cn of class C1 on the interval
[0,+∞) satisfying

sup
t≥0
|v′(t)− L(t)vt| < ε.

Consider the continuous function g : [0,+∞)→ Cn given by

g(t) = v′(t)− L(t)vt.

Note that supt≥0|g(t)| < ε. For each t ≥ 0 let

w(t) = v(t)−
∫ t

0

(
T0(t, τ)P0g(τ)

)
(0) dτ +

∫ +∞

t

(
T(t, τ)Q0g(τ)

)
(0) dτ.
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Then for any t ≥ 0 and θ ∈ [−r, 0] with t + θ ≥ 0 we have

wt(θ) = vt(θ)−
∫ t+θ

0

(
T0(t + θ, τ)P0g(τ)

)
(0) dτ +

∫ +∞

t+θ

(
T(t + θ, τ)Q0g(τ)

)
(0) dτ

= vt(θ)−
∫ t+θ

0

(
T0(t, τ)P0g(τ)

)
(θ) dτ +

∫ +∞

t+θ

(
T(t, τ)Q0g(τ)

)
(θ) dτ.

This can be written in the form

wt = vt −
∫ t

0
T0(t, τ)P0g(τ) dτ +

∫ +∞

t
T(t, τ)Q0g(τ) dτ, (3.4)

in a similar manner to that in (2.10). It follows from Proposition 2.1 that∫ t

0
‖T0(t, τ)P0g(τ)‖ dτ ≤ sup

s≥0
|g(s)|

∫ t

0
Ne−ν(t−τ) dτ

= sup
s≥0
|g(s)|N(1− e−νt)

ν
<

Nε

ν

and, similarly, ∫ +∞

t
‖T(t, τ)Q0g(τ)‖ dτ ≤ sup

s≥0
|g(s)|N

ν
<

Nε

ν
,

for all t ≥ 0. Therefore, the function w : [−r,+∞) → Cn is well defined. Moreover, for any
t ≥ s ≥ 0 we have

vt − wt =
∫ t

s
T0(t, τ)X0g(τ) dτ −

∫ t

s
T0(t, τ)P0g(τ) dτ −

∫ t

s
T(t, τ)Q0g(τ) dτ

+
∫ t

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

t
T(t, τ)Q0g(τ) dτ

=
∫ t

s
T0(t, τ)X0g(τ) dτ +

∫ s

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

s
T(t, τ)Q0g(τ) dτ.

On the other hand, it also follows from (3.4) that

T(t, s)(vs − ws) =
∫ s

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

s
T(t, τ)Q0g(τ) dτ

(see for example [8, Section 3.4]). Therefore,

vt − wt = T(t, s)(vs − ws) +
∫ t

s
T0(t, τ)X0g(τ) dτ

for all t ≥ s ≥ 0. It follows from the variation of constants formula that

(v− w)′ = L(t)(vt − wt) + g(t).

Since v satisfies the equation
v′ = L(t)vt + g(t),

we conclude that w′ = L(t)wt. Moreover,

‖vt − wt‖ ≤
∥∥∥∥∫ t

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

t
T(t, τ)Q0g(τ) dτ

∥∥∥∥
≤
∫ t

0
‖T0(t, τ)P0g(τ)‖ dτ +

∫ +∞

t
‖T(t, τ)Q0g(τ)‖ dτ
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and so

sup
t≥0
‖vt − wt‖ <

2Nε

ν
.

This shows that equation (2.6) is Ulam–Hyers stable with κ = 2N/ν.

A consequence of Theorem 3.1 is the following result. Let M(t) : C → Cn, for t ≥ 0, be
bounded linear operators such that the map t 7→ M(t) is strongly continuous on [0,+∞).

Corollary 3.2. If the equation v′ = L(t)vt has an exponential dichotomy, then there exists δ > 0 such
that if

sup
t≥0

∫ t+1

t
‖L(τ)−M(τ)‖ dτ < δ, (3.5)

then the equation v′ = M(t)vt is Ulam–Hyers stable.

Proof. When v′ = L(t)vt has an exponential dichotomy and δ > 0 is sufficiently small, con-
dition (3.5) implies that the equation v′ = M(t)vt also has an exponential dichotomy (see
Theorem 6.1 in [8]). Hence, the desired statement follows readily from Theorem 3.1.

3.3 Nonlinear case

The following theorem is our main result relating Ulam–Hyers stability and hyperbolicity for
a nonlinear delay equation obtained from perturbing a linear equation with an exponential
dichotomy by a continuous map that is Lipschitz on the space variable.

Theorem 3.3. Assume that the equation v′ = L(t)vt has an exponential dichotomy and that there
exists K > 0 such that

| f (t, φ)− f (t, ψ)| ≤ K‖φ− ψ‖ for all t ≥ 0 and φ, ψ ∈ C. (3.6)

If K is sufficiently small, then equation (3.1) is Ulam–Hyers stable.

Proof. Take ε > 0 and a continuous function v : [−r,+∞)→ Cn of class C1 on [0,+∞) satisfy-
ing (3.2). We consider also the continuous function g : [0,+∞)→ Cn defined by

g(t) = v′(t)− L(t)vt − f (t, vt),

which satisfies supt≥0|g(t)| < ε. We want to show that there exists a continuous function
w : [−r,+∞)→ Cn satisfying

wt = vt −
∫ t

0
T0(t, τ)P0(τ)

[
f (τ, vτ)− f (τ, wτ) + g(τ)

]
dτ

+
∫ +∞

t
T(t, τ)Q0(τ)

[
f (τ, vτ)− f (τ, wτ) + g(τ)

]
dτ

(3.7)

for all t ≥ 0 such that the map t 7→ vt − wt is bounded. Let

u(t) = w(t)− v(t) and so ut = wt − vt. (3.8)

Moreover, let
h(t, φ) = f (t, vt)− f (t, φ + vt) + g(t). (3.9)
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Then identity (3.7) becomes

ut = −
∫ t

0
T0(t, τ)P0(τ)h(τ, uτ) dτ +

∫ +∞

t
T(t, τ)Q0(τ)h(τ, uτ) dτ.

Now we consider the map G : Cb → Cb defined by

G(u)t = −
∫ t

0
T0(t, τ)P0(τ)h(τ, uτ) dτ +

∫ +∞

t
T(t, τ)Q0(τ)h(τ, uτ) dτ,

where Cb denotes the Banach space of all bounded continuous functions u : [−r,+∞) → Cn

equipped with the supremum norm

‖u‖∞ = sup
t≥−r
|u(t)|.

For each t ≥ 0 and u, u ∈ Cb we have

‖G(u)t − G(u)t‖ ≤
∫ t

0

∥∥T0(t, τ)P0(τ)( f (τ, uτ + vτ)− f (τ, uτ + vτ))
∥∥ dτ

+
∫ +∞

t

∥∥T(t, τ)Q0(τ)( f (τ, uτ + vτ)− f (τ, uτ + vτ))
∥∥ dτ

≤ K‖u− u‖∞

(∫ t

0
Ne−ν(t−τ) dτ +

∫ +∞

t
Ne−ν(τ−t) dτ

)
≤ 2KN

ν
‖u− u‖∞.

Therefore,

‖G(u)− G(u)‖∞ = sup
t≥0
‖G(u)t − G(u)t‖ ≤

2KN
ν
‖u− u‖∞

and so the map G is a contraction provided that K is sufficiently small. Moreover, taking u = 0
we obtain

‖G(u)‖∞ = sup
t≥0
‖G(u)t‖ ≤

2KN
ν
‖u‖∞ + sup

t≥0
‖G(0)t‖.

Since h(τ, 0) = g(τ), proceeding as before we get

sup
t≥0
‖G(0)t‖ ≤

2N
ν

sup
t≥0
|g(t)| < ε

2N
ν

and so
‖G(u)‖∞ ≤

2KN
ν
‖u‖∞ + ε

2N
ν

.

This shows that the map G is well-defined. Hence, by the contraction mapping principle,
there exists u ∈ Cb satisfying (3.7). Moreover, u satisfies

‖u‖∞ ≤
2KN

ν
‖u‖∞ + ε

2N
ν

and for K < ν/(2N) we obtain

‖u‖∞ ≤ ε
2N

ν− 2KN
. (3.10)

Finally, proceeding as in the proof of Theorem 3.1 with g(t) replaced by h(t, ut), we
find that

ut = T(t, s)us −
∫ t

s
T0(t, τ)X0h(τ, uτ) dτ
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for all t ≥ s ≥ 0. It follows from the variation of constants formula that

u′ = L(t)ut − h(t, ut).

Since v satisfies the equation

v′ = L(t)vt + f (t, vt) + g(t),

it follows from (3.8) and (3.9) that

w′ = L(t)wt + f (t, wt).

By (3.10), we finally obtain

sup
t≥0
‖vt − wt‖ < ε

2N
ν− 2KN

,

and so equation (3.1) is Ulam–Hyers stable with κ = 2N/(ν− 2KN).

We were informed by the referee that Theorem 3.3 was obtained independently in [4] and
extended to the case of weighted Ulam–Hyers stability.

3.4 Measurable right-hand side

While Theorem 3.3 considers equations with continuous right-hand side, one can consider a
class of equations with measurable right-hand side. Similarly, one can also consider a notion
of Ulam–Hyers stability for which the approximate solution need not be of class C1 on [0,+∞).

Theorem 3.4. Let L(t) : C → Cn be linear operators for t ≥ 0, bounded for almost all t, with
t 7→ L(t)φ measurable for each φ ∈ C, and satisfying (2.3), and let f : [0,+∞) × C → Cn be a
measurable function satisfying (3.6). Then there exists κ > 0 such that for each ε > 0 and each
continuous function v : [−r,+∞)→ Cn with measurable derivative on [0,+∞) satisfying (3.2), there
exists a solution w : [−r,+∞)→ Cn of equation (3.1) satisfying (3.3).

One can in fact replace condition (2.3) by the more general requirement that there exist
constants C, ω > 0 such that

‖T0(t, s)‖ ≤ Ceω(t−s) for t ≥ s.

The proof of Theorem 3.4 follows almost verbatim the proof of Theorem 3.3, although now
the functions g and h may be only measurable in t.

4 From Ulam–Hyers stability to hyperbolicity

In this section we establish the converse of Theorem 3.1 for a large class of autonomous linear
equations v′ = Lvt and, more generally, linear equations v′ = L(t)vt for which the map
t 7→ L(t) is periodic. This class includes for example all equations for which the generator of
the semigroup induced by the equation has a simple spectrum on the imaginary axis. We first
recall a few basic notions, including the spectral properties of the generator, since these are
necessary for the proofs. Again we refer the reader to the books [8, 15] for details as well as
proofs of these basic notions.
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4.1 Basic notions

In this section we consider perturbations of a linear delay equation of the form

v′ = Lvt + g(t), (4.1)

where L : C → Cn is a bounded linear operator and g : R → Cn is a bounded continuous
function. Note that conditions 1 and 2 in Section 2.1 are automatically satisfied. Therefore,
for each initial condition vs = φ ∈ C equation (4.1) has a unique solution on [s− r,+∞). This
solution is of class C1 on the interval (s,+∞) and satisfies

v′(t) = Lvt + g(t) for t ∈ [s,+∞),

taking the right-hand derivative at s.
Now we consider the particular case of a linear equation

v′ = Lvt. (4.2)

This includes for example the differential difference equations of the form

v′ = A0v +
k

∑
i=1

Aiv(t− τi) (4.3)

for some positive numbers τ1 < τ2 < · · · < τk and some n× n matrices Ai for i = 0, . . . , k.
Equation (4.2) determines a semigroup S(t) : C → C, for t ≥ 0, defined by

S(t)φ = vt(·, 0, φ) for φ ∈ C,

where v is the unique solution of equation (4.2) on [−r,+∞) with v0 = φ. In fact,

S(t− s) = T(t, s) for any t ≥ s ≥ 0,

where T(t, s) is the evolution family in (2.7). One can also extend the linear operators S(t) to
the space C0. Namely, we first write the linear operator L : C → Cn in the form

Lφ =
∫ 0

−r
dη(θ)φ(θ)

for some left-continuous measurable map η : [−r, 0]→ Mn of bounded variation and then we
use it to extend L to C0. Given t ≥ 0, we define a linear operator S0(t) on the space C0 by

S0(t)φ = vt(·, 0, φ) for φ ∈ C0,

where v is the unique solution of equation (4.2) on [−r,+∞) with v0 = φ.
We note that equation (4.2) has an exponential trichotomy if:

1. there exist projections P, Q, R : C → C satisfying P + Q + R = Id such that for all t ≥ 0
we have

PS(t) = S(t)P, QS(t) = S(t)Q and RS(t) = S(t)R;

2. the linear operator
S(t) := S(t)|ker P : ker P→ ker P

is onto and invertible for each t ≥ 0;



14 L. Barreira and C. Valls

3. there exist µ, ν, D > 0 with µ < ν such that for any t ≥ 0 we have

‖S(t)P‖ ≤ De−νt, ‖S(t)Q‖ ≥ D−1eνt

and
D−1e−µt ≤ ‖S(t)R‖ ≤ Deµt. (4.4)

An exponential dichotomy is an exponential trichotomy with R = 0. It turns out that any
autonomous linear equation (4.2) has an exponential trichotomy (possibly with R = 0), as a
consequence of the spectral properties of the generator of S(t) (see Proposition 4.1).

We define linear operators P0, Q0, R0 : Cn → C0 by

Q0 = S(−r)QS0(r)X0, R0 = S(−r)RS0(r)X0

and
P0 = X0 −Q0 − R0.

For each p ∈ Cn we have

P0 p ∈ C0 \ C, Q0 p ∈ F ⊂ C and R0 p ∈ G ⊂ C.

In a similar manner to that in Proposition 2.1, one can extend the exponential bounds of
an exponential trichotomy to the space C0 (notice that condition (2.3) is now automatically
satisfied).

Finally, we recall some properties of the semigroup S(t) and its generator that will be used
later on.

Proposition 4.1. The following properties hold:

1. S(t) is a strongly continuous semigroup with generator A : D(A)→ C given by

Aφ := lim
t↘0

S(t)φ− φ

t
= φ′

in the domain
D(A) =

{
φ ∈ C : φ′ ∈ C, φ′(0) = Lφ

}
;

2. the spectrum σ(A) is composed of eigenvalues, for each γ ∈ R there are finitely many numbers
λ ∈ σ(A) satisfying Re λ > γ, and

sup
{

Re λ : λ ∈ σ(A)
}
< +∞;

3. the generalized eigenspace space Mλ of each λ ∈ σ(A) is finite-dimensional, there exists k ∈ N

such that Mλ = ker(A− λId)k and

C = Mλ ⊕ Nλ with Nλ = Im(A− λId)k;

4. if Φλ = {φ1, . . . , φd} is a basis for Mλ, then there exists a d × d matrix Bλ with a single
eigenvalue λ such that AΦλ = ΦλBλ,

S(t)Φλ = ΦλeBλt for t ∈ R

and so also
(S(t)Φλ)(θ) = Φλ(0)eBλ(t+θ) for t ∈ R and θ ∈ [−r, 0]. (4.5)
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The identity AΦλ = ΦλBλ in property 4 means that AΦλa = ΦλBλa for any a ∈ Cd and a
similar observation applies to the remaining identities. A consequence of the former propo-
sition is that any autonomous linear equation (4.2) has an exponential trichotomy (possibly
with R = 0), in fact with an arbitrarily small constant µ in (4.4).

The stable, unstable and center spaces of an exponential trichotomy are now independent
of time and are given, respectively, by

E = P(C), F = Q(C) and G = R(C).

In fact, we have
E =

⋂
Re λ≥0

Nλ, F =
⊕

Re λ>0

Mλ and G =
⊕

Re λ=0

Mλ.

Clearly, C = E⊕ F⊕ G and the spaces F and G are finite-dimensional.
Moreover, we have the following result.

Proposition 4.2. Equation (4.2) has an exponential dichotomy if and only if the spectrum σ(A) does
not intersect the imaginary axis.

4.2 Autonomous case

Now we consider the converse of Theorem 3.1 for an autonomous linear delay equation as-
suming that for any eigenvalue λ ∈ σ(A) with Re λ = 0 the corresponding matrix Bλ (see
Proposition 4.1) has a diagonal Jordan form. Under this assumption, we present our main
result for a linear delay equation: the Ulam–Hyers stability of the equation implies that there
exists an exponential dichotomy.

Theorem 4.3. If equation (4.2) is Ulam–Hyers stable, then either it has an exponential dichotomy or
for some eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a nondiagonal Jordan form.

Proof. Assume that equation (4.2) does not have an exponential dichotomy and that for any
eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a diagonal Jordan form. Since the
equation does not have an exponential dichotomy, by Proposition 4.2 indeed there exists an
eigenvalue λ ∈ σ(A) with Re λ = 0 (for which the matrix Bλ has thus a diagonal Jordan form).
Take φλ ∈ Mλ normalized so that |φλ(0)| < 1. Then necessarily φλ(0) 6= 0 for some φλ ∈ Mλ

since otherwise it would follow from (4.5) that the generalized eigenspace was Mλ = {0}.
More precisely, by property (4.5), the solutions w(t) of equation (4.2) with w0 ∈ Mλ are

w(t) = c(S(t)φλ)(0) = ceλtφλ(0) (4.6)

with c ∈ C. Given ε > 0, let
ψ(t) = εeλtφλ(0)/(1 + r‖L‖)

and consider the function

g(t) = ψ(t)−
∫ 0

−r
dη(θ)θψ(t + θ). (4.7)

Note that g is continuous and that

sup
t≥0
|g(t)| ≤ ‖ψ‖(1 + r‖L‖) < ε.
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The unbounded function v(t) = tψ(t) satisfies

v′(t) = ψ(t) + tψ′(t) = ψ(t) + tLψt

since ψ is a solution of equation (4.2). Moreover,

Lvt =
∫ 0

−r
dη(θ)(t + θ)ψ(t + θ) = tLψt +

∫ 0

−r
dη(θ)θψ(t + θ)

and so

v′(t)− Lvt = ψ(t)−
∫ 0

−r
dη(θ)θψ(t + θ) = g(t).

This shows that v is an unbounded function satisfying

sup
t≥0
|v′(t)− Lvt| < ε.

In order to obtain a contradiction, we consider an arbitrary solution w(t) of the linear
equation (4.2). Note that

‖Pwt‖ = ‖S(t)Pw0‖ ≤ De−νt‖w0‖ ≤ D‖w0‖

and
‖Qwt‖ = ‖S(t)Qw0‖ ≥ D−1eνt‖w0‖

for all t ≥ 0. Now we observe that there are finitely many eigenvalues λ of A with Re λ = 0.
Moreover, the matrix Bλ of each of them has a diagonal Jordan form. Finally, denoting by Πλ′

the projection onto Mλ′ it follows readily from (4.6) that

‖Rwt‖ = ‖S(t)Rw0‖ ≤ ∑
Re λ′=0

‖S(t)Πλ′w0‖ = ∑
Re λ′=0

‖Πλ′w0‖

for all t ≥ 0. Therefore, there exists a constant N > 0 such that

‖(P + R)wt‖ = ‖S(t)(P + R)w0‖ ≤ N

for all t ≥ 0. This implies that if Qw0 6= 0, then

‖vt − wt‖ ≥ ‖Qwt‖ − ‖vt − (P + R)wt‖
≥ D−1eνt‖w0‖ − sup

θ∈[−r,0]
|t + θ|ε|φλ(0)|/(1 + r‖L‖)− N → +∞

when t→ +∞, which shows that

sup
t≥0
‖vt − wt‖ = +∞ (4.8)

when Qw0 6= 0. Now we assume that Qw0 = 0. In this case we have

‖vt − wt‖ ≥ |v(t)| − ‖(P + R)wt‖
≥ tε|φλ(0)|/(1 + r‖L‖)− N → +∞.

when t → +∞. This shows that (4.8) also holds when Qw0 = 0, which contradicts the
hypothesis that equation (4.2) is Ulam–Hyers stable. Therefore, either the equation has an
exponential dichotomy or for some eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a
nondiagonal Jordan form.

The more general case of a linear delay equation with periodic coefficients is considered
later on in Section 4.4. However, the proof requires substantial additional material that also
needs to be introduced. For this reason we have preferred to give first the former streamlined
proof for autonomous equations. In its turn, it is this proof that motivates the approach for
delay equations with periodic coefficients.
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4.3 Diagonal Jordan forms

The main difficulty in considering nondiagonal normal forms for the eigenvalues of the gen-
erator A is that one may not be able to obtain a bounded function g as in (4.7). Indeed, if the
function ψ is obtained from a generalized eigenvector a in the form

ψ(t) = ε(S(t)Φλa)(0),

then g may not be bounded, simply because it may involve nonconstant polynomials. This
means that this approach need not work for an arbitrary autonomous linear equation v′ = Lvt.

A corollary of the former Theorems 3.1 and 4.3 is a complete characterization of the Ulam–
Hyers stability of a linear delay equation when the eigenvalues of the generator A on the
imaginary axis have diagonal Jordan forms.

Corollary 4.4. Assume that for any λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a diagonal Jordan
form. Then equation (4.2) is Ulam–Hyers stable if and only if it has an exponential dichotomy.

It remains an open problem whether a similar characterization holds without the hypoth-
esis on diagonal Jordan forms. We are not aware of counterexamples, even though explicit
computations are always somewhat involved.

On the other hand, at least for differential difference equations as in (4.3) we can show
that if the spectrum of the generator A is simple on the imaginary axis (for which thus the
hypothesis on diagonal Jordan forms holds), then any sufficiently close equation is Ulam–
Hyers stable if and only if it has an exponential dichotomy. More precisely, we have the
following result.

Corollary 4.5. For equation (4.3) assume that any eigenvalue λ ∈ σ(A) with Re λ = 0 is simple.
Then there exists δ > 0 such that any equation

v′ = A′0v +
k

∑
i=1

A′iv(t− τi) (4.9)

with
‖A′i − Ai‖ < δ for i = 0, . . . , k (4.10)

is Ulam–Hyers stable if and only if it has an exponential dichotomy.

Proof. We recall that the eigenvalues of the generator A are the roots of the characteristic
equation det ∆(λ) = 0, where

∆(λ) =
∫ 0

−r
eλθdη(θ)− λId.

For equation (4.3) this becomes

h(λ) := det

(
A0 +

k

∑
i=1

Aie−λτi − λId

)
= 0.

Since the function h is holomorphic, one can use Rouché’s theorem to deduce the continuity
of the eigenvalues of A on the matrices Ai. In particular, given an eigenvalue λ of multiplicity
m, there exists δ > 0 such that for any equation (4.9) satisfying (4.10) there are exactly m eigen-
values, counted with multiplicities, of the corresponding generator of the induced semigroup
(see [23, 24] for details and related discussions).
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This has the following consequence. If for equation (4.3) any eigenvalue λ ∈ σ(A) with
Re λ = 0 is simple, then any equation (4.9) satisfying (4.10) for some sufficiently small δ > 0
has the property that any eigenvalue of the generator of the corresponding semigroup on
the imaginary axis is also simple. It follows from Corollary 4.4 that any such equation is
Ulam–Hyers stable if and only if it has an exponential dichotomy.

4.4 Periodic case

In this section we consider the more general case of a linear equation

v′ = L(t)vt, (4.11)

where L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that:

1. the map t 7→ L(t) is strongly continuous on [0,+∞);

2. there exists ω > 0 such that L(t + ω) = L(t) for all t ≥ 0.

Note that condition (2.3) is automatically satisfied.
We recall a few properties of the solutions of the linear equation (4.11) that are necessary

for the arguments. We refer the reader to the book [15] for details. Consider the operator
U : C → C defined by

Uφ = T(ω, 0)φ

with the evolution family T(t, s) as in (2.7). The spectrum σ(U) is a countable compact subset
of C accumulating at most at 0 and any number µ ∈ σ(U) \ {0} is an eigenvalue of U, called
a characteristic multiplier of equation (4.11). Moreover, any number λ ∈ C satisfying µ = eλω

for some eigenvalue µ 6= 0 is called a characteristic exponent of the equation.

Proposition 4.6. Given a characteristic multiplier µ, the following properties hold:

1. for each s ∈ R there exists a splitting C = Mµ(s)⊕ Nµ(s) into closed subspaces with Mµ(s) is
finite-dimensional such that

U(s)Mµ(s) ⊂ Mµ(s) and U(s)Nµ(s) ⊂ Nµ(s),

where U(s) = T(s + ω, s);

2. we have
σ(U(s)|Mµ(s)) = {µ} and σ(U(s))|Nµ(s)) = σ(U) \ {µ};

3. if Φµ,s is a basis for Mµ(s), then T(t, s)Φµ,s is a basis for the space Mµ(t) for each t ∈ R;

4. if dim Mµ(s) = d, then there exist a d× d matrix Cµ and vectors P(t) ∈ Cd for t ∈ R such
that σ(eCµω) = {µ},

P(t + ω) = P(t) for t ∈ R

and
T(t, 0)Φµ,0 = P(t)eCµt for t ∈ R. (4.12)
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Identity (4.12) means that

(T(t, 0)Φµ,0)(θ) = P(t)(θ)eCµt

for all t ∈ R and θ ∈ [−r, 0]. In particular, taking θ = 0 we find that any solution v(t) of
equation (4.11) with initial condition in the space Mµ(0) for some characteristic multiplier
µ = eλω is obtained multiplying the exponential eλt by a polynomial in t whose coefficients
are ω-periodic in t.

A consequence of the former properties is that any linear equation (4.11) with periodic
coefficients has an exponential trichotomy (possibly with projections R(s) = 0 for each s ∈ R),
whose stable, unstable and center spaces at time s are given, respectively, by

E(s) =
⋂
|µ|≥1

Nµ(s), F(s) =
⊕
|µ|>1

Mµ(s) and G(s) =
⊕
|µ|=1

Mµ(s).

Note that F(s) and G(s) are always finite-dimensional (for example since each space Mµ(s) is
finite-dimensional and since σ(U) accumulates at most at 0, although it is always the case that
the unstable and center spaces of an exponential trichotomy are finite-dimensional). Moreover,
equation (4.11) has an exponential dichotomy if and only if σ(U) does not intersect the unit
circle S1.

The following result is a generalization of Theorem 4.3 for linear equations with periodic
coefficients.

Theorem 4.7. If equation (4.11) is Ulam–Hyers stable, then either it has an exponential dichotomy
or for some characteristic multiplier µ ∈ σ(U) with |µ| = 1 the matrix Cµ has a nondiagonal Jordan
form.

Proof. The proof is analogous to that of Theorem 4.7 and so we only give a sketch. Assume
that equation (4.11) does not have an exponential dichotomy and that for any characteristic
multiplier µ ∈ σ(U) with |µ| = 1 the matrix Cµ has a diagonal Jordan form. Since by hypoth-
esis the equation does not have an exponential dichotomy, there exists such a characteristic
multiplier. Writing µ = eλω with Re λ = 0, we consider the solutions w(t) of equation (4.11)
with w0 ∈ Mµ of the form w(t) = ceλt p(t) with c ∈ C and where p : R → Cn is a continuous
function such that p(t + ω) = p(t) for all t ∈ R. Given ε > 0, let ψ(t) = εeλt p(t) and

g(t) = ψ(t)−
∫ 0

−r
dη(t, θ)θψ(t + θ).

Note that

|g(t)| ≤ |ψ(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

|θψ(t + θ)|

≤ |εeλt p(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

r|εeλ(t+θ)p(t + θ)|

≤ ε|p(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

rε|p(t + θ)| ≤ εα,

where

α := sup
t∈R

(
|p(t)|+ ‖L(t)‖ sup

θ∈[−r,0]
r|p(t + θ)|

)
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is finite because it is the supremum of a periodic function. One can easily verify that v(t) =
tψ(t) satisfies v′(t)− L(t)vt = g(t) and so

sup
t≥0
|v′(t)− L(t)vt| < εα.

In a similar manner to that in the proof of Theorem 4.7 we obtain

‖P(t)wt‖ = ‖T(t, 0)P(0)w0‖ ≤ De−νt‖w0‖ ≤ D‖w0‖ (4.13)

and
‖Q(t)wt‖ = ‖T(t, 0)Q(0)Qw0‖ ≥ D−1eνt‖w0‖

for all t ≥ 0. Moreover, denoting by Πµ′ the projection onto Mµ′(0) we have

‖R(t)wt‖ = ‖T(t, 0)R(0)w0‖ ≤ ∑
|µ′|=1

‖T(t, 0)Πµ′w0‖

for all t ≥ 0. On the other hand, writing µ′ = eλ′ω with Re λ′ = 0, the solutions w(t) of
equation (4.11) with w0 ∈ Mµ′ are given by w(t) = ceλ′tq(t) with c ∈ C and where q : R→ Cn

is a continuous function such that q(t + ω) = q(t) for all t ∈ R. Therefore,

‖T(t, 0)Πµ′w0‖ ≤ sup
θ∈[−r,0]

|ceλ′(t+θ)q(t + θ)|

≤ sup
t∈R

sup
θ∈[−r,0]

|cq(t + θ)|

= sup
t∈R

|cq(t)| < +∞,

for some c ∈ R. Since there are finitely many characteristic multipliers on S1, this implies that
there exists a constant K > 0 such that

‖R(t)wt‖ ≤ ∑
|µ′|=1

‖T(t, 0)Πµ′w0‖ ≤ K. (4.14)

Finally, by (4.13) and (4.14) there exists N > 0 such that

‖(Id−Q(t))wt‖ ≤ N

for all t ≥ 0. If Q(0)w0 6= 0, then

‖vt − wt‖ ≥ ‖Q(t)wt‖ − ‖vt − (Id−Q(t))wt‖
≥ D−1eνt‖w0‖ − sup

θ∈[−r,0]
ε|(t + θ)eλ(t+θ)p(t + θ)| − N → +∞

when t → +∞, because the function eλt p(t) is bounded. On the other hand, if Q(0)w0 = 0,
then

‖vt − wt‖ ≥ |v(t)| − ‖(Id−Q(t))wt‖ ≥ tε|eλt p(t)| − N.

Note that the function |eλt p(t)| = |p(t)| is ω-periodic and so its maximum is attained at some
times tk = t0 + kω with k ∈N. This implies that

‖vtk − wtk‖ ≥ tkε max
t∈R
|p(t)| − N → +∞

when k → +∞. In both cases property (4.8) holds and so we obtain a contradiction to the
hypothesis that equation (4.11) is Ulam–Hyers stable. This yields the desired statement.
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Building on the proof of the former theorem we formulate a result for arbitrary nonau-
tonomous linear delay equations v′ = L(t)vt under certain additional assumptions. We refrain
from including the proof since it corresponds to make slight changes in the former argument.

Theorem 4.8. Assume that:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is bounded
and strongly continuous on [0,+∞);

2. equation (4.11) has an exponential trichotomy such that all solutions with initial condition in the
center space G(0) are bounded;

3. there exist δ > 0 and a solution ψ of equation (4.11) with initial condition in G(0) such that
|ψ(tn)| > δ for some sequence tn → +∞.

If equation (4.11) is Ulam–Hyers stable, then it has an exponential dichotomy.

Note that by property 1 condition (2.3) is automatically satisfied.
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