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Abstract. In the present paper, we are concerned with a very general problem, namely
the Stieltjes differential Cauchy problem involving state-dependent discontinuities.

Given that the theory of Stieltjes differential equations covers the framework of
impulsive problems with fixed-time impulses, in the present work we generalize this
setting by allowing the occurrence of fixed-time impulses, as well as the occurrence of
state-dependent impulses.

Along with an existence result obtained under an overarching set of assumptions
involving Stieltjes integrals, it is showed that a least and a greatest solution can be
found.
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1 Introduction

The important role played by the theory of initial value impulsive differential problems in
describing the evolution of many processes in the real life is well-known [1, 15, 27]. The most
encountered framework in literature is that of impulsive equations with impulses occurring
at fixed times [1, 5].

The more general setting of state-dependent time discrete perturbations is (despite its wide
applicability, e.g. [6, 12, 24]) far less studied, due to its complexity – see [2, 4, 10] or [25] and
the references therein. To give just an idea, fixed point results are not applicable since the
continuity of Nemytskii operator cannot be checked, while the control of the number and
position of the state-dependent impulse moments requires strong specific assumptions.

At the same time, the theory of differential equations with Stieltjes derivative – see [19]
(called Stieltjes differential equations, e.g. [11, 17]), which has been shown to be generally
equivalent to the theory of measure differential equations (see [8, 9, 21]) covers a wide variety
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of real life processes. For instance, it allows the occurrence of stationary intervals (where the
derivator g is constant) coupled with moments with abrupt changes in the state (where g has
discontinuities).

We have in mind the possibility to allow both behaviours: stationary intervals coupled with
pre-established moments with abrupt changes and also with state-dependent time impulses.

We thus focus on Stieltjes first-order Cauchy differential problem with impulses depending
on the state 

x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, 1] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = Ii(x(t)), if t ∈ Ai
x \ A, for i = 1, . . . , k

x(0) = x0

(1.1)

where g : [0, 1] → R is a left-continuous nondecreasing function which induces the Stieltjes
measure µg, B ⊂ R is a closed set containing x0, f : [0, 1]× B → R is the function describing
the rate of change of the unknown function, while Ii : R → R, i = 1, . . . , k give the jumps at
the points where the barriers γi : R → [0, 1], i = 1, . . . , k are reached.

By A, Ai
x and Ax (x being a real valued function on [0, 1]) one denotes the sets

A = the set of points of discontinuity of g,

Ai
x = {t ∈ [0, 1] : t = γi(x(t))} for every i = 1, . . . , k,

respectively

Ax =
k⋃

i=1

Ai
x.

To avoid ambiguity at the common points of Ai
x and Aj

x (with i ̸= j), respectively of Ai
x and

A, we impose the conditions H4).iii), respectively H4).iv) below.
Using of the Stieltjes derivative x′g with respect to a left-continuous nondecreasing map g

enables the presence of dead times (intervals where the process is stationary – correspond-
ing to intervals where g is constant) as well as of fixed-time discrete perturbations (at the
discontinuities of g).

In the particular case where g(t) = t for every t ∈ [0, 1], the existence of solutions for
this problem has been provided e.g. in [2, 10, 13] or [25]. However, even in this specific case,
basic properties of the set of solutions are difficult to be proved (we refer to [13] or [33] for a
detailed discussion).

The very wide framework of Stieltjes differential problems (which already covers many
classical cases, such as ordinary differential and difference equations, impulsive equations,
time-scales dynamic equations) with state-dependent discontinuities is studied here for the
first time, as far as the author knows.

More precisely, we first present an existence result inspired by [22] (available for measure
differential equations without allowing state dependent discontinuities, in particular for im-
pulsive problems with fixed time impulse moments) by taking the advantage of the method
used in [10] for state-dependent impulsive equations with g(t) = t.

Finally, we prove, using a nice result for measure differential problems without variable
time impulses in [22], that a least and a greatest solution can be found. Note that, by a different
method and different hypotheses, the existence of extremal solutions has been obtained in [13]
when g(t) = t under assumptions involving that each barrier is hit only once.
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2 Notions and preliminary facts

A function u : [0, 1] → R is said to be regulated if for every t ∈ [0, 1) there exists the limit
u(t+) and for every s ∈ (0, 1] there exists the limit u(s−). The set of discontinuity points of
a regulated function is at most countable and the bounded variation or continuous functions
are, without any doubt, regulated. The space G([0, 1], R) of regulated functions u : [0, 1] → R
is a Banach space with respect to the sup-norm. By G−([0, 1], R) we denote its subspace
consisting in left-continuous functions.

Given a left-continuous nondecreasing function g : [0, 1] → R, the measurability with
respect to (in short, w.r.t.) the σ-algebra defined by g will be called g-measurability, µg denotes
the Stieltjes measure generated by g and the Lebesgue–Stieltjes (shortly, LS-) integrability w.r.t.
g means the abstract Lebesgue integrability w.r.t. the Stieltjes measure µg. It is well known
that if f is LS-integrable w.r.t. g, the primitive

∫ ·
0 f (s)dg(s) =

∫
[0,·) f (s)dg(s) is a g-absolutely

continuous function in the following sense (see [31], [11] or [19]): a function u : [0, 1] → R is
g-absolutely continuous if for every ε > 0 there is δε > 0 such that

m

∑
j=1

|u(t′′j )− u(t′j)| < ε

for any set {(t′j, t′′j )}m
i=1 of non-overlapping subintervals of [0, 1] with ∑m

j=1(g(t′′j )− g(t′j)) < δε.
We shall also use the theory of Kurzweil–Stieltjes integral (we refer the reader to [14,23,30],

see also [28, 29]) motivated by the fact that it is easy to handle (by integral sums), it fits well
with the setting of regulated functions (i.e. it covers the situation where both the integrand
and the integrator possess discontinuities) and, moreover, it can integrate functions that are
not absolutely integrable.

Below are listed the basic properties of KS-integrals.

Definition 2.1. A function f : [0, 1] → R is Kurzweil–Stieltjes integrable with respect to g :
[0, 1] → R (or KS-integrable w.r.t. g) if there exists

∫ 1
0 f (s)dg(s) ∈ R such that, for every ε > 0,

there is a positive function δε : [0, 1] → R with∣∣∣∣∣ p

∑
i=1

f (ξi)(g(ti)− g(ti−1))−
∫ 1

0
f (s)dg(s)

∣∣∣∣∣ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, . . . , p} of [0, 1]. This means that [ti−1, ti] ⊂
]ξi − δ(ξi), ξi + δ(ξi)[, for all i = 1, . . . , p.

The function t 7→
∫ t

0 f (s)dg(s) is called the KS-primitive of f w.r.t. g.

Proposition 2.2 ([23]). Let f : [0, 1] → R be Kurzweil–Stieltjes integrable w.r.t. g : [0, 1] → R. If g
is regulated, then so is the primitive h : [0, 1] → R, h(t) =

∫ t
0 f (s)dg(s) and for every t ∈ [0, 1],

h(t+)− h(t) = f (t) [g(t+)− g(t)] and h(t)− h(t−) = f (t) [g(t)− g(t−)] .

Therefore, h is left-continuous, respectively right-continuous at the points where g has the same prop-
erty.

Note that the Lebesgue–Stieltjes integrability of a function f implies the Kurzweil–Stieltjes
integrability and in the framework of a left-continuous nondecreasing function g, as a conse-
quence of [23, Theorem 6.11.3] (see also [26, Theorem 8.1]), if t ∈ [0, 1] then∫ t

0
f (s)dg(s) =

∫
[0,t]

f (s)dµg(s)− f (t)(g(t+)− g(t)) =
∫
[0,t)

f (s)dµg(s).
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In order to recall more properties of the primitive, we need the notion of (Stieltjes) deriva-
tive of a function with respect to another function, given in [19] (see also [31]).

Definition 2.3. Let g : [0, 1] → R be nondecreasing and left-continuous. The derivative of
f : [0, 1] → R with respect to g (or the g-derivative) at the point t ∈ [0, 1] is

f ′g(t) = lim
t′→t

f (t′)− f (t)
g(t′)− g(t)

if g is continuous at t,

f ′g(t) = lim
t′→t+

f (t′)− f (t)
g(t′)− g(t)

if g is discontinuous at t,

if the limit exists.

The g-derivative has found meaningful applications in solving real-world problems where
periods of time where no activity occurs and instants with abrupt changes are both involved,
such as [11], [18] or [20].

Remark that if t is a discontinuity point of g, then

f ′g(t) =
f (t+)− f (t)
g(t+)− g(t)

.

There is a set where Definition 2.3 does not work, more precisely,

Cg = {t ∈ [0, 1] : g is constant on (t − ε, t + ε) for some ε > 0}

but we must take into account that µg(Cg) = 0 [19] and, when studying differential equations,
the equation has to be satisfied µg-almost everywhere.

The connection between Stieltjes integrals and the Stieltjes derivative is given by Funda-
mental Theorems of Calculus [19, Theorems 5.4, 6.2, 6.5].

For Lebesgue–Stieltjes integrals, it is contained in [19, Theorem 5.4], we give the entire
statement below.

Theorem 2.4. Let g : [0, 1] → R be a nondecreasing left-continuous function. Then f : [0, 1] → R
is g-absolutely continuous if and only if it is g-differentiable µg-a.e., f ′g is Lebesgue–Stieltjes integrable
w.r.t g and

f (t′) = f (t′′) +
∫
[t′′,t′)

f ′g(s)dµg(s), for every 0 ≤ t′′ < t′ ≤ 1.

3 Main results

We are concerned with the Stieltjes initial value differential problem with state-dependent
discontinuities{

x′g(t) = f (t, x(t)), µg − a.e. t ∈ [0, 1] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = Ii(x(t)), if t ∈ Ai
x \ A, for i = 1, . . . , k

where B ⊂ R is closed, x0 ∈ B, f : [0, 1]× B → R and for each i = 1, . . . , k, Ii : B → R describes
the jumps at the points where the barrier γi : R → [0, 1] is reached. Recall that A is the set of
discontinuity points of the left-continuous nondecreasing function g : [0, 1] → R continuous
at 0, Ai

x is the set of points where the function x : [0, 1] → R hits the barrier γi, i.e. τ ∈ Ai
x if

t = γi(x(t)) and Ax is the union of these Ai
x.
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3.1 Existence result

Definition 3.1.

i) A function x : [0, a] → R (a ∈ (0, 1]) is called an integral solution of the state-dependent
impulsive Stieltjes differential problem (1.1) on [0, a] if it is a solution of the impulsive
integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s) +

k

∑
i=1

∑
τ∈(Ai

x\A)∩[0,t)

Ii(x(τ)), t ∈ [0, a]. (3.1)

ii) (e.g. [10]) We say that a function x : [0, a] → R (a ∈ (0, 1]) is a g-Carathéodory solution
of the state-dependent impulsive Stieltjes differential problem (1.1) on [0, a] if:

• it is g-absolutely continuous and x′g(t) = f (t, x(t)), µg-a.e. on [0, a] \ (Ax \ A);

• for each i = 1, . . . , k, at every t ∈ (Ai
x \ A) ∩ [0, a], x is left-continuous, it has finite

right limit and x(t+) = x(t) + Ii(x(t));

• x(0) = x0.

Consider B ⊂ R a compact set.
We shall impose the following hypotheses on f : [0, 1]× B → R:

H1) For each x ∈ B, the map f (·, x) is Kurzweil–Stieltjes integrable w.r.t. g on [0, 1];

H2) One can find a non-decreasing function h : [0, 1] → R and a function M : [0, 1] → R
KS-integrable w.r.t. h such that for every x ∈ G−([0, 1], B),∣∣∣∣∫ v

u
f (t, x(t))dg(t)

∣∣∣∣ ≤ ∫ v

u
M(t)dh(t), for all 0 ≤ u ≤ v ≤ 1;

H3) For any t ∈ [0, 1], f (t, ·) is continuous on B;

Remark 3.2. Using [22, Lemma 3.1], from the preceding assumptions it follows that for each
x ∈ G−([0, 1], B), the map f (·, x(·)) is Kurzweil–Stieltjes integrable w.r.t. g.

The assumptions on the barriers γi : R → [0, 1] (known as transversality assumptions) and
on the jumps Ii : R → R, i = 1, . . . , k are described below:

H4) i) The maps γi, i = 1, . . . , k are strictly monotone and continuous;

ii) γ−1
i (0) ̸= x0 for all i and γ−1

i (t) ̸= γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1];

iii) if γi(x) = γj(x) for some x ∈ B and i ̸= j then Ii(x) = Ij(x);

iv) whenever τ ∈ Ai
x ∩ A for some x ∈ G−([0, 1], B),

Ii(x(τ)) = f (τ, x(τ)) · ∆+g(τ);

H5) There is a positive integer M̃ such that each integral solution of (1.1) on any subinterval
of [0, 1] hits the barriers at at most M̃ points.

We make the convention that, whenever a solution hits the intersection of two barriers, the
moment is counted only once.
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Remark 3.3. The last part of Condition H4) means that for every τ ∈ A satisfying x(τ) =

γ−1
i (τ) for some x ∈ G−([0, 1], B) and some i ∈ {1, . . . , k},

Ii(γ
−1
i (τ)) = f (τ, γ−1

i (τ)) · ∆+g(τ).

Condition H5) is presented in a very general form, but we stress that it is ensured by the
hypotheses imposed in other works on state-dependent impulsive differential problems when
g(t) = t.

For instance, in [10] it is assumed that the distance between any two consecutive points
where a solution hits the barriers is bigger than some constant, see (3.4) in Theorem 3.1. Also,
in [2] there are a fixed number of barriers which are hit at most once by any solution, while
in [25] there is only one barrier hit exactly once by any solution, see [25, Lemma 5.1].

By combining the hypotheses imposed for integral measure driven equations in [22] with
the method used in the framework of state dependent impulsive equations in [10], we can
prove an existence result for the state dependent impulsive Stieltjes differential problem (1.1):

Theorem 3.4. Let f : [0, 1]× B → R satisfy the hypotheses H1)–H3) and the barriers and jumps
satisfy H4), H5). Suppose that{

x ∈ R; |x − x0| ≤
∫ 1

0
M(s)dh(s) + K1 + · · ·+ KM̃

}
⊂ B, (∗)

where

K1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dh(s)

|Ii(x)|,

Kn+1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dh(s)+K1+···+Kn

|Ii(x)|, ∀n ≥ 1.

Then the problem (1.1) admits integral solutions on [0, 1].

Proof. Consider at the beginning the measure-driven integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s), t ∈ [0, 1].

Since our assumption on B implies that{
x ∈ R : |x − x0| ≤

∫ 1

0
M(t)dh(t)

}
⊂ B,

by [22, Theorem 3.2], one can find an integral solution x1 on [0, 1]. By usual properties of
Kurzweil–Stieltjes integrals, x1 is left-continuous on [0, 1] and continuous at any point where
g is continuous (thus, it is continuous at 0).

Define then ri,1 : [0, 1] → R by

ri,1(t) = γi(x1(t))− t.

Due to H4).ii), ri,1(0) ̸= 0 for all i = 1, . . . , k and, since ri,1 is continuous at 0, we might
encounter the following situations:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and t ∈ (0, 1] \ A, then x1 is a solution of (1.1) on [0, 1].
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• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 be a continuity point of
g (i.e. t /∈ A) such that ri1,1(t1) = 0 for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for all i.

Consider in what follows the measure-driven integral problem

x(t) = x1(t1) + Ii1(x1(t1)) +
∫ t

t1

f (s, x(s))dg(s), t ∈ [t1, 1].

The assumption made on B brings us to{
x ∈ R : |x − (x1(t1) + Ii1(x1(t1)))| ≤

∫ 1

t1

M(s)dh(s)
}

⊂ B

since for each such x

|x − x0| ≤ |x − (x1(t1) + Ii1(x1(t1)))|+ |x1(t1)− x0|+ |Ii1(x1(t1)))|

≤
∫ 1

t1

M(s)dh(s) +
∫ t1

0
M(s)dh(s) + sup

|x−x0|≤
∫ 1

0 M(s)dh(s)

|Ii1(x)|

≤
∫ 1

0
M(s)dh(s) + K1

and so, x ∈ B and the inclusion is proved.
We can thus apply [22, Theorem 3.2] once again and one can find an integral solution x2

on [t1, 1]; it is left-continuous on [t1, 1] and continuous at any point where g is continuous
(in particular, at t1). As above, define ri,2 : [t1, 1] → R by ri,2(t) = γi(x2(t)) − t which is
continuous at t1.

Besides, by H4).ii), for all i

γ−1
i (t1) ̸= γ−1

i1
(t1) + Ii1(γ

−1
i1

(t1)) = x2(t1),

so ri,2(t1) ̸= 0, whence we might have the following situations:

• if ri,2(t) ̸= 0 for all i = 1, . . . , k and t ∈ (t1, 1] \ A, then a solution of (1.1) on [0, 1] can be
found if we take x1 on [0, t1] and x2 on (t1, 1];

• if ri,2(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (t1, 1] \ A, then let t2 > t1 be a continuity
point of g chosen such that ri2,2(t2) = 0 for some i2 and ri,2(t) ̸= 0 on [t1, t2) \ A for all i.

Let us next look at the measure-driven Cauchy problem

x(t) = x2(t2) + Ii2(x2(t2)) +
∫ t

t2

f (s, x(s))dg(s), t ∈ [t2, 1].

It is not difficult to see that{
x ∈ R : |x − (x2(t2) + Ii2(x2(t2)))| ≤

∫ 1

t2

M(s)dh(s)
}

⊂ B

as for each x in this set, as before,

|x − x0| ≤ |x − (x2(t2) + Ii2(x2(t2)))|+ |x2(t2)− x1(t1)|+ |x1(t1)− x0|+ |Ii2(x2(t2)))|

≤
∫ 1

t2

M(s)dh(s) +
∫ t2

t1

M(s)dh(s) + |Ii1(x1(t1)))|+
∫ t1

0
M(s)dh(s) + |Ii2(x2(t2)))|

≤
∫ t1

0
M(s)dh(s) + sup

|x−x0|≤
∫ 1

0 M(s)dh(s)

|Ii1(x)|+ sup
|x−x0|≤

∫ 1
0 M(s)dh(s)+K1

|Ii2(x)|

≤
∫ 1

0
M(s)dh(s) + K1 + K2
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and so, x ∈ B.
We can thus apply [22, Theorem 3.2] and one can continue the process and we claim that it

will be finished after less than M̃+ 1 steps (otherwise, hypothesis H5) would be contradicted).

Under stronger assumptions on f and keeping the hypothesis on the barriers, one can ob-
tain the existence of g-Carathéodory solutions for the impulsive measure differential problem
(1.1).

Theorem 3.5. Let f : [0, 1]× B → R satisfy the hypotheses

H1′) For each x ∈ G−([0, 1], B), the map f (·, x(·)) is g-measurable on [0, 1];

H2′) One can find a function M : [0, 1] → R Lebesgue–Stieltjes-integrable w.r.t. g such that for every
x ∈ B,

| f (t, x)| ≤ M(t), for µg-a.e. t ∈ [0, 1];

together with H3) and the barriers and jumps satisfy H4), H5).
Suppose that {

x ∈ R; |x − x0| ≤
∫ 1

0
M(s)dg(s) + K1 + · · ·+ KM̃

}
⊂ B, (∗∗)

where

K1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dg(s)

|Ii(x)|,

Kn+1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dg(s)+K1+···+Kn

|Ii(x)|, ∀n ≥ 1.

Then the problem (1.1) admits g-Carathéodory solutions on [0, 1].

Proof. We follow the same lines as in the previous result. Consider first the measure-driven
Cauchy problem {

x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, 1],

x(0) = x0.

By the Peano existence result [11, Theorem 7.5], one can find a g-Carathéodory solution x1 on
[0, 1].

Define then ri,1 : [0, 1] → R as before and we can fall into one of the following situations:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and t ∈ (0, 1] \ A, then x1 is a g-Carathéodory solution of
(1.1) on [0, 1];

• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 ∈ (0, 1] \ A be chosen
such that ri1,1(t1) = 0 for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for all i.

Consider then the measure-driven Cauchy problem{
x′g(t) = f (t, x(t)), µg-a.e. t ∈ [t1, 1],

x(t1) = x1(t1) + Ii1(x1(t1)).

We can again apply [11, Theorem 7.5] in order to get a g-Carathéodory solution on [t1, 1] and
so on.
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Remark 3.6. We could have obtained the previous result by applying Theorem 3.4 and re-
marking that the assumptions H1′), H2′) together with the Fundamental Theorem of Calculus
imply that any integral solution of our problem is a g-Carathéodory solution.

3.2 Existence of extremal solutions

Using the existence of extremal solutions for measure differential equations ([22, Theorem
4.4]), we get the existence of extremal solutions for measure differential equations with state-
dependent impulses.

We need several additional assumptions.

H6) One of the following sets of conditions holds:

a) x0 > γ−1
i (0) for each i, together with

i) γ−1
i (t) < x + f (t, x)∆+g(t) for every i = 1, . . . , k, t ∈ A whenever γ−1

i (t) < x;
ii) γ−1

i (t) < γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1]

or

b) x0 < γ−1
i (0) for each i, together with

i) γ−1
i (t) > x + f (t, x)∆+g(t) for every i = 1, . . . , k, t ∈ A whenever γ−1

i (t) > x;
ii) γ−1

i (t) > γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1].

Remark 3.7. In the first case, when i = j one gets Ii(γ
−1
i (t)) > 0 and, obviously, in the second

case, Ii(γ
−1
i (t)) < 0.

H7) For every x, y ∈ B with x ≤ y,

x + f (t, x) · ∆+g(t) ≤ y + f (t, y) · ∆+g(t), ∀t ∈ A

together with

γ−1
i (t) + Ii(γ

−1
i (t)) ≤ γ−1

j (t) + Ij(γ
−1
j (t)) whenever γ−1

i (t) ≤ γ−1
j (t)

for some t ∈ [0, 1], i, j ∈ {1, . . . , k}.

Definition 3.8. A solution y : [0, 1] → R is said to be the least (resp. greatest) solution of (1.1)
if for any other solution x : [0, 1] → R,

y(t) ≤ x(t) for every t ∈ [0, 1],

respectively
y(t) ≥ x(t) for every t ∈ [0, 1].

Theorem 3.9. Let the hypotheses H1)–H7) and (∗) be satisfied. Then the problem (1.1) admits a
greatest integral solution and a least integral solution on [0, 1].

Proof. We proceed as in the proof of Theorem 3.4, with convenient adjustments, in order to
get the existence of a least solution.

Thus, consider in the first place the measure-driven integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s), t ∈ [0, 1].
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Since all the hypotheses of [22, Theorem 4.4] are satisfied, one can find a least solution y1 on
[0, 1] (left-continuous everywhere and continuous at the continuity points of g, such as 0).

Let ri,1 : [0, 1] → R be defined by

ri,1(t) = γi(y1(t))− t.

Due to H4).ii), ri,1(0) ̸= 0 for all i = 1, . . . , k and since ri,1 is continuous at 0, the following
situations are possible:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and all t ∈ (0, 1] \ A, let y− be y1 on [0, 1].

• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 be a continuity point of
g such that ri1,1(t1) = 0 (i.e. y1(t1) = γ−1

i1
(t1)) for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for

all i.

Consider in what follows the measure-driven integral problem:

x(t) = γ−1
i1

(t1) + Ii1(γ
−1
i1

(t1)) +
∫ t

t1

f (s, x(s))dg(s), t ∈ [t1, 1].

The assumption we made on B implies that we can apply [22, Theorem 4.4] once again in
order to find a least solution on [t1, 1], denoted by y2.

As above, define ri,2 : [t1, 1] → R by ri,2(t) = γi(y2(t))− t and since it is continuous at t1

and ri,2(t1) ̸= 0, we might have the following situations:

• if ri,2(t) ̸= 0 for all i = 1, . . . , k and t ∈ (t1, 1] \ A, then we construct the solution y− of
(1.1) on [0, 1] taking y1 on [0, t1] and y2 on (t1, 1].

• if ri,2(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (t1, 1] \ A, then let t2 > t1 be a continuity
point of g chosen such that ri2,2(t2) = 0 for some i2 and ri,2(t) ̸= 0 on [t1, t2) \ A for all i.

Let us next look at the problem:

x(t) = γ−1
i2 (t2) + Ii2(γ

−1
i2 (t2)) +

∫ t

t2

f (s, x(s))dg(s), t ∈ [t2, 1]

for each i ∈ {1, . . . , k}.
The hypothesis on B implies that, by [22, Theorem 4.4], we can find, for each of these

problems, a least solution on [t2, 1], denoted by y3 and one can continue the process, which
will be finished after less than M̃+ 1 steps (otherwise, hypothesis H5) would be contradicted).

Let us see that the solution constructed in this way, namely y−, is a least solution of (1.1)
on [0, 1]. Suppose that H6).a) is satisfied (the case b) can be analyzed in a similar way).

Let x be an arbitrary solution of (1.1) on [0, 1]. We first show that y−(t) ≤ x(t) for every
t ∈ [0, t1].

i) If (Ax \ A) ∩ [0, t1) = ∅, then y−(t) ≤ x(t) for every t ∈ [0, t1].

ii) If there are points in (Ax \ A) ∩ [0, t1), let us focus on the first one since their number
is finite and for all such points the discussion can be led in the same way; let τ1 ∈
(Ax \ A) ∩ [0, t1) be the first point where x hits some barrier γi0 . Then the following
situations can be encountered:
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ii.a) none of the discontinuity points of g lies in between 0 and τ1; in this case, since
y−(0) = x0 > γ−1

i0
(0) and y−(τ1) ≤ x(τ1) = γ−1

i0
(τ1) (as y− is the least solution of

the measure integral equation on [0, t1)), by the continuity of γ−1
i0

and y− on (0, τ1),
it would follow that y− hits the barrier γi0 on (0, τ1], contradiction with the choice
of t1.

ii.b) if there are discontinuity points of g lying in between 0 and τ1, we can fall into one
of the three cases below:
• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then for each i, x(̃t̃i), y− (̃t̃i) > γ−1

i0
(̃t̃i)

since otherwise the graphs of x, y− would hit the barrier γi0 before τ1 and this is
not possible.
By H6).a).i), for each i = 1, . . . , k,

γ−1
i0 (̃t̃i) < x(̃t̃i+) and γ−1

i0 (̃t̃i) < y− (̃t̃i+),

whence, due to the fact that y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1) (since y− is the least solution
of the measure integral equation on [0, t1)), y− would hit the barrier γi0 on (tk, τ1]

which again is impossible.
• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < τ1; then, as before, at
each such point

γ−1
i0 (̃t̃i) < x(̃t̃i) and γ−1

i0 (̃t̃i) < y− (̃t̃i),

which, taking into account the left continuity of x, y− and the continuity of γ−1
i0

,
imply

γ−1
i0 (t) ≤ x(t) and γ−1

i0 (t) ≤ y−(t).

But equality is impossible as this would mean that x, respectively y− would hit
some barrier at t, therefore

γ−1
i0 (t) < x(t) and γ−1

i0 (t) < y−(t)

and thus, by H6).a).i),

γ−1
i0 (t) < x(t+) and γ−1

i0 (t) < y−(t+).

Again it would imply that y− hits the barrier γi0 on (t, τ1] which cannot happen.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards τ1, in which case, as
before,

γ−1
i0 (τ1) ≤ x(τ1) and γ−1

i0 (τ1) ≤ y−(τ1)

and since y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1), y− would hit the barrier before t1 and this is a
contradiction.

Let us now check that y−(t) ≤ x(t) for every t ∈ [t1, t2] (on the next intervals the same
discussion is to be carried out).

Hypothesis H6).a).ii) implies that

y−(t1+) > γ−1
i (t1) for each i = 1, . . . , k (3.2)

and from the preceding step we know that y−(t1) ≤ x(t1) which, by H7), implies that

y−(t1+) ≤ x(t1+). (3.3)
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If in (3.3) one has equality, then the proof on [0, t1] has to be repeated in order to get the
assertion on [t1, t2]. If strict inequality holds, then some modifications are necessary but we
take the same steps as on [0, t1] in order to prove that y−(t) ≤ x(t) for every t ∈ [t1, t2]. Thus:

i) If (Ax \ A) ∩ [t1, t2) = ∅, then suppose there is t ∈ (t1, t2] such that y−(t) > x(t). We
could be in the following situations:

i).a) [t1, t] ∩ A = ∅, in which case x and y− are continuous on (t1, t], y−(t1+) < x(t1+)

is valid and so there is a point t in this interval where the two trajectories intersect;
then the solution defined by {

y−(t), for t ∈ (t1, t],

x(t), for t ∈ (t, t]

would contradict the definition of y− on (t1, t2] as being the least solution of the
measure integral equation.

i).b) [t1, t] ∩ A ̸= ∅, in which case we might have:
• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then, since y−(t1+) < x(t1+), for
each i, y− (̃t̃i) ≤ x(̃t̃i) since otherwise, as in i).a), the fact that y− is a least solution
of the measure integral equation would be disobeyed.
So, by H7), y− (̃t̃k+) ≤ x(̃t̃k+) and, as y−(t) > x(t), as in i).a), the fact that y− is
the least solution of the measure integral equation on [t1, t2) is contradicted.
• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < t; then, as before,
at each such point y− (̃t̃i) ≤ x(̃t̃i) which, taking into account the left continuity of
x, y−, imply

y−(t) ≤ x(t)

and thus
y−(t+) ≤ x(t+).

Again it would follow that y− is not a least solution on (t, t].
• this is a countable set {̃t̃i, i ∈ N} accumulating towards t, in which case, as before,
y−(t) ≤ x(t) - contradiction.

ii) If there are points in (Ax \ A)∩ [t1, t2), let us focus only on the first one τ1 ∈ (Ax \ A)∩
[t1, t2) where x hits some barrier γi0 . Then the following situations can be encountered:

ii.a) none of the discontinuity points of g lies in between t1 and τ1; in this case, let us put
together (3.2) and the fact that y−(τ1) ≤ x(τ1) = γ−1

i0
(τ1) (since otherwise, together

with (3.3) and the continuity of y− and x it would be contradicted, as before, the
choice of y− as the least solution of the measure integral equation on [t1, t2)). By
the continuity of γ−1

i0
and y− on (t1, τ1), it would then follow that y− hits the barrier

γi0 on (t1, τ1], contradiction with the choice of t2.

ii.b) if there are discontinuity points of g lying in between t1 and τ1, we can fall again
into one of the three cases below:
• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then for each i, x(̃t̃i), y− (̃t̃i) > γ−1

i0
(̃t̃i)

since otherwise the graphs of x, y− would hit the barrier γi0 on (t1, τ1) and this is
not possible.
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By H6).a).i), for each i = 1, . . . , k,

γ−1
i0 (̃t̃i) < x(̃t̃i+) and γ−1

i0 (̃t̃i) < y− (̃t̃i+),

whence, due to the fact that y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1) (otherwise, as before, the
fact that y− is the least solution of the measure integral equation on [t1, t2) would
be contradicted), y− would hit the barrier γi0 on (tk, τ1] which again is impossible.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < τ1; then, as before, at
each such point

γ−1
i0 (̃t̃i) < x(̃t̃i) and γ−1

i0 (̃t̃i) < y− (̃t̃i),

which, taking into account the left continuity of x, y−, imply

γ−1
i0 (t) ≤ x(t) and γ−1

i0 (t) ≤ y−(t).

Equality is not possible (because it would mean that x, y− hit the barrier at t), so

γ−1
i0 (t) < x(t) and γ−1

i0 (t) < y−(t)

and thus
γ−1

i0 (t) < x(t+) and γ−1
i0 (t) < y−(t+).

Again it would follow that y− would hit the barrier γi0 on (t, τ1] which cannot
happen.
• this is a countable set {̃t̃i, i ∈ N} accumulating towards τ1, in which case, as
before,

γ−1
i0 (τ1) ≤ x(τ1) and γ−1

i0 (τ1) ≤ y−(τ1)

and since y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1), y− would hit the barrier before t2 and this is a
contradiction.

Corollary 3.10. If H1′), H2′) are imposed, then there exist a least and a greatest g-Carathéodory
solutions of (1.1).

Remark 3.11. The present work provides the existence of extremal solutions for a large class
of differential problems, namely Stieltjes differential equations involving fixed time and state-
dependent time impulses. Let us note once again that, even in the particular case where the
Stieltjes derivative is the usual derivative, the allowance of state-dependent time impulses
leads to really complex situations.

The very general discussion developed here could be applied to study real life problems
where the results available in literature for measure (Stieltjes) differential equations or for
classical impulsive ODEs fail.

The wide applicability of our results can be seen by looking at the following example,
which represents a generalization of a problem in [11], describing the evaporating water in an
open top cylindrical tank.

Example 3.12. Suppose that the initial level of the water in the tank is x0 and that the water
level decreases due to evaporation. If x(t) denotes the water height at time t > 0, then the
model adopted in [11] (which takes into account that the level remains constant during the
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nights, while during the days the evaporation speed is maximum at middays) states that the
evolution of x can be described by the Stieltjes differential problem

x′g(t) = f (t, x(t)), t ∈ [0, T] and x(0) = x0.

Note that in [11] the map f is supposed to be linear in x, but the nonlinear framework is
realistic as well. The nondecreasing left-continuous function g can be chosen conveniently
[11, page 20], for instance if we want to refill the tank every morning with an amount of water
depending on to the level before refilling, then one may set

g(t) =
∫ t

0
max (sin(πs), 0) ds + max{k ∈ N : 2k ≤ t}

and
f (2k, x(2k)) = ∆+x(2k) = λkx(2k), λk > 0

(the intervals [2k, 2k + 1), k ∈ N correspond to day times and, obviously, the intervals [2k +
1, 2k + 2), k ∈ N to night times).

In other words, the moments 2k, k ∈ N are fixed-time impulsive moments with ∆+g(2k) =
1, ∀k and so far, the problem can be solved through the theory of Stieltjes differential equations.

Suppose now that we want to add an amount of water (equal to I(x(t))) whenever a
state-dependent condition is satisfied, such as x(t) = β(t), where β is a decreasing function
measuring the water level in a huge second tank where the level water decreases due to
evaporation, without adding or removing any quantity and without stationary intervals.

In this case, the theory in [11] cannot be applied due to the occurrence of state-dependent
impulses. At the same time, nor the studies developed for state-dependent impulsive prob-
lems ([10], [2] or [25]) apply since the involved derivative is the Stieltjes derivative (not the
usual derivative).

The announced problem can be investigated by applying our results for
x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, T] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = I(x(t)), if t ∈ Ax \ A

x(0) = x0

where A = {2k : k ∈ N} ∩ [0, T] and, for some function x ∈ G−([0, T], R), Ax = {t ∈ [0, T] :
x(t) = β(t)}; we thus face the occurrence of only one barrier γ1 = β−1.

Theorem 3.9 yields the existence of a least g-Carathéodory solution and of a greatest
g-Carathéodory solution provided f and I satisfy the following conditions:

a) for each x ∈ G−([0, T], B), the map f (·, x(·)) is g-measurable;

b) one can find a function M : [0, T] → R Lebesgue–Stieltjes-integrable w.r.t. g such that for
every x ∈ B,

| f (t, x)| ≤ M(t), for µg-a.e. t ∈ [0, T]

such that (∗∗) is valid (with T instead of 1);

c) f is continuous with respect to its second argument;

d) β : [0, 1] → R is strictly monotone and continuous and whenever τ ∈ Ax ∩ A for some
x ∈ G−([0, T], B),

I(β(τ)) = f (τ, β(τ));
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e) there is a positive integer M̃ such that each integral solution of (1.1) on any subinterval
of [0, T] hits the barrier at at most M̃ points;

f) x0 > β(0), I(β(t)) > 0 for every t ∈ [0, T] and β(t) < x + f (t, x) for every t ∈ A, x ∈ B
with β(t) < x;

g) for every x, y ∈ B with x ≤ y,

x + f (t, x) ≤ y + f (t, y), ∀t ∈ A.
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