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Abstract. The asymptotic behavior of the trajectories of compartmental systems with a
general set of admissible initial data is studied. More precisely, these systems are de-
scribed by families of monotone nonautonomous neutral functional differential equa-
tions with nonautonomous operator. We show that the solutions asymptotically exhibit
the same recurrence properties as the transport functions and the coefficients of the
neutral operator. Conditions for the cases in which the delays in the neutral and non
neutral parts are different, as well as for other cases unaddressed in the previous liter-
ature are also obtained.
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1 Introduction

In this work, the long-term behavior of the solutions of neutral compartmental systems is
studied. Some interesting results as to the convergence of the solutions of such systems to
their omega-limit sets are presented. These results allow for the inclusion of a significantly
wider set of possible initial data than those in the previous literature.

Compartmental systems are widely used as successful models in different fields, ranging
from physics and biology, to economics or sociology. These models appear naturally when
dealing with processes involving a local balance of mass (see e.g. Haddad and Chellaboina [7],
Jacquez [9], and Jacquez and Simon [10]).

Compartmental models with finite and infinite delay were initially studied by Győri [4],
and Győri and Eller [5]. Later on, Arino and Bourad [1], and Arino and Haourigui [2] found
almost periodic solutions for finite delay compartmental systems given by functional differ-
ential equations (FDEs for short) or neutral FDEs (NFDEs for short). Győri and Wu [6] also
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studied the dynamics of infinite delay neutral compartmental systems, where the neutral term
represents the creation and destruction of material within the compartments. These systems
were studied by Wu and Freedman [26], and Wu [25] as well.

Regarding the monotone theory for NFDEs, the fact that the positive cone defined by
the exponential ordering introduced by Smith and Thieme [22] has an empty interior, poses
a special difficulty. This was overcome by Krisztin and Wu [13] in their paper on scalar
NFDEs with finite delay, where they show that the solutions with Lipschitz continuous initial
data are asymptotically periodic. More recently, the theory developed by Novo, Obaya, and
Sanz [16] gave rise to a series of papers devoted to the study of compartmental systems defined
by means of NFDEs with infinite delay, such as Novo, Obaya, and Villarragut [15, 17], and
Obaya and Villarragut [19, 20]. In these papers, the neutral part consists of a nonautonomous
operator, initial data are assumed to be Lipschitz continuous, and the usual ordering, the
exponential ordering, and a new ad hoc exponential ordering defined by means of the neutral
operator are considered. Also, these papers generalize the results included in the previous
literature.

Finally, a generalization of the results on the asymptotic behavior of NFDEs was given
in Novo, Obaya, and Villarragut [18]. In that paper, initial data are only required to have a
uniformly bounded variation on compact subintervals of (−∞, 0], which is a weaker assump-
tion than Lipschitz continuity. The present paper studies compartmental systems defined by
NFDEs with infinite delay by applying the results in [18].

Specifically, the family of systems

d
dt

[
zi(t)−

∫ 0

−∞
zi(t + s) dνi(ω·t)(s)

]
= −

m

∑
j=0

gji(ω·t, zi(t)) +
m

∑
j=1

∫ 0

−∞
gij(ω·(t + s), zj(t + s)) dµij(s) + Ii(ω·t) ,

i = 1, . . . , m, where R × Ω → Ω, (t, ω) 7→ ω·t is a minimal flow, νi(ω) and µij(ω) are
regular Borel measures, and gij : Ω×R → R, Ii : Ω → R are real functions, is considered.
For each ω ∈ Ω and each i, j ∈ {1, . . . , m}, the measures νi(ω) represent the creation and
destruction of material within each compartment, the functions g0i and Ii represent the flow
of material toward and from the environment, respectively, and the functions gij are the so-
called transport functions, modeling the flow of material among the compartments, which is
not instantaneous and is regulated by the measures µij(ω). Some particular cases of these
systems were studied by Krisztin (see e.g. [11, 12]) under weaker conditions on the transport
functions.

A more specific system of equations is also considered in this work:

d
dt
[zi(t) + c̃i(t) zi(t− αi)] = −

m

∑
j=1

g̃ji(t, zi(t)) +
m

∑
j=1

g̃ij(t− ρij, zj(t− ρij)) ,

i = 1, . . . , m. This system can be included in a family of systems like the previous one by
means of a hull construction. Notice that this system has finite delay and it is closed, in that
there is no flow of material either toward or from the environment. Specifically, for each ω ∈ Ω
and each i, j ∈ {1, . . . , m}, νi(ω) and µij(ω) are Dirac measures, and g0i = Ii ≡ 0. Besides,
a particular example of this system is also considered, and both theoretical and numerical
results related to this example are presented.

The structure of the paper is as follows. In Section 2, some preliminaries regarding the
usual concepts of topological dynamics are recalled. Section 3 addresses the study of the
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solutions of a family of compartmental systems with infinite delay with general initial data.
An application of the results of Section 3 to the study of compartmental systems with finite
delay is included in Section 4. Finally, Section 5 includes the application of the results in
Section 3 and Section 4 to a particular compartmental system, together with a numerical
simulation of the solutions of that system and their omega-limit sets.

2 Some preliminaries

Given a compact metric space Ω, a flow is a continuous mapping σ : R×Ω → Ω, (t, ω) 7→
σt(ω) which satisfies the following conditions:

(i) σ0(ω) = ω for each ω ∈ Ω, and

(ii) σt+s = σt ◦ σs for each s, t ∈ R.

It is customary to denote ω·t = σt(ω) for all (t, ω) ∈ R×Ω. Given ω ∈ Ω, its orbit or
trajectory is the set {σt(ω) | t ∈ R}. A subset A ⊂ Ω is said to be invariant if σt(A) = A for all
t ∈ R, and it is said to be minimal if it is compact, invariant, and it contains no proper subsets
with those properties apart from the empty set. Equivalently, a subset of Ω is minimal if and
only if all the trajectories are dense. Zorn’s lemma guarantees that a compact and invariant
subset of Ω always contains a minimal subset. If Ω is minimal, it is said that the flow σ is
minimal or recurrent. For example, almost periodic and almost automorphic flows are minimal
(see Ellis [3], and Shen and Yi [21] for a thorough description of almost periodic and almost
automorphic flows from a topological and ergodic perspective).

Let R+ be the set of non-negative real numbers. Given a complete metric space X, a
semiflow is a continuous map Φ : R+ × X → X, (t, x) 7→ Φt(x) satisfying

(i) Φ0(x) = x for all x ∈ X, and

(ii) Φt+s = Φt ◦Φs for all t, s ∈ R+.

Given x ∈ X, its semiorbit is the set {Φt(x) | t ≥ 0}. A subset A ⊂ X is said to be positively
invariant if Φt(A) ⊂ A for all t ≥ 0. Given x ∈ X with a relatively compact semiorbit, we
define its omega-limit set, defined by

O(x) =
⋂
s≥0

closure{Φt+s(x) | t ≥ 0} .

It is easy to check that O(x) is nonempty, compact, connected, and positively invariant. A
useful characterization of its elements is as follows: y ∈ O(x) if and only if there exists a
sequence tn ↑ ∞ such that Φtn(x) converges to y as n ↑ ∞. A subset A ⊂ X is said to be
minimal if it is compact, positively invariant, and it contains no proper subsets with those
properties apart from the empty set. If X is minimal, it is said that the semiflow Φ is minimal.

We are interested in a particular class of semiflows. Specifically, if Ω is a compact metric
space and X is a complete metric space, a skew-product semiflow is a semiflow defined on Ω×X
of the form

τ : R+ ×Ω× X −→ Ω× X

(t, ω, x) 7−→ (ω·t, u(t, ω, x)) ,

where, as before, ω·t = σt(ω) for all (t, ω) ∈ R×Ω, and σ is a flow on Ω referred to as the
base flow.
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3 Transformed exponential ordering for neutral compartmental sys-
tems

In this section, we focus on compartmental models. They are primarily used to describe the
transport of some material among compartments joined by pipes, which takes some non-
negligible time, together with the creation and destruction of material within the compart-
ments.

To this end, we consider the set X = C((−∞, 0], Rm) endowed with the compact-open
topology, which turns it into a Fréchet space. The space X is metrizable; it suffices to consider
the metric

d(x, y) =
∞

∑
n=1

1
2n
‖x− y‖n

1 + ‖x− y‖n
, x, y ∈ X ,

where ‖x‖n = sups∈[−n,0] ‖x(s)‖, and ‖ · ‖ is the maximum norm on Rm. We consider the
following phase space:

BC = {x ∈ X | x is bounded} ,

together with the supremum norm ‖·‖∞. The space (BC, ‖·‖∞) is a Banach space. Given r > 0,
let Br denote the set {x ∈ BC | ‖x‖∞ ≤ r}. Besides, we consider the following subspace of BC:

BU = {x ∈ BC | x is uniformly continuous} .

Given a, t ∈ R with t ≤ a and a continuous function x : (−∞, a] → Rm, we consider xt :
(−∞, 0] → Rm, s 7→ x(t + s). Notice that xt ∈ X. Finally, we also fix a compact metric space
(Ω, d), together with a flow σ : R×Ω→ Ω, (t, ω) 7→ ω·t.

A compartmental system is a device formed by m compartments C1, . . . , Cm, connected to
one another by means of pipes, and the environment. For each i ∈ {1, . . . , m}, let zi(t) denote
the amount of material in compartment Ci at time t. There is a flow of material among com-
partments. We assume that the material leaves the compartments instantaneously. Then, for
each i, j ∈ {1, . . . , m}, the material flows from Cj to Ci according to a transit time distribution
regulated by a positive regular Borel measure µij. The volume of material being transported
is given by the transport functions gij, which depend on time and zj(t). Besides, there is a bidi-
rectional flow of material from and to the environment; namely, for each i ∈ {1, . . . , m}, some
material enters compartment Ci from the environment instantaneously, according to a func-
tion Ii depending only on time, and some material leaves compartment Ci for the environment
instantaneously, according to a transport function g0i. Finally, for each i ∈ {1, . . . , m}, the rate
of creation and destruction of material within compartment Ci is regulated by the past amount
of material in that compartment together with some regular Borel measures νi(ω), ω ∈ Ω.

The amount of material in compartment Ci, 1 ≤ i ≤ m, varies according to the difference
between the incoming material to Ci and the outgoing material from Ci. This way, our model
is given by the following family of NFDEs:

d
dt

[
zi(t)−

∫ 0

−∞
zi(t + s) dνi(ω·t)(s)

]
= −

m

∑
j=0

gji(ω·t, zi(t)) +
m

∑
j=1

∫ 0

−∞
gij(ω·(t + s), zj(t + s)) dµij(s) + Ii(ω·t) , (3.1)

ω ∈ Ω, i = 1, . . . , m, where g0i : Ω×R→ R+, gij : Ω×R→ R, Ii : Ω → R and νi(ω) are and
µij are regular Borel measures on (−∞, 0], i, j = 1, . . . , m, ω ∈ Ω .
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Let G : Ω× BC → Rm be the map defined by

Gi(ω, x) = −
m

∑
j=0

gji(ω, xi(0)) +
m

∑
j=1

∫ 0

−∞
gij(ω·s, xj(s)) dµij(s) + Ii(ω) , (3.2)

(ω, x) ∈ Ω× BC, i = 1, . . . , m, and let D : Ω× BC → Rm be the map defined by

Di(ω, x) = xi(0)−
∫ 0

−∞
xi(s) dνi(ω)(s) , (ω, x) ∈ Ω× BC , i = 1, . . . , m .

We can now rewrite the family of equations (3.1) as

d
dt

D(ω·t, zt) = G(ω·t, zt) , t ≥ 0 , ω ∈ Ω . (3.3)

It is obvious that the sign of the measures νi(ω) determines different internal mechanisms
in the compartment Ci with respect to zi to produce or swallow material. Since the case in
which the measures νi(ω) are positive and the phase space is BU, the space of uniformly
continuous functions in BC, was studied in [15], [17], [19] and [20], we will focus now in the
case in which they are regular Borel negative measures. Let us make some assumptions on
the family of equations (3.1):

(C1) Ii and gij are continuous, gij is nondecreasing in its second variable, gij(·, 0) ≡ 0, and

Ω×R→ R, (ω, v) 7→ ∂gij
∂v (ω, v) is well-defined and continuous for i, j ∈ {1, . . . , m};

(C2) µij is a positive regular Borel measure such that µij((−∞, 0]) = 1 and
∫ 0
−∞ |s| dµij(s) < ∞

for i, j = 1, . . . m;

(C3) for each ω ∈ Ω and i = 1, . . . , m,

• νi(ω) is a negative regular Borel measure with νi(ω)({0}) = 0,

• supi=1,...,m |νi(ω)|((−∞, 0]) < 1, where |νi(ω)| denotes the total variation of νi(ω),
and

• νi : Ω → M, ω 7→ νi(ω) is continuous when the total variation is considered as a
norm on the setM of Borel regular measures on (−∞, 0];

(C4) for each i = 1, . . . , m, there is a negative ai < 0 such that

(i) −L+
i (ω)− ai > 0 and

(ii) 1 +
∫ 0
−∞ eais dνi(ω)(s) ≥ 0 ,

for each ω ∈ Ω, where L+
i (ω) = ∑m

j=0 supv∈R

∂gij
∂v (ω, v).

Let A be the diagonal matrix with the diagonal elements a1, . . . , am given in (C4). Let us
consider the partial order relation on BC:

x ≤A y ⇐⇒ x ≤ y and y(t)− x(t) ≥ eA(t−s)(y(s)− x(s)) ,−∞ < s ≤ t ≤ 0 ,

where ≤ denotes the componentwise partial ordering on Rm. The interior of the positive cone

BC+
A = {x ∈ BC | x ≥ 0 and x(t) ≥ eA(t−s)x(s) for −∞ < s ≤ t ≤ 0} ,
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is empty.
Before stating and proving the main theorem, we need the following result concerning D

and its convolution operator

D̂ : Ω× BC −→ Ω× BC

(ω, x) 7−→ (ω, D̂2(ω, x)) ,

where D̂2(ω, x)) is defined for each (ω, x) ∈ Ω× BC by

D̂2(ω, x) : (−∞, 0] −→ Rm

s 7−→ D(ω·s, xs) .

Theorem 3.1. Assume that conditions (C3) and (C4)(ii) hold. For each ω ∈ Ω, let L̂ω : BC → BC be
the linear operator defined by

(L̂ω(x))i(s) =
∫ 0

−∞
xi(s + u) dνi(ω·s)(u) , x ∈ BC , s ≤ 0 , i = 1, . . . , m .

Then the following statements hold:

(i) D̂ is bijective,
(D̂−1)2(ω, x) =

∞

∑
n=0

L̂n
ω(x) , (ω, x) ∈ Ω× BC , (3.4)

and (D̂−1)2(ω, x) ≥ 0 for each (ω, x) ∈ Ω× BC+
A ;

(ii) for each r > 0, the map Ω × Br → BC, (ω, x) 7→ L̂ω(x) is uniformly continuous for the
compact-open topology on BC;

(iii) given (ω, x) ∈ Ω× BC with D(ω, x) = 0, the solution of the difference equation{
D(ω·t, zt) = 0 , t ≥ 0 ,

z0 = x ,

satisfies ‖z(t)‖ ≤ c(t) ‖x‖∞ for all t ≥ 0, where c ∈ C([0, ∞), R) and lim t→∞ c(t) = 0. In
this situation, D is said to be stable.

Proof. Clearly, D̂2(ω, x) = (I − L̂ω)(x) for each (ω, x) ∈ Ω × BC. From condition (C3), we
deduce that supω∈Ω ‖L̂ω‖ < 1, whence D̂ is invertible and (3.4) holds. In addition, x ≥A 0
implies that xi(s) ≥ 0 and eai rxi(s) ≥ xi(s + r) for each r, s ≤ 0, i = 1, . . . , m, which, together
with the fact that νi(ω) is a negative measure for each i = 1, . . . , m and condition (C4)(ii),
provides

xi(s) + (L̂ω(x))i(s) = xi(s) +
∫ 0

−∞
xi(s + r) dνi(ω·s)(r)

≥ −
∫ 0

−∞
eai r xi(s) dνi(ω·s)(r) +

∫ 0

−∞
xi(s + r) dνi(ω·s)(r) ≥ 0 .

As a consequence, since L̂2n
ω (x) ≥ 0 for each x ≥ 0, we deduce that

(D̂−1)2(ω, x) =
∞

∑
n=0

L̂2n
ω

(
x + L̂ω(x)

)
≥ 0

for each x ≥A 0, and the proof of (i) is finished. An adaptation of the arguments in Theo-
rem 3.9(iii) and Theorem 5.2(iv)–(v) of [19] to the phase space BC yield (ii) and (iii).
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Let us define M : Ω× BC → R as follows:

M(ω, x) =
m

∑
i=1

Di(ω, x) +
m

∑
i=1

m

∑
j=1

∫ 0

−∞

(∫ 0

s
gji(ω·u, xi(u)) du

)
dµji(s) , (3.5)

for each (ω, x) ∈ Ω× BC. M is said to be the total mass of the family of equations (3.1). Thanks
to conditions (C1)–(C2), for all x ∈ BC and all i, j ∈ {1, . . . , m},∣∣∣∣∫ 0

s
gji(ω·u, xi(u)) du

∣∣∣∣ ≤ cji |s| ,

where cji = supΩ×[−‖x‖∞,‖x‖∞] gji. Hence, M is well-defined.
A key property of the total mass is established by our next result. Similar results can be

found in [15], [17], [19], and [26].

Proposition 3.2. Under assumptions (C1)–(C3), for each r > 0, the total mass is uniformly contin-
uous on Ω × Br when the compact-open topology is considered on Br. In addition, for all (ω, x) ∈
Ω× BC and all t ≥ 0 where the solution is defined,

M(τ(t, ω, x)) = M(ω, x) +
m

∑
i=1

∫ t

0
(Ii(ω·s)− g0i(ω·s, zi(s, ω, x))) ds . (3.6)

Proof. From (C3) and the definition of D, it is easy to deduce that D is linear and continuous in
its second variable for the norm ‖ · ‖∞, the map Ω → L(BC, Rm), ω 7→ D(ω, ·) is continuous,
and the restriction of D to Ω× Br is continuous when we take the restriction of the compact-
open topology to Br for all r > 0.

Hence, a natural generalization of Theorem 3.9 in [19] together with properties (C1)–(C2)
implies that D̂ is uniformly continuous on Ω × Br. The proof of Proposition 5.5 of Muñoz-
Villarragut [14] can be adapted to show the uniform continuity of M on Ω × Br. Finally, a
computation similar to the one given in [26] proves the variation formula (3.6).

Let us recall a regularity condition introduced in [18] concerning a class of initial data
x ∈ BC:

(R) for each i ∈ {1, . . . , n}, xi is of bounded variation on every compact subinterval of
(−∞, 0], and

sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}
< ∞ ,

where V[−k,−k+1](xi) denotes the total variation of xi on the interval [−k,−k + 1].
Notice that property (R) is satisfied by all the Lipschitz continuous elements of BC, but

not all the elements of BC satisfying (R) are Lipschitz continuous. Besides, the subspace R of
BC determined by (R) is a Banach space for the norm

‖x‖∞ + sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}

, x ∈ R .

Theorem 3.3. Assume conditions (C1)–(C4). Given (ω0, x0) ∈ Ω× BC with D̂2(ω0, x0) satisfying
property (R), if z(·, ω0, x0) is a bounded solution of (3.3)ω0 , then the omega-limit set O(ω0, x0) =

{(ω, c(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e. u(t, ω, c(ω)) = c(ω·t) for each ω ∈ Ω and
t ≥ 0, and it is continuous for the compact-open topology on BU.
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Proof. As above, we consider the exponential ordering ≤A. Thanks to Theorem 3.1, we are in
a position to consider the transformed exponential ordering ≤D,A introduced in [19]. It is defined
on each fiber of the product Ω× BC as follows: for each (ω, x), (ω, y) ∈ Ω× BC,

(ω, x) ≤D,A (ω, y) ⇐⇒ D̂2(ω, x) ≤A D̂2(ω, y).

Our aim is to apply Theorem 4.12 of [18] in order to complete this proof. First, as seen in
Theorem 3.1(iii) and in the proof of Proposition 3.2, D(ω, ·) is linear and continuous for the
norm for all ω ∈ Ω, the mapping Ω→ L(BC, Rm), ω 7→ D(ω, ·) is continuous, the restriction
of D to Ω× Br is continuous when we consider the compact-open topology on Br for all r > 0,
and D is stable, so conditions (D1)–(D4) of [18] hold.

Besides, from assumptions (C1)–(C2), it follows that the function G defined by (3.2) is
continuous on Ω × BC. Moreover, its restriction to Ω × Br is Lipschitz continuous in its
second variable when the norm is considered on Br, and it is continuous when the compact-
open topology is considered on Br for each r > 0. This implies conditions (N1) and (N2)
of [18].

Let (ω, x), (ω, y) ∈ Ω × BC with (ω, x) ≤D,A (ω, y). From Theorem 3.1(i) we deduce
that x ≤ y. Then, from the nondecreasing character of gij, stated in (C1), the fact that µij(ω)

are positive and νi(ω) are negative measures, as assumed in (C2) and (C3) respectively, and
ai < 0, we deduce that

−
m

∑
j=0

(
gji(ω, yi(0))− gji(ω, xi(0))

)
≥ −L+

i (ω)(yi(0)− xi(0)) ,

m

∑
j=1

∫ 0

−∞

(
gij(ω·s, yj(s))− gij(ω·s, xj(s))

)
dµij(ω)(s) ≥ 0 ,

ci(x, y) := ai

∫ 0

−∞
(yi(s)− xi(s)) dνi(ω)(s) ≥ 0 , (3.7)

and, from (C4)(i), we conclude that

Gi(ω, y)− Gi(ω, x)− ai
(

Di(ω, y)− Di(ω, x)
)

≥
(
− L+

i (ω)− ai
)
(yi(0)− xi(0)) + ci(x, y) ≥ 0 . (3.8)

This guarantees that condition (N3) of [18] is satisfied.
Fix (ω, x), (ω, y) ∈ Ω × BC with (ω, x) ≤D, A (ω, y). Suppose that (ω, x) and (ω, y)

admit a backward orbit extension and there is a subset J ⊂ {1, . . . , m} such that the following
conditions hold

D̂2(ω, x)i = D̂2(ω, y)i for each i /∈ J ,

D̂2(ω, x)i(s) < D̂2(ω, y)i(s) for each i ∈ J and s ≤ 0 .

If i ∈ J, then we have D̂2(ω, x)i(s) < D̂2(ω, y)i(s), that is, Di(ω·s, xs) < Di(ω·s, ys) for each
s ≤ 0. In particular, if s = 0, we obtain∫ 0

−∞

(
yi(s)− xi(s)

)
dνi(ω)(s) < yi(0)− xi(0) .

As before, from (ω, x) ≤D, A (ω, y), we deduce that x ≤ y and, since νi(ω) is a negative
measure, we have two options:∫ 0

−∞

(
yi(s)− xi(s)

)
dνi(ω)(s) < 0 or yi(0)− xi(0) > 0 .
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In the first case, since ai < 0, we deduce from (3.7) that ci(x, y) > 0 and, in the second case,
from (C4)(i), we have

(
− L+

i (ω)− ai
)
(yi(0)− xi(0)) > 0. Therefore, inequality (3.8) is strict

in both cases. As a result, condition (N4) of [18] holds.
Let us check that, if (ω, x), (ω, y) ∈ Ω× BC with (ω, x) ≤D,A (ω, y) and z(t, ω, x), z(t, ω, y)

are defined, then

0 ≤ Di(τ(t, ω, y))− Di(τ(t, ω, x)) ≤ M(ω, y)−M(ω, x) , i = 1, . . . , m . (3.9)

Thanks to Theorem 4.8 of [18], the skew-product semiflow τ is monotone. As a result,
τ(t, ω, x) ≤D,A τ(t, ω, y) whenever they are defined, i.e D̂2(τ(t, ω, x)) ≤A D̂2(τ(t, ω, y)). Thus,
Theorem 3.1(i) provides zt(ω, x) ≤ zt(ω, y), and (C1) implies

gij(ω·t, zj(t, ω, x)) ≤ gij(ω·t, zj(t, ω, y)) .

Moreover, from D̂2(τ(t, ω, x)) ≤A D̂2(τ(t, ω, y)), it follows that D̂2(τ(t, ω, x)) ≤ D̂2(τ(t, ω, y)),
and we deduce that Di(τ(t, ω, x)) ≤ Di(τ(t, ω, y)) for i = 1, . . . , m.

As a consequence, (C2) and the total mass variation formula (3.6) yield

0 ≤ Di(τ(t, ω, y))− Di(τ(t, ω, x)) ≤
m

∑
i=1

[Di(τ(t, ω, y))− Di(τ(t, ω, x))]

≤ M(τ(t, ω, y))−M(τ(t, ω, x)) = M(ω, y)−M(ω, x)

+
m

∑
i=1

∫ t

0
(g0i(ω·s, zi(s, ω, x))− g0i(ω·s, zi(s, ω, y))) ds ≤ M(ω, y)−M(ω, x) ,

as claimed.
Finally, thanks to Proposition 3.2, given ε > 0 and r > 0, there exists δ > 0 such that, if

x, y ∈ Br with (ω, x) ≤D,A (ω, y) and d(x, y) < δ, then 0 ≤ M(ω, y)−M(ω, x) < ε. Conse-
quently, if x, y ∈ Br and (ω, x) ≤D,A (ω, y), from (3.9), it follows that 0 ≤ Di(ω·t, zt(ω, y))−
Di(ω·t, zt(ω, x))) < ε. Hence, the fact that νi(ω) is a negative measure implies

0 ≤ zi(t, ω, y)− zi(t, ω, x) ≤ ε +
∫ 0

−∞
(zi(t + s, ω, y)− zi(t + s, ω, x)) dνi(ω)(s) ≤ ε ,

whence, for all x, y ∈ Br with (ω, x) ≤D,A (ω, y) and d(x, y) < δ, ‖z(t, ω, y)− z(t, ω, x)‖ ≤ ε

whenever they are defined, so condition (N5) of [18] is satisfied. This property is usually
referred to as uniform stability for the ordering ≤D,A of Br and it was introduced in [19]. An
application of Theorem 4.12 of [18] finishes the proof, as expected.

Remark 3.4. In compartmental systems, one is interested in initial conditions (ω, x) for which
the solutions are bounded and positive, i.e. u(t, ω, x) ≥ 0 for each t ≥ 0. If 0 is a solution, for
instance when the compartmental systems (3.1) are closed, the set P = {(ω, x) ∈ Ω× BC |
(ω, x) ≥D,A 0} satisfies this property. Indeed, if (ω, x) ∈ P , then u(t, ω, x) ≥D,A 0 for all
t ≥ 0, whence û(t, ω, x) ≥A 0 for all t ≥ 0, and Theorem 3.1(i) provides u(t, ω, x) ≥ 0 for
all t ≥ 0. The boundedness follows from the uniform stability on each Br for the ordering
≤D, A. In addition, note that (ω, x) ≥D,A 0 means that D̂2(ω, x) ≥A 0, which implies, as
seen in Proposition 3.8 of [18], that D̂2(ω, x) satisfies (R). Summing up, the conclusions of
Theorem 3.3 state that, for closed compartmental systems, O(ω, x) is a copy of the base for all
initial data in P , those we are interested in.
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Under some conditions, in order to verify that D̂2(ω, x) satisfies the property (R), it is suffi-
cient to prove that x does. The following definition is a natural generalization of Definition 6.1
of [19]. As before,M denotes the set of Borel regular measures on (−∞, 0].

Definition 3.5. A map ν : Ω→M is said to be Lipschitz continuous along the flow σ if, for each
ω ∈ Ω, the map R → M, t 7→ ν(ω·t) is Lipschitz continuous, when the norm given by the
total variation is considered onM.

Remark 3.6. Thanks to the minimal character of the base flow on Ω, if the map R → M,
t 7→ ν(ω0·t) is Lipschitz continuous with Lipschitz constant L > 0 for one ω0 ∈ Ω, the same
holds for all the maps R → M, t 7→ ν(ω·t), ω ∈ Ω, whence ν is Lipschitz continuous along
the flow.

Proposition 3.7. Assume that νi is Lipschitz continuous along the flow and there exists a positive
measure ν with finite total variation such that |νi(ω)| ≤ ν for all i ∈ {1, . . . , m} and all ω ∈ Ω. If
(ω, x) ∈ Ω× BC and x satisfies property (R), then D̂2(ω, x) also satisfies property (R).

Proof. Let Lν > 0 be a Lipschitz constant valid for νi for all i ∈ {1, . . . , m} and

V = sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}

.

Fix i ∈ {1, . . . , m}, k ∈ N and let −k = t0 < t1 < · · · < tn = −k + 1 be a partition of the
interval [−k,−k + 1]. Then, for all s ≤ 0, the set {tj + s | j ∈ {0, . . . , n}} is included in a
partition of an interval of the form [−l,−l + 2] for some l ∈ N with l ≥ 2. From this fact, it
follows that

n

∑
j=1

∣∣∣D̂2(ω, x)i(tj)− D̂2(ω, x)i(tj−1)
∣∣∣ = n

∑
j=1

∣∣∣Di(ω·tj, xtj)− Di(ω·tj−1, xtj−1)
∣∣∣

≤
n

∑
j=1
|xi(tj)− xi(tj−1)|

+
n

∑
j=1

∣∣∣∣∫ 0

−∞
xi(tj + s) dνi(ω·tj)(s)−

∫ 0

−∞
xi(tj−1 + s) dνi(ω·tj−1)(s)

∣∣∣∣
≤ V +

n

∑
j=1

∫ 0

−∞
|xi(tj + s)− xi(tj−1 + s)| d|νi(ω·tj)|(s)

+
n

∑
j=1

∫ 0

−∞
|xi(tj−1 + s)| d|νi(ω·tj)− νi(ω·tj−1)|(s)

≤ V +
∫ 0

−∞

n

∑
j=1
|xi(tj + s)− xi(tj−1 + s)| dν(s) +

n

∑
j=1
|tj − tj−1| Lν ‖x‖∞

≤ V + 2 V ν((−∞, 0]) + Lν ‖x‖∞ ,

which is a bound independent of k and n, and D̂2(ω, x) satisfies (R), as claimed.

Finally, we remind that [19] contains a dynamical study of the compartmental systems (3.3)
on BU when the measures νi(ω) are positive for i = 1, . . . , n and ω ∈ Ω. It provides technical
assumptions under which the omega-limit set of every initial datum (ω, x), with x Lipschitz
continuous and z(·, ω, x) bounded, is a copy of the base. From the conclusions of this paper,
it follows that this result remains also valid when x satisfies condition (R).
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4 Neutral compartmental systems with finite delay

In this section, we include a nonautonomous neutral compartmental system with finite delay
satisfying some recurrence conditions on the temporal variation into a family of the form (3.3),
and we apply the conclusions of the previous section to the study of the long-term behavior
of the solutions of the initial system.

We consider the system of NFDEs with finite delay

d
dt
[zi(t) + c̃i(t) zi(t− αi)] = −

m

∑
j=1

g̃ji(t, zi(t)) +
m

∑
j=1

g̃ij(t− ρij, zj(t− ρij)) (4.1)

i = 1, . . . , m. Let us denote by g̃ = (g̃ij)i,j : R×R → Rm×m, c̃ = (ci)i : R → Rm and assume
that

(c1) g̃ is C1 in its second variable and g̃, ∂
∂v g̃ are uniformly continuous and bounded on

R× {v0} for all v0 ∈ R;

(c2) g̃ij(t, 0) = 0 and g̃ij(t, ·) is nondecreasing for all t ∈ R and i, j = 1, . . . , m;

(c3) c̃ is Lipschitz continuous, nonnegative, and sups∈R c̃i(s) < 1, i = 1, . . . m;

(c4) letting (t, (c, g)) 7→ (ct, gt) denote the translation flow, that is, ct(s) = c(t + s) and
gt(s, v) = g(t + s, v) for all (s, v) ∈ R2, the closure of the set {(c̃t, g̃t) | t ∈ R} for
the compact-open topology, referred to as the hull of (c̃, g̃), is minimal (in this situation,
(c̃, g̃) is said to be recurrent);

(c5) for each i = 1, . . . , m, there is a negative ai < 0 such that

(i) −L+
i − ai > 0 and

(ii) c̃i(t) ≤ eai αi , for each t ∈ R ,

where L+
i = ∑m

j=1 sup(t, v)∈R2
∂g̃ij
∂v (t, v) .

Remark 4.1. Notice that no relation among the delays ρij and αi, i, j = 1, . . . , m, is assumed.
Conditions of the same type for the direct exponential ordering and negative coefficients c̃i
were obtained in [13], [17] and [20].

In this situation, we may include the system (4.1) in a family of nonautonomous NFDEs.
Specifically, let Ω be the hull of (c̃, g̃), as defined in (c4). Ω is a compact metric space thanks
to (c1) and (c3) (see Hino, Murakami, and Naito [8]). Let σ : R×Ω→ Ω, (t, ω) 7→ ω·t be the
flow defined on Ω by translation, which is minimal, as specified in (c4). It is noteworthy that
the almost periodic and almost automorphic cases are included in this formulation.

Let us consider the continuous map (c, g) : Ω×R → Rm ×Rm×m, (ω, v) 7→ ω(0, v). Let
us denote c = (ci)i, g = (gij)i,j, and define G : Ω× BC → Rm by

Gi(ω, x) = −
m

∑
j=1

gji(ω, xi(0)) +
m

∑
j=1

gij(ω·(−ρij), xj(−ρij)) , (ω, x) ∈ Ω× BC ,

and D : Ω× BC → Rm by

Di(ω, x) = xi(0) + ci(ω) xi(−αi) , (ω, x) ∈ Ω× BC , i = 1, . . . , m .
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Hence, the family
d
dt

D(ω·t, zt) = G(ω·t, zt) , t ≥ 0 , ω ∈ Ω , (4.2)

is of the form (3.1) for the negative Borel regular measure νi(ω) = −ci(ω) δ−αi and the positive
Borel regular measure µij = δ−ρij , i, j = 1, . . . , m, and includes system (4.1) when ω = (c̃, g̃).

Notice that the system (4.2) represents a closed compartmental system for each ω ∈ Ω, that
is, there is no flow of material from or to the environment. Consequently, from (c2), it follows
that zero is a bounded solution of all the systems of the family and, thanks to (3.6), the total
mass is constant along the trajectories.

Theorem 4.2. Assume that (c1)–(c5) hold and fix (ω0, x0) ∈ Ω × BC such that x0 satisfies prop-
erty (R). Then the solution z(·, ω0, x0) of (4.2)ω0 with initial value x0 is bounded, the omega-limit set
O(ω0, x0) = {(ω, x(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), x(ω0·t)) = 0 ,

where x : Ω→ BU is a continuous equilibrium.

Proof. From (c1)–(c5), νi(ω) = −ci(ω) δ−αi and µij = δ−ρij for i, j = 1, . . . m, it is easy to
check that (C1)–(C4) hold. Notice in particular that, from Remark 3.6, if c̃ is Lipschitz con-
tinuous, then νi is Lipschitz continuous along the flow for all i ∈ {1, . . . , m}. In addition,
since x0 satisfies property (R) and the conditions of Proposition 3.7 are clearly satisfied, then
D̂2(ω, x0) satisfies property (R) as well. Therefore, the result follows from Theorem 3.3, once
the boundedness of z(·, ω0, x0) is proved.

As shown in Theorem 3.3, each Br is uniformly stable for the ordering ≤D, A. This and
the fact that zero is a solution of (4.2) for all ω ∈ Ω allows us to deduce that each solution
z(·, ω, x) with (ω, x) ≥D,A (ω, 0) or (ω, x) ≤D,A (ω, 0) is globally defined and bounded.
Since D̂2(ω, x0) satisfies property (R), thanks to Proposition 3.8 of [18], there exists h ∈ BC
such that h ≥A 0 and h ≥A D̂2(ω, x), i.e (ω, ĥ) ≥D,A (ω, 0) and (ω, ĥ) ≥D,A (ω, x0) for
ĥ = (D̂−1)2(ω, h). Consequently, from the first inequality we deduce that z(t, ω, ĥ) is globally
defined and bounded and, hence, from the second inequality and again the uniform stability
of each Br for the ordering ≤D, A, we conclude that z(·, ω, x0) is globally defined and bounded,
as desired.

Regarding the solutions of the system (4.1), we obtain the following result, stated in the
almost periodic case, but similar conclusions hold changing almost periodicity for constancy,
periodicity, almost automorphy or recurrence. All solutions with initial data x0 satisfying
property (R), in particular those with Lipschitz continuous initial data, are asymptotically of
the same type as the transport functions and the coefficients of the neutral part.

Theorem 4.3. Under assumptions (c1)–(c5), if both c̃ and g̃ are almost periodic, then there exist
infinitely many almost periodic solutions of system (4.1). Moreover, all the solutions with initial data
x0 ∈ BC satisfying property (R) are asymptotically almost periodic.

Proof. Fix ω0 = (c̃, g̃) and x0 ∈ BC satisfying property (R). The omega-limit set O(ω0, x0) is
a copy of the base, whence, t 7→ z(t, ω0, x(ω0)) = x(ω0·t)(0) is an almost periodic solution
of (4.1) and

lim
t→∞
‖z(t, ω0, x0)− z(t, ω0, x(ω0))‖ = 0 .
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Let us check that there are infinitely many minimal subsets. Let xk ∈ BC denote the constant
function xk ≡ k (1, . . . , 1). The total mass associated to (ω0, xk) is

M
(
ω0, xk) = m

∑
i=1

k (1 + ci(ω0)) +
m

∑
i=1

m

∑
j=1

∫ 0

−∞

(∫ 0

s
gji(ω0·τ, k) dτ

)
dµji(s) ,

which diverges to infinity as k → ∞. Therefore, for all r > 0, there exists kr > 0 such that
M(ω0, xkr) = r. Finally, since the total mass is constant along the trajectories, O(ω0, xkr)

provides a different minimal set and, hence, a different almost periodic solution for each
r > 0.

5 Numerical experiments

In this section, we apply the results included in Section 4 and perform numerical experiments
on the neutral compartmental system:

d
dt
(
z1(t) + 0.1 (1 + cos(

√
2 (t− 0.5))) z1(t− 0.5)

)
=− 0.1 (1 + cos(

√
2 t)) tanh(z1(t))− 0.2 (1 + cos(t)) tanh(z1(t))

+ 0.1 (1 + cos(
√

2 (t− 1))) tanh(z1(t− 1))

+ 0.2 (1 + sin(
√

2 (t− 2))) tanh(z2(t− 2)) ,
d
dt
(
z2(t) + 0.05 (1 + sin((t− 1))) z2(t− 1)

)
=− 0.2 (1 + sin(

√
2 t)) tanh(z2(t))− 0.1 (1 + sin(t)) tanh(z2(t))

+ 0.2 (1 + cos((t− 0.3))) tanh(z1(t− 0.3))

+ 0.1 (1 + sin((t− 0.5))) tanh(z2(t− 0.5)) ,

(5.1)

for t ≥ 0. Clearly, the system of equations (5.1) is of the form given in (4.1). In this case,

g̃11(t, x) = 0.1 (1 + cos(
√

2 t)) tanh(x) , g̃12(t, x) = 0.2 (1 + sin(
√

2 t)) tanh(x) ,

g̃21(t, x) = 0.2 (1 + cos(t)) tanh(x) , g̃22(t, x) = 0.1 (1 + sin(t)) tanh(x) ,

ρ11 = 1 , ρ12 = 2 ,

ρ21 = 0.3 , ρ22 = 0.5 ,

c̃1(t) = 0.1 (1 + cos(
√

2 t)) , c̃2(t) = 0.05 (1 + sin(t)) ,

α1 = 0.5 , α2 = 1 .

The following result shows that the system of equations (5.1) also satisfies the conditions
assumed throughout Section 4.

Proposition 5.1. The system of equations (5.1) satisfies conditions (c1)–(c5).

Proof. Conditions (c1)–(c4) are immediate. As for condition (c5), it is trivial to check that
l+11 ≤ 0.2 and l+21 ≤ 0.4, whence L+

1 ≤ 0.6. As a result, by choosing a1 = −0.7, we obtain
ea1 α1 > 0.7, which is an upper bound of c̃1. Analogously, l+12 ≤ 0.4 and l+22 ≤ 0.2, whence
L+

2 ≤ 0.6. By choosing a2 = −0.7, we obtain ea2 α2 > 0.4, which is an upper bound of c̃2, as
wanted.
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It is noteworthy that, as in Section 4, we can define Ω as the hull of the coefficients of
the system of equations (5.1). It is well-known that the flow defined on Ω by translation is
isomorphic to the Kronecker flow defined on the 2-torus T2 = (R/[0, 2 π])2, which is defined
by

ζ : R+ ×T2 −→ T2

(t, θ1, θ2) 7−→ (θ1 +
√

2 t, θ2 + t) .

Notice that ζ is a minimal flow (see e.g. Walters [23] for further details). This fact allows us to
include the system of equations (5.1) in the family of equations

d
dt
(
z1(t) + 0.1 (1 + cos(θ1 +

√
2 (t− 0.5))) z1(t− 0.5)

)
=

=− 0.1 (1 + cos(θ1 +
√

2 t)) tanh(z1(t))− 0.2 (1 + cos(θ2 + t)) tanh(z1(t))

+ 0.1 (1 + cos(θ1 +
√

2 (t− 1))) tanh(z1(t− 1))

+ 0.2 (1 + sin(θ1 +
√

2 (t− 2))) tanh(z2(t− 2)) ,
d
dt
(
z2(t) + 0.05 (1 + sin(θ2 + (t− 1))) z2(t− 1)

)
=

=− 0.2 (1 + sin(θ1 +
√

2 t)) tanh(z2(t))− 0.1 (1 + sin(θ2 + t)) tanh(z2(t))

+ 0.2 (1 + cos(θ2 + (t− 0.3))) tanh(z1(t− 0.3))

+ 0.1 (1 + sin(θ2 + (t− 0.5))) tanh(z2(t− 0.5)) ,

(5.2)

for t ≥ 0, where (θ1, θ2) ∈ T2.
In this situation, we can apply the results obtained in Section 4 to the system of equa-

tions (5.1).

Theorem 5.2. Fix (θ1, θ2, x0) ∈ T2 × BC such that x0 satisfies property (R). Then the solution
z(·, θ1, θ2, x0) of (5.2)(θ1,θ2) with initial value x0 is bounded, the omega-limit set O(θ1, θ2, x0) =

{(ϕ1, ϕ2, x(ϕ1, ϕ2)) | (ϕ1, ϕ2) ∈ T2} is a copy of the base and

lim
t→∞

d(u(t, θ1, θ2, x0), x(ζt(θ1, θ2))) = 0 ,

where x : T2 → BU is a continuous equilibrium. Moreover, there are infinitely many almost pe-
riodic solutions of system (5.1) and all the solutions with initial data x0 satisfying property (R) are
asymptotically almost periodic.

Proof. It follows immediately from Proposition 5.1, Theorem 4.2, and Theorem 4.3.

In what follows, some numerical simulations of the neutral compartmental system (5.1)
will be presented. Numerical methods for neutral differential equations with delay are well-
known (see e.g. Wen and Yu [24] and the references therein). All our computations were
carried out with the Matlab function ddensd, with a relative tolerance of 10−5 and an absolute
tolerance of 10−10.

Figure 5.1 shows the solutions of system (5.1) with the following initial data xi
0 : (−∞, 0]→

R2, i = 1, 2, 3, which satisfy property (R):

(i) x1
0(t) = (− sin(t), max{2,

√
−t}) for all t ∈ (−∞, 0];

(ii) x2
0(t) = (0.5, 1) for all t ∈ (−∞, 0];

(iii) x3
0(t) = (0.3 et, 0.3 (1 + cos(2 t))) for all t ∈ (−∞, 0].
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Figure 5.1: First and second components of the solutions of system (5.1) with
initial data x1

0 (blue), x2
0 (red), and x3

0 (green) for t ∈ [0, 200].

Note that x1
0 is not Lipschitz continuous.

In order to approximate the omega-limit of the solution of system (5.1) with initial datum
x1

0, z : R → R2, the system of equations (5.1) was integrated for t ∈ [0, 5000]. We considered
the time subintervals Jk = [500 k, 500 (k + 1)], k = 0, . . . , 9, and restricted the solution z to
those subintervals. Then, the graphs over the 2-torus of both components of z|Jk

,

{(
√

2 t (mod 2 π), t (mod 2 π), zi(t)) | t ∈ Jk}, i = 1, 2 ,

can be approximated by two surfaces S1
k and S2

k , respectively, for k = 0, . . . , 9. These ap-
proximated surfaces were computed by means of a cubic interpolation of the scattered data
provided by the numerical integration of z on Jk , for k = 0, . . . , 9. Finally, the distance be-
tween any two consecutive surfaces in the finite sequence Si

0, . . . , Si
9, i = 1, 2, was calculated by

comparing them on a fixed uniform grid of 32× 32 points on the 2-torus T2, and by taking the
supremum over the whole grid. The results for both components of the solution are included
in Table 5.1.

Surfaces Distance (i = 1) Distance (i = 2)
Si

0, Si
1 8.76·10−2 1.21·10−1

Si
1, Si

2 4.32·10−6 4.81·10−6

Si
2, Si

3 4.36·10−6 5.02·10−6

Si
3, Si

4 4.40·10−6 6.21·10−6

Si
4, Si

5 4.52·10−6 4.93·10−6

Si
5, Si

6 4.32·10−6 5.03·10−6

Si
6, Si

7 4.28·10−6 7.92·10−6

Si
7, Si

8 4.32·10−6 4.58·10−6

Si
8, Si

9 4.38·10−6 5.17·10−6

Table 5.1: Distance between consecutive surfaces in the finite sequence
Si

0, . . . , Si
9, i = 1, 2.
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Clearly, the distance between two consecutive surfaces Si
k and Si

k+1, i = 1, 2, k = 0, . . . , 8,
gets close to zero very rapidly, but then stabilizes. This fact is not surprising due to the mere
uniform stability that was checked in the proof of Theorem 3.3, which does not necessarily
imply a fast convergence.

Figure 5.2 contains the omega-limit set of the solution of system (5.1) with initial datum x1
0.

Its components have been approximated by the surfaces S1
9 and S2

9, respectively. This omega-
limit set is clearly the graph of a continuous function, as proved in Theorem 5.2. Moreover,
Figure 5.3 shows the omega-limit sets of the solutions of system (5.1) with initial data x1

0, x2
0,

and x3
0. Thanks to Proposition 3.2, a similar argument to that in the proof of Theorem 4.3

implies that there is a different omega-limit set for each value of the total mass of system (5.1)
(see e.g. [15] for further results as to the comparison of different omega-limit sets in closed
compartmental systems).
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Figure 5.2: Omega-limit of the solution of system (5.1) with initial data x1
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