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Abstract. The main purpose of this paper is to establish a global smooth linearization
result for two classes of nonautonomous dynamics with discrete time. More precisely,
we consider a nonlinear and nonautonomous dynamics given by a two-sided sequence
of maps as well as variational systems whose linear part is contractive, and under
suitable assumptions we construct C1 conjugacies between the original dynamics and
its linear part. We stress that our dynamics acts on a arbitrary Banach space. Our
arguments rely on related results dealing with autonomous dynamics.
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1 Introduction

One of the basic strategies when analysing a complex nonlinear system near its equilibrium is
to linearize it, i.e. to study its linear part. Such a procedure is natural since linear systems are
much easier to study. However, this strategy is useful only if one knows that a system and the
associated linear part have similar behaviour near the equilibrium since only in that case we
can conclude something meaningful about the original system by studying its linearization.

Many works have been devoted to the problem of formulating conditions under which
the system and its linear part are Cr-conjugated (or equivalent). The first contributions deal
with complex dynamics. Indeed, Poincaré [23] proved that an analytic diffeomorphism can
be analytically conjugated to its linear part near a fixed point if all eigenvalues of the linear
part lie inside the unit circle S1 (or outside S1) and satisfy the nonresonant condition. Later,
Siegel [32], Brjuno [6] and Yoccoz [37] made contributions to the case of eigenvalues on S1, in
which the small divisor problem is involved.

In the context of real dynamics, the most important result is the famous Hartman–Grobman
Theorem [17], which asserts that a C1-diffeomorphism on Rn can be C0-linearized near the
hyperbolic fixed point. Later this result was generalized (with simplified proofs) to Banach
spaces independently by Palis [21] and Pugh [24].
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It is well-known that in general the conjugacy in the Grobman–Hartman theorem is only
locally Hölder continuous and that it may fail to be locally Lipschitz even for C∞ dynamic
(see [3] and references therein). However, C0-linearization is often not sufficient since for
example it can fail to distinguish a node from a focus as pointed out by van Strien [35].

Sternberg [33, 34] proved that Ck (k ≥ 1) diffeomorphisms can be Cr linearized near the
hyperbolic fixed points, where the integer r > k depends on k and the nonresonant con-
ditions. Hence, in order to obtain Cr-linearization, we need to require that our dynamics
exhibits higher regularity. Later Belitskii [4, 5] gave conditions for Ck linearization of Ck,1

(k ≥ 1) diffeomorphisms under appropriate nonresonant conditions. His results was partially
generalized to infinite-dimensional setting in [16, 27, 40].

The C1 linearization in the case when the linear part is a contraction (its spectrum is
contained in the unit circle) was discussed in [15, 26, 27] in the infinite-dimensional setting
as well as in [38, 39] in the finite-dimensional setting. We in particularly mention the recent
paper by H. M. Rodrigues and J. Solà-Morales [29], in which the global C1-linearization result
for contractions on Banach spaces has been established.

We emphasize that all the above mentioned results deal with autonomous dynamics. The
first contributions dealing with the linearization of nonautonomous dynamics with continu-
ous time are due to Palmer [22] and to Aulbach and Wanner [2] for dynamics with discrete
time. For more recent results we refer to the works of Jiang [18] and Lopez-Fenner and
Pinto [19]. The first results related to Cr-linearization (r ≥ 1) in the framework of nonau-
tonomous dynamics were obtained only quite recently. More precisely, a Sternberg type
theorem for nonautonomous dynamics with continuous time was established in [10]. The
C1-linearization for nonautonomous dynamics with discrete time was discussed in [13] (see
also [14] for related results for continuous time). Moreover, results related to differentiable
linearization of nonautonomous contractions were obtained in interesting papers [7, 8].

The main purpose of this paper is to formulate new conditions for C1-linearization of
nonautonomous contractions on an arbitrary Banach space. Our strategy follows very closely
the arguments developed in [13] and consist of passing from nonautonomous to the associ-
ated autonomous dynamics acting on a larger space. Then, for the autonomous dynamics we
apply results from [29] and after that we return back to the framework of our original nonau-
tonomous dynamics. However, we emphasize that the results from [13] don’t imply the results
in the present paper. Indeed, the conditions for the linear part that ensure C1-linearization
are given in terms of the spectrum of the associated Mather operator which are difficult to
verify in practice, while in the present paper the conditions are given directly in terms of the
constants in the notion of an exponential contraction (we refer to Remark 2.15 for a detailed
explanation). Furthermore, our results differ from those in [7, 8]. Indeed, besides considering
discrete (and not continuous) dynamics on an arbitrary Banach space we also don’t require
the boundedness for the nonlinearities. Furthermore, we use completely different techniques
from those developed in [7, 8].

Following similar ideas (but with substantial changes), we also discuss C1-linearization
of variational contractive dynamical systems with discrete time. We refer to [9, 30, 31] and
references therein for a detailed explanation of the relevance of variational systems in the in-
vestigation of qualitative properties of nonautonomous dynamics (and to [1] for the exposition
of the theory of closely related random dynamical systems).

We note that the main results of the present paper can be viewed as a generalization of
Hartman’s work [17] to nonautonomous contractions acting on Banach spaces.
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2 Nonuniform exponential contractions

Throughout this paper, X = (X, ‖·‖) will be an arbitrary Banach space and B(X) will denote
the space of all bounded linear operators on X. For a sequence (An)n∈Z ⊂ B(X) of invertible
operators, we set

A(m, n) =


Am−1 · · · An for m > n;

Id for m = n;

A−1
m · · · A−1

n−1 for m < n.

Let us introduce a notion of a nonuniform exponential contraction.

Definition 2.1. We say that (An)n∈Z admits a nonuniform exponential contraction if there exist
0 < λ ≤ µ and a map D : Z→ (0, ∞) such that

‖A(m, n)‖ ≤ D(n)e−λ(m−n), for m ≥ n, (2.1)

and
‖A(m, n)‖ ≤ D(n)eµ(n−m), for m ≤ n. (2.2)

The following example is taken from [11].

Example 2.2. Let X = R and consider a sequence (An)n∈Z given by

An = eω+ε[(−1)n− 1
2 ] n ∈ Z,

where ω < 0 and ε ≥ 0 are some fixed numbers. Then, (An)n∈Z admits a nonuniform
exponential contraction with D being a scalar multiple of the map n 7→ eε|n|.

Moreover, the notion of a nonuniform exponential contraction is ubiquitous from the er-
godic theory point of view (see Remark 3.13 for details).

A sequence (An)n∈Z gives rise to a linear nonautonomous dynamics given by

xn+1 = Anxn, n ∈ Z. (2.3)

Assume that ( fn)n∈Z is a sequence of (nonlinear) maps fn : X → X, n ∈ Z. We consider also
the associated nonautonomous dynamics

xn+1 = Anxn + fn(xn), n ∈ Z. (2.4)

The following is our first result. It gives conditions under which nonlinear dynamics (2.4)
can be C1-linearized. We stress that the proof of Theorem 2.3 will follow closely the proof
of [13, Theorem 2.], but we include all details for the sake of completeness.

Theorem 2.3. Assume that (An)n∈Z ⊂ B(X) is a sequence of invertible operators that admits a
nonuniform exponential contraction and assume that 0 < λ ≤ µ and D : Z → (0, ∞) are such
that (2.1) and (2.2) hold. Furthermore, suppose that

µ < 2λ. (2.5)

In addition, assume that:

• fn is differentiable for each n ∈ Z;
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• for every n ∈ Z,
fn(0) = 0 and D fn(0) = 0; (2.6)

• there exists γ > 0 such that

‖D fn(x)− D fn(y)‖ ≤
γ

D(n + 1)
‖x− y‖, for n ∈ Z and x, y ∈ X; (2.7)

• there exists η > 0 such that

‖D fn(x)‖ ≤ η

D(n + 1)
, for n ∈ Z and x ∈ X. (2.8)

Then, if η is sufficiently small, there exists a sequence (hn)n∈Z of C1 diffeomorphisms on X such that

hn+1 ◦ (An + fn) = An ◦ hn, for n ∈ Z. (2.9)

Proof. Choose ε > 0 such that

ε < λ and µ− 2λ + 3ε < 0. (2.10)

Observe that such ε can be chosen since (2.5) holds. For n ∈ Z and x ∈ X, we define

‖x‖n =
∞

∑
m=n
‖A(m, n)x‖e(λ−ε)(m−n) +

n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ε)(n−m).

Observe that ‖x‖ ≤ ‖x‖n. Moreover, (2.1) and (2.2) imply that

‖x‖n ≤ D(n)
( ∞

∑
m=n

e−ε(m−n) +
n−1

∑
m=−∞

e−ε(n−m)

)
‖x‖.

We conclude that
‖x‖ ≤ ‖x‖n ≤ cD(n)‖x‖ for x ∈ X and n ∈ Z, (2.11)

where

c =
1 + e−ε

1− e−ε
> 0. (2.12)

Lemma 2.4. We have that

‖Anx‖n+1 ≤ e−(λ−ε)‖x‖n and ‖A−1
n x‖n ≤ eµ+ε‖x‖n+1,

for x ∈ X and n ∈ Z.

Proof of the lemma. We have that

‖Anx‖n+1 =
∞

∑
m=n+1

‖A(m, n + 1)Anx‖e(λ−ε)(m−n−1) +
n

∑
m=−∞

‖A(m, n + 1)Anx‖e−(µ+ε)(n+1−m)

=
∞

∑
m=n+1

‖A(m, n)x‖e(λ−ε)(m−n−1) +
n

∑
m=−∞

‖A(m, n)x‖e−(µ+ε)(n+1−m)

= e−(λ−ε)
∞

∑
m=n
‖A(m, n)x‖e(λ−ε)(m−n) − e−(λ−ε)‖x‖

+e−(µ+ε)‖x‖+ e−(µ+ε)
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ε)(n−m)

= e−(λ−ε)‖x‖n + (e−(µ+ε) − e−(λ−ε)) ·
(
‖x‖+

n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ε)(n−m)

)
.
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Since λ− ε < µ + ε, we have that e−(µ+ε) < e−(λ−ε) and thus we obtain the first inequality in
the statement of the lemma. Moreover, since

‖x‖+
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ε)(n−m) ≤ ‖x‖n,

we have that

‖Anx‖n+1 ≥ e−(λ−ε)‖x‖n + (e−(µ+ε) − e−(λ−ε))‖x‖n = e−(µ+ε)‖x‖n,

which readily implies the second inequality in the statement of the lemma.

Set

Y∞ :=
{

x = (xn)n∈Z ⊂ X : ‖x‖∞ := sup
n∈Z

‖xn‖n < ∞
}

.

Then, it is easy to verify that (Y∞, ‖·‖∞) is a Banach space. We define a linear operator
A : Y∞ → Y∞ by

(Ax)n = An−1xn−1, for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Lemma 2.5. A is a bounded operator and

‖Am‖ ≤ e−(λ−ε)m, for m ∈N.

In particular, we have that r(A) < 1, where r(A) denotes the spectral radius of A.

Proof of the lemma. It follows from Lemma 2.4 that

‖Amx‖∞ = sup
n∈Z

‖(Amx)n‖n = sup
n∈Z

‖A(n, n−m)xn−m‖n

≤ e−(λ−ε)m sup
n∈Z

‖xn−m‖n−m

= e−(λ−ε)m‖x‖∞,

for x = (xn)n∈Z ∈ Y∞, which yields the desired conclusion.

Lemma 2.6. A is invertible and ‖A−1‖ ≤ eµ+ε.

Proof of the lemma. It is easy to verify that A is invertible and that its inverse is given by

(A−1x)n = A−1
n xn+1, for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Moreover, it follows from Lemma 2.5 that

‖A−1x‖∞ = sup
n∈Z

‖(A−1x)n‖n = sup
n∈Z

‖A−1
n xn+1‖n

≤ eµ+ε sup
n∈Z

‖xn‖n

= eµ+ε‖x‖∞,

for each x = (xn)n∈Z ∈ Y∞, which yields the desired result.

Lemma 2.7. We have that
‖A‖2 · ‖A−1‖ < 1.
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Proof of the lemma. Observe that it follows from Lemmas 2.5 and 2.6 that

‖A‖2 · ‖A−1‖ ≤ e−2(λ−ε) · eµ+ε.

Hence, the conclusion of the lemma follows from the second inequality in (2.10).

We now define F : Y∞ → Y∞ by

(F(x))n = fn−1(xn−1), for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Lemma 2.8. F is well-defined.

Proof of the lemma. Observe that (2.6) and (2.7) imply that

‖ fn(x)‖ ≤ γ

D(n + 1)
‖x‖2, for n ∈ Z and x ∈ X. (2.13)

By (2.11) and (2.13), we have that

‖(F(x))n‖n = ‖ fn−1(xn−1)‖n ≤ cD(n)‖ fn−1(xn−1)‖

≤ cD(n) γ

D(n)‖xn−1‖2

≤ cγ‖xn−1‖2
n−1,

for n ∈ Z and therefore
‖F(x)‖∞ ≤ cγ‖x‖2

∞,

for x = (xn)n∈Z ∈ Y∞. We conclude that F is well-defined.

Lemma 2.9. F is differentiable and

(DF(x)y)n = D fn−1(xn−1)yn−1,

for n ∈ Z, x = (xn)n∈Z, y = (yn)n∈Z ∈ Y∞.

Proof of the lemma. Let us fix x = (xn)n∈Z ∈ Y∞. We define an operator L : Y∞ → Y∞ by

(Ly)n = D fn−1(xn−1)yn−1, for n ∈ Z and y = (yn)n∈Z ∈ Y∞.

Observe that (2.8) and (2.11) imply that

‖(Ly)n‖n = ‖D fn−1(xn−1)yn−1‖n ≤ cD(n)‖D fn−1(xn−1)yn−1‖

≤ cD(n) η

D(n)‖yn−1‖

≤ cη‖yn−1‖n−1,

for n ∈ Z and y = (yn)n∈Z ∈ Y∞. Hence,

‖Ly‖∞ ≤ cη‖y‖∞,

and we conclude that L is a bounded linear operator. Furthermore, for each h = (hn)n∈Z ∈ Y∞,
we have that

(F(x + h)− F(x)− Lh)n = fn−1(xn−1 + hn−1)− fn−1(xn−1)− D fn−1(xn−1)hn−1

=
∫ 1

0
D fn−1(xn−1 + thn−1)hn−1 dt− D fn−1(xn−1)hn−1

=
∫ 1

0

(
D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1

)
dt.
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Then, (2.7) and (2.11) imply that

‖(F(x + h)− F(x)− Lh)n‖n ≤
∫ 1

0
‖D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1‖n dt

≤ cD(n)
∫ 1

0
‖D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1‖ dt

≤ cγ‖hn−1‖2 ≤ cγ‖hn−1‖2
n−1,

for n ∈ Z and h = (hn)n∈Z ∈ Y∞, and consequently

‖F(x + h)− F(x)− Lh‖∞ ≤ cγ‖h‖2
∞.

We conclude that

lim
h→0

‖F(x + h)− F(x)− Lh‖∞

‖h‖∞
= 0,

which implies the desired conclusion.

Lemma 2.10. We have that DF is uniformly continuous. Moreover,

sup
x∈Y∞\{0}

‖DF(x)‖
‖x‖∞

< ∞.

Proof of the lemma. For xi = (xi
n)n∈Z, i = 1, 2 and y = (yn)n∈Z ∈ Y∞, it follows from (2.7), (2.11)

and Lemma 2.9 that

‖(DF(x1)y)n − (DF(x2)y)n‖n = ‖D fn−1(x1
n−1)yn−1 − D fn−1(x2

n−1)yn−1‖n

≤ cD(n)‖D fn−1(x1
n−1)yn−1 − D fn−1(x2

n−1)yn−1‖
≤ cγ‖x1

n−1 − x2
n−1‖ · ‖yn−1‖

≤ cγ‖x1
n−1 − x2

n−1‖n−1 · ‖yn−1‖n−1,

for each n ∈ Z. Thus,
‖DF(x1)− DF(x2)‖∞ ≤ cγ‖x1 − x2‖∞,

which implies that DF is uniformly continuous.
In addition, by (2.6), (2.7) and (2.11) we have that

‖(DF(x)y)n‖n = ‖D fn−1(xn−1)yn−1‖n

≤ cD(n)‖D fn−1(xn−1)yn−1‖
≤ cγ‖xn−1‖ · ‖yn−1‖
≤ cγ‖xn−1‖n−1 · ‖yn−1‖n−1,

for n ∈ Z and thus
‖DF(x)‖ ≤ cγ‖x‖∞.

Consequently,

sup
x∈Y∞\{0}

‖DF(x)‖
‖x‖∞

≤ cγ < ∞.

The proof of the lemma is completed.
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Lemma 2.11. We have that
sup
x∈Y∞

‖DF(x)‖ ≤ cη.

Proof of the lemma. By (2.8), (2.11) and Lemma 2.9, we have that

‖(DF(x)y)n‖n = ‖D fn−1(xn−1)yn−1‖n ≤ cη‖yn−1‖n−1,

for n ∈ Z, x = (xn)n∈Z and y = (yn)n∈Z ∈ Y∞. Hence,

sup
x∈Y∞

‖DF(x)‖ ≤ cη.

It follows from Lemmas 2.5, 2.7, 2.10, 2.11 and [29, Theorem 3] that for η is sufficiently
small, there exists a C1-diffeomorphism H : Y∞ → Y∞ such that

H ◦ (A + F) = A ◦ H.

For n ∈ Z and v ∈ X, we define
hn(v) = (H(vn))n,

where vn = (vn
m)m∈Z ∈ Y∞ is given by

vn
m =

{
v if m = n;

0 of m 6= n.

Proceeding as in the proof of [13, Theorem 2.], one can conclude that hn is a C1-diffeomorphism
for each n ∈ Z and that (2.9) holds.

Remark 2.12. Note that (2.9) implies the following: if (xn)n∈Z solves (2.3), then (yn)n∈Z given
by yn = h−1

n (xn), n ∈ Z solves (2.4). Hence, the condition (2.9) can be interpreted as a
linearization of the nonlinear dynamics (2.4).

Let us now give an interpretation of Theorem 2.3 in the particular case of uniform expo-
nential contractions.

Definition 2.13. We say that a sequence (An)n∈Z ⊂ B(X) of invertible operators admits a uni-
form exponential contraction if it admits a nonuniform exponential contraction with a constant
function D : Z→ (0, ∞).

The following result is a direct consequence of Theorem 2.3.

Corollary 2.14. Assume that (An)n∈Z is a sequence of bounded and invertible linear operators that
admits a uniform exponential contraction and assume that 0 < λ ≤ µ are such that (2.1) and (2.2)
hold (with D being a constant function). Furthermore, suppose that (2.5) holds. In addition, assume
that:

• fn is differentiable for each n ∈ Z;

• for every n ∈ Z, (2.6) holds;

• there exists γ > 0 such that

‖D fn(x)− D fn(y)‖ ≤ γ‖x− y‖, for n ∈ Z and x, y ∈ X;
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• there exists η > 0 such that

‖D fn(x)‖ ≤ η, for n ∈ Z and x ∈ X.

Then, if η is sufficiently small, there exists a sequence (hn)n∈Z of C1 diffeomorphisms on X such
that (2.9) holds.

Remark 2.15. We are now in a position to elaborate on how Theorem 2.3 and Corollary 2.14
differ from [13, Theorem 2.]. Firstly, we emphasize that [13, Theorem 2.] works under a
more general assumption that (2.3) admits an exponential dichotomy and thus is particularly
applicable to our setting when (2.3) is contractive. However, the conditions for the smooth
linearization in [13] are given in terms of the spectrum σ(A) of the operator A. More precisely,
if X = Rd one can show that

σ(A) ∩ (0, ∞) = [a1, b1] ∪ · · · ∪ [ak, bk],

with 0 < a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk. When (2.3) is contractive, we have that
bk < 1. Then [13, Theorem 2.] is applicable under suitable conditions for the quotients bj/aj,
1 ≤ j ≤ k. However, it is very difficult to verify these conditions in practice since numbers aj, bj
are difficult to compute (or even estimate). On the other hand, Theorem 2.3 and Corollary 2.14
do not require this as (2.5) is concerned only with the relationship between λ and µ.

Remark 2.16. We note that the condition (2.7) implies that D fn is a Lipschitz map for each
n ∈ Z. For certain smooth linearization results which do not require that the derivative of the
nonlinear part is Lipschitz, we refer to [25, 36].

3 Nonuniform exponential contractions for variational systems

The purpose of this section is to established result analogous to Theorem 2.3 for variational
contractive systems with discrete time. We will begin by recalling some necessary terminology.

Assume that Θ be a metric space and let σ : Θ→ Θ be a homeomorphism.

Definition 3.1. A map A : Θ×Z→ B(X) is said to be a linear cocycle over σ if:

• A(q, 0) = Id for q ∈ Θ;

• A(q, n + m) = A(σnq, m)A(q, n) for q ∈ Θ and n, m ∈ Z.

The map A : Θ→ B(X) defined by A(q) = A(q, 1), q ∈ Θ is said to be a generator of A.

Remark 3.2. Let A be a linear cocycle over σ with generator A. We consider the discrete
variational system given by

xq(n + 1) = A(σnq)xq(n), (q, n) ∈ Θ×Z.

Observe that its solution satisfies

xq(m) = A(σnq, m− n)xq(n), for q ∈ Θ and m ≥ n.

Definition 3.3. Let Θ0 ⊂ Θ be σ-invariant, i.e. that σ(Θ0) = Θ0. A linear cocycle A is said
to be nonuniformly exponentially contractive on Θ0 if there exist a map K : Θ0 → (0, ∞) and
0 < λ ≤ µ such that:
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• ‖A(q, n)‖ ≤ K(q)e−λn for q ∈ Θ0 and n ≥ 0; (3.1)

• ‖A(q,−n)‖ ≤ K(q)eµn for q ∈ Θ0 and n ≥ 0. (3.2)

The following is a version of Theorem 2.3 for discrete variational systems.

Theorem 3.4. Assume that A is a nonuniformly exponentially contractive linear cocycle on a σ-
invariant set Θ0 ⊂ Θ. Furthermore, let K : Θ0 → (0, ∞) and 0 < λ ≤ µ be such that (3.1)
and (3.2) hold. In addition, suppose that (2.5) holds. Finally, assume that ( fq)q∈Θ0 is a family of maps
fq : X → X such that:

• fq is differentiable for each q ∈ Θ0;

• for every q ∈ Θ0,
fq(0) = 0 and D fq(0) = 0; (3.3)

• there exists γ > 0 such that

‖D fq(x)− D fq(y)‖ ≤
γ

K(σq)
‖x− y‖, for q ∈ Θ0 and x, y ∈ X; (3.4)

• there exists η > 0 such that

‖D fq(x)‖ ≤ η

K(σq)
, for q ∈ Θ0 and x ∈ X. (3.5)

Then, if η is sufficiently small, there exists a family (hq)q∈Θ0 of C1 diffeomorphisms on X such that

hσq ◦ (A(q) + fq) = A(q) ◦ hq, for q ∈ Θ0. (3.6)

Proof. We choose ε > 0 such that (2.10) holds. For q ∈ Θ0 and x ∈ X, set

‖x‖q :=
∞

∑
n=0
‖A(q, n)x‖e(λ−ε)n +

∞

∑
n=1
‖A(q,−n)x‖e−(µ+ε)n.

It follows easily from (3.1) and (3.2) that

‖x‖ ≤ ‖x‖q ≤ cK(q)‖x‖ for q ∈ Θ0 and x ∈ X, (3.7)

with c as in (2.12).

Lemma 3.5. We have that

‖A(q)x‖σq ≤ e−(λ−ε)‖x‖q and ‖A(q)−1x‖q ≤ eµ+ε‖x‖σq,

for x ∈ X and q ∈ Θ0.

Proof of the lemma. We have that

‖A(q)x‖σq =
∞

∑
n=0
‖A(σq, n)A(q)x‖e(λ−ε)n +

∞

∑
n=1
‖A(σq,−n)A(q)x‖e−(µ+ε)n

=
∞

∑
n=0
‖A(q, n + 1)x‖e(λ−ε)n +

∞

∑
n=1
‖A(q,−(n− 1))x‖e−(µ+ε)n

= e−(λ−ε)
∞

∑
n=0
‖A(q, n)x‖e(λ−ε)n − e−(λ−ε)‖x‖

+e−(µ+ε)‖x‖+ e−(µ+ε)
∞

∑
n=1
‖A(q,−n)x‖e−(µ+ε)n

= e−(λ−ε)‖x‖q + (e−(µ+ε) − e−(λ−ε)) ·
(
‖x‖+

∞

∑
n=1
‖A(q,−n)x‖e−(µ+ε)n

)
.
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Since λ− ε < µ + ε, we have that e−(µ+ε) < e−(λ−ε) and thus we obtain the first inequality in
the statement of the lemma. Moreover, since

‖x‖+
∞

∑
n=1
‖A(q,−n)x‖e−(µ+ε)n ≤ ‖x‖q

we have that

‖A(q)x‖σq ≥ e−(λ−ε)‖x‖q + (e−(µ+ε) − e−(λ−ε))‖x‖q = e−(µ+ε)‖x‖q,

which readily implies the second inequality in the statement of the lemma.

Set

Z∞ :=
{

v : Θ0 → X : ‖v‖∞ := sup
q∈Θ0

‖v(q)‖q < ∞
}

.

Then, (Z∞, ‖·‖∞) is a Banach space. We define a linear operator B : Z∞ → Z∞ by

(Bv)(q) = A(σ−1q)v(σ−1q), for q ∈ Θ0 and v ∈ Z∞.

Lemma 3.6. B is a bounded operator and

‖Bm‖ ≤ e−(λ−ε)m, for m ∈N.

In particular, we have that r(B) < 1.

Proof of the lemma. It follows from Lemma 3.5 that

‖Bmv‖∞ = sup
q∈Θ0

‖(Bmv)(q)‖q = sup
q∈Θ0

‖A(σ−mq, m)v(σ−mq)‖q

≤ e−(λ−ε)m sup
q∈Θ0

‖v(σ−mq)‖σ−mq

= e−(λ−ε)m‖v‖∞,

for v ∈ Z∞, which yields the desired conclusion.

Lemma 3.7. B is invertible and ‖B−1‖ ≤ eµ+ε.

Proof of the lemma. It is easy to verify that B is invertible and that its inverse is given by

(B−1v)(q) = A(q)−1v(σq), for q ∈ Θ0 and v ∈ Z∞.

Moreover, it follows from Lemma 3.5 that

‖B−1v‖∞ = sup
q∈Θ0

‖(B−1v)(q)‖q = sup
q∈Θ0

‖A(q)−1v(σq)‖q

≤ eµ+ε sup
q∈Θ0

‖v(σq)‖σq

= eµ+ε‖v‖∞,

for each v ∈ Z∞, which yields the desired result.
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As in the proof of Lemma 2.7, it follows from (2.10) and Lemmas 3.6 and 3.7 that

‖B‖2 · ‖B−1‖ < 1. (3.8)

We define G : Z∞ → Z∞ by

(G(v))(q) = fσ−1q(v(σ
−1q)), for q ∈ Θ0 and v ∈ Z∞.

Lemma 3.8. G is well-defined.

Proof of the lemma. Observe that (3.3) and (3.4) imply that

‖ fq(x)‖ ≤ γ

K(σq)
‖x‖2, for q ∈ Θ0 and x ∈ X. (3.9)

By (3.7) and (3.9), we have that

‖(G(v))(q)‖q = ‖ fσ−1q(v(σ
−1q))‖q ≤ cK(q)‖ fσ−1q(v(σ

−1q))‖

≤ cK(q)
γ

K(q)
‖v(σ−1q)‖2

≤ cγ‖v(σ−1q)‖2
σ−1q,

for q ∈ Θ0 and v ∈ Z∞. Hence,

‖G(v)‖∞ ≤ cγ‖v‖2
∞ for every v ∈ Z∞,

and therefore G is well-defined.

Lemma 3.9. G is differentiable and

(DG(v)w)(q) = D fσ−1q(v(σ
−1q))w(σ−1q),

for q ∈ Θ0 and v, w ∈ Z∞.

Proof of the lemma. Let us fix v ∈ Z∞. We define an operator L : Z∞ → Z∞ by

(Lw)(q) = D fσ−1q(v(σ
−1q))w(σ−1q), for q ∈ Θ0 and w ∈ Z∞.

Observe that (3.5) and (3.7) imply that

‖(Lw)(q)‖q = ‖D fσ−1q(v(σ
−1q))w(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v(σ
−1q))w(σ−1q)‖

≤ cK(q)
η

K(q)
‖w(σ−1q)‖

≤ cη‖w(σ−1q)‖σ−1q,

for q ∈ Θ0 and thus
‖Lw‖∞ ≤ cη‖w‖∞,

for every w ∈ Z∞. Hence, L is a bounded linear operator.
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Furthermore, for each h ∈ Z∞, we have that

(G(v + h)− G(v)− Lh)(q)

= fσ−1q(v(σ
−1q) + h(σ−1q))− fσ−1q(v(σ

−1q))− D fσ−1q(v(σ
−1q))h(σ−1q)

=
∫ 1

0
D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q) dt− D fσ−1q(v(σ
−1q))h(σ−1q)

=
∫ 1

0

(
D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ
−1q))h(σ−1q)

)
dt.

Then, (3.4) and (3.7) imply that

‖(G(v + h)− G(v)− Lh)(ω)‖q

≤
∫ 1

0
‖D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ
−1q))h(σ−1q)‖q dt

≤ cK(q)
∫ 1

0
‖D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ
−1q))h(σ−1q)‖ dt

≤ cγ‖h(σ−1q)‖2 ≤ cγ‖h(σ−1q)‖2
σ−1q,

for q ∈ Θ0 and h ∈ Z∞, and consequently

‖G(v + h)− G(v)− Lh‖∞ ≤ cγ‖h‖2
∞,

which implies the desired conclusion.

Lemma 3.10. DG is uniformly continuous. Moreover,

sup
v∈Z∞\{0}

‖DG(v)‖
‖v‖∞

< ∞.

Proof of the lemma. For vi, i = 1, 2 and h ∈ Z∞, it follows from (3.4), (3.7) and Lemma 3.9 that

‖(DG(v1)h)(q)− (DG(v2)h)(q)‖q

= ‖D fσ−1q(v1(σ
−1q))h(σ−1q)− D fσ−1q(v2(σ

−1q))h(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v1(σ
−1q))h(σ−1q)− D fσ−1q(v2(σ

−1q))h(σ−1q)‖
≤ cγ‖v1(σ

−1q)− v2(σ
−1q)‖ · ‖h(σ−1q)‖

≤ cγ‖v1(σ
−1q)− v2(σ

−1q)‖σ−1q · ‖h(σ−1q)‖σ−1q,

for each q ∈ Θ0. Therefore,

‖DG(v1)− DG(v2)‖∞ ≤ cγ‖v1 − v2‖∞.

In addition, by (3.3), (3.4) and (3.7) we have that

‖(DG(v)h)(q)‖q = ‖D fσ−1q(v(σ
−1q))h(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v(σ
−1q))h(σ−1q)‖

≤ cγ‖v(σ−1q)‖ · ‖h(σ−1q)‖
≤ cγ‖v(σ−1q)‖σ−1q · ‖h(σ−1q)‖σ−1q,

for q ∈ Θ0 and thus
‖DG(v)‖ ≤ cγ‖v‖∞,

which completes the proof of the lemma.



14 D. Dragičević

Lemma 3.11. We have that
sup
v∈Z∞

‖DG(v)‖ ≤ cη.

Proof of the lemma. By (3.5), (3.7) and Lemma 3.9, we have that

‖(DG(v)w)(q)‖q = ‖D fσ−1q(v(σ
−1q))w(σ−1q)‖q ≤ cη‖w(σ−1q)‖σ−1q,

for q ∈ Θ0, v, w ∈ Z∞. Hence,
sup
v∈Z∞

‖DG(v)‖ ≤ cη.

It follows from (3.8), Lemmas 3.6, 3.10, 3.11 and [29, Theorem 3] that for η is sufficiently
small, there exists a C1-diffeomorphism H : Z∞ → Z∞ such that

H ◦ (B + G) = B ◦ H. (3.10)

Take now q0 ∈ Θ0 and x0 ∈ X. We define vq0,x0 ∈ Z∞ by

vq0,x0(q) =

{
x0 if q = q0;

0 if q 6= q0.

Finally, we define hq0 : X → X by hq0(x0) = H(vq0,x0)(q0). Observe that

(B + G)(vq0,x0)(q) =

{
A(q0)x0 + fq0(x0) if q = σq0;

0 if q 6= σq0,

and thus
(B + G)(vq0,x0) = vσq0,A(q0)x0+ fq0 (x0).

Now we observe that it follows from (3.10) that

((H ◦ (B + G))(vq,x0))(σq0) = ((B ◦ H)(vq0,x0))(σq0),

and thus
(hσq0 ◦ (A(q0) + fq0))(x0) = (A(q0) ◦ hq0)(x0).

Since q0 ∈ Θ0 and x0 ∈ X were arbitrary, we conclude that (3.6) holds.
Furthermore, we claim that hq0 is differentiable and that

Dhq0(x0)y = (DH(vq0,x0)vq0,y)(q0). (3.11)

Indeed, we have that

‖hq0(x0 + y)− hq0(x0)− (DH(vq0,x0)vq0,y)(q0)‖
‖y‖

≤ cK(q0)
‖H(vq0,x0 + vq0,y)(q0)− H(vq0,x0)(q0)− (DH(vq0,x0)vq0,y)(q0)‖q0

‖y‖q0

≤ cK(q0)
‖H(vq0,x0 + vq0,y)− H(vq0,x0)− (DH(vq0,x0)vq0,y)‖∞

‖vq0,y‖∞
.

Letting ‖y‖ → 0, we have that ‖vq0,y‖∞ → 0 and we conclude that (3.11) holds.
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Let us show that Dhq0 is continuous. For x0 and x̃0 ∈ X, we have that

‖Dhq0(x0)− Dhω0(x̃0)‖ = sup
‖y‖≤1

‖Dhq0(x0)y− Dhq0(x̃0)y‖

= sup
‖y‖≤1

‖(DH(vq0,x0)vq0,y)(q0)− (DH(vω0,x̃0)vq0,y)(q0)‖

≤ sup
‖y‖≤1

‖(DH(vq0,x0)vq0,y)(q0)− (DH(vq0,x̃0)vq0,y)(q0)‖q0

≤ sup
‖y‖≤1

‖DH(vq0,x0)vq0,y − DH(vq0,x̃0)vq0,y‖∞

≤ cK(q0)‖DH(vq0,x0)− DH(vq0,x̃0)‖.

Letting x̃0 → x0, we have that vq0,x̃0 → vq0,x0 in Z∞ and thus since H is of class C1 we conclude
that Dhq0(x̃0)→ Dhq0(x0).

Finally, it is easy to show that

h−1
q0
(x0) = H−1(vq0,x0)(q0),

and proceeding as above, one can show that h−1
q0

is of class C1.

Let us now discuss the applicability of Theorem 3.4 in the setting when we can apply the
version of the Oseledets multiplicative ergodic theorem [20] for the cocycle A.

Remark 3.12. Assume that X = Rd and that on Θ we have a Borel probability measure P such
that σ preserves P. Moreover, suppose that P is ergodic and that∫

Θ
log+‖A(q)‖ dP(q) < ∞.

Hence, we can apply the Oseledets multiplicative ergodic theorem [20] to conclude that there
exist Lyapunov exponents

−∞ < λr < · · · < λ2 < λ1 < +∞, 1 ≤ r ≤ d,

σ-invariant Borel set Θ0 ⊂ Θ, P(Θ0) = 1 and for q ∈ Θ0, the corresponding Oseledets splitting

Rd =
r⊕

i=1

Ei(q)

such that:

• A(q)Ei(q) = Ei(σq) for q ∈ Θ0 and 1 ≤ i ≤ r;

• for q ∈ Θ0, v ∈ Ei(q) \ {0} and 1 ≤ i ≤ r,

lim
n→∞

1
n

log‖A(q, n)v‖ = λi.

Assume now that λ1 < 0. It follows from [12, Theorem 2] that A is nonuniformly exponen-
tially contractive on Θ0. Furthermore, (3.1) and (3.2) hold with

λ = −λ1 − ε and µ = −λr + 2ε,

with any sufficiently small ε > 0. Hence, we conclude that in this case (2.5) holds if 2λ1 < λr.
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As we promised, we now explain why nonuniform contractions introduced in previous
section are ubiquitous from the ergodic theory point of view.

Remark 3.13. Let X and A be as in Remark 3.12. Then, it follows from [12, Theorem 3] that
for q ∈ Θ0, the sequence (An)n∈Z given by

An = A(σnq) n ∈ Z,

admits a nonuniform exponential contraction, where D is the scalar multiple of n 7→ eε|n| and
ε > 0 is arbitrary.

As in previous section, we will now formulate a direct consequence of Theorem 3.4 dealing
with uniformly exponentially contractive variational systems.

Definition 3.14. Let Θ0 ⊂ Θ be σ-invariant. A linear cocycle A over σ is said to be uniformly
exponentially contractive on Θ0 if there exist K > 0 and 0 < λ ≤ µ such that:

• for q ∈ Θ0 and n ≥ 0,
‖A(q, n)‖ ≤ Ke−λn; (3.12)

• for q ∈ Θ0 and n ≥ 0,
‖A(q,−n)‖ ≤ Keµn. (3.13)

The following is a consequence of Theorem 3.4.

Corollary 3.15. Assume that A is a uniformly exponentially contractive linear cocycle on a σ-
invariant set Θ0 ⊂ Θ and suppose that K > 0 and 0 < λ ≤ µ are such that (3.12) and (3.13) hold.
Furthermore, suppose that (2.5) holds. Finally, assume that ( fq)q∈Θ0 is a family of maps fω : X → X
such that:

• fq is differentiable for each q ∈ Θ0;

• for every q ∈ Θ0,
fq(0) = 0 and D fq(0) = 0;

• there exists γ > 0 such that

‖D fq(x)− D fq(y)‖ ≤ γ‖x− y‖, for q ∈ Θ0 and x, y ∈ X;

• there exists η > 0 such that

‖D fq(x)‖ ≤ η, for q ∈ Θ0 and x ∈ X.

Then, if η is sufficiently small, there exists a family (hq)q∈Θ0 of C1 diffeomorphisms on X such that

hσq ◦ (A(q) + fq) = A(q) ◦ hq, for q ∈ Θ0.
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[3] L. Backes, D. Dragičević, K. J. Palmer, Linearization and Hölder continuity for nonau-
tonomous systems, J. Differential Equations 297(2021), 536–574. https://doi.org/10.
1016/j.jde.2021.06.035; MR4282665; Zbl 07373384

[4] G. R. Belitskii, Functional equations and the conjugacy of diffeomorphism of fi-
nite smoothness class, Funct. Anal. Appl. 7(1973), 268–277. https://doi.org/10.1007/
BF01075731; MR0331437; Zbl 0293.39005

[5] G. R. Belitskii, Equivalence and normal forms of germs of smooth mappings, Us-
pekhi Mat. Nauk 33(1978), 95–115. https://doi.org/10.1070/RM1978v033n01ABEH002237;
MR0490708; Zbl 0385.58007

[6] A. D. Brjuno, Analytical form of differential equations I, II, Trudy Moskov. Mat. Obšč.
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[14] D. Dragičević, W. Zhang, W. Zhang, Smooth linearization of nonautonomous differ-
ential equations with a nonuniform dichotomy, Proc. Lond. Math. Soc. 121(2020), 32–50.
https://doi.org/10.1112/plms.12315; MR4048734; Zbl 1450.37025

[15] M. S. ElBialy, Local contractions of Banach spaces and spectral gap conditions, J.
Funct. Anal. 182(2001), No. 1, 108–150. https://doi.org/10.1006/jfan.2000.3723;
MR1829244; Zbl 1024.46026

[16] M. S. ElBialy, Smooth conjugacy and linearization near resonant fixed points in Hilbert
spaces, Houston J. Math. 40(2014), 467–509. MR3248650; Zbl 1355.37039

[17] P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana
5(1960), 220–241. MR0141856; Zbl 0127.30202

[18] L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal.
Appl. 315(2006), 474–490. https://doi.org/10.1016/j.jmaa.2005.05.042; MR2202594;
Zbl 1098.34042

[19] J. Lopez-Fenner, M. Pinto, On a Hartman linearization theorem for a class of
ODE with impulse effect, Nonlinear Anal. 38(1999) 307–325. https://doi.org/10.1016/
S0362-546X(98)00198-9; MR1705785; Zbl 0931.34007

[20] V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dy-
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