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Abstract. Due to their applications to many physical phenomena during these last
decades the interest for studying the discontinuous piecewise differential systems has
increased strongly. The limit cycles play a main role in the study of any planar dif-
ferential system, but to determine the maximum number of limits cycles that a class
of planar differential systems can have is one of the main problems in the qualitative
theory of the planar differential systems. Thus in general to provide a sharp upper
bound for the number of crossing limit cycles that a given class of piecewise linear dif-
ferential system can have is a very difficult problem. In this paper we characterize the
existence and the number of limit cycles for the piecewise linear differential systems
formed by linear Hamiltonian systems without equilibria and separated by a reducible
cubic curve, formed either by an ellipse and a straight line, or by a parabola and a
straight line parallel to the tangent at the vertex of the parabola. Hence we have solved
the extended 16th Hilbert problem to this class of piecewise differential systems.

Keywords: limit cycles, discontinuous piecewise linear Hamiltonian systems, reducible
cubic curves.
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1 Introduction and statement of the main results

Andronov, Vitt and Khaikin [1] started around 1920’s the study of the piecewise differential
systems mainly motivated for their applications to some mechanical systems, and nowadays
these systems still continue to receive the attention of many researchers. Thus these differen-
tial systems are widely used to model processes appearing in mechanics, electronics, economy,
etc., see for instance the books [8] and [28], and the survey [25], as well as the hundreds of
references cited there.
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A limit cycle is a periodic orbit of the differential system isolated in the set of all periodic
orbits of the system. Limit cycles are important in the study of the differential systems. Thus
limit cycles have played and are playing a main role for explaining physical phenomena,
see for instance the limit cycle of van der Pol equation [26, 27], or the one of the Belousov–
Zhavotinskii model [3, 29], etc.

The extended 16th Hilbert problem, that is, to find an upper bound for the maximum number
of limit cycles that a given class of differential systems can exhibit, is in general an unsolved
problem. Only for very few classes of differential system this problem has been solved. For the
class of discontinuous piecewise differential systems here studied, we can obtain its solution
by using the first integrals provided by the Hamiltonians of the systems which form the
discontinuous piecewise differential systems. For the statement of the classical 16th Hilbert
problem see [16, 18, 21].

Of course in order that a discontinuous piecewise differential system be defined on the dis-
continuous line, which separates the different differential systems forming the discontinuous
piecewise differential system, we follow the rules of Filippov, see [11].

The discontinuous piecewise differential systems formed by linear differential systems can
exhibit two kinds of limit cycles, the crossing and the sliding limit cycles, the first are the ones
which only contain isolated points of the line of discontinuity, and the second the ones which
contains arcs of the line of discontinuity. Here we only study the crossing limit cycles.

The simplest class of discontinuous piecewise differential systems are the planar ones
formed by two pieces separated by a straight line having a linear differential system in each
piece. Several authors have tried to determine the maximum number of crossing limit cycles
for this class of discontinuous piecewise differential systems. Thus, in one of the first papers
dedicated to this problem, Giannakopoulos and Pliete [14] in 2001, showed the existence of
discontinuous piecewise linear differential systems with two crossing limit cycles. Then, in
2010 Han and Zhang [15] found other discontinuous piecewise linear differential systems
with two crossing limit cycles and they conjectured that the maximum number of crossing
limit cycles for discontinuous piecewise linear differential systems with two pieces separated
by a straight line is two. But in 2012 Huan and Yang [17] provided numerical evidence
of the existence of three crossing limit cycles in this class of discontinuous piecewise linear
differential systems. In 2012, Llibre and Ponce [24] inspired by the numerical example of Huan
and Yang, proved for the first time that there are discontinuous piecewise linear differential
systems with two pieces separated by a straight line having three crossing limit cycles. Later
on, other authors obtained also three crossing limit cycles for discontinuous piecewise linear
differential systems with two pieces separated by a straight line, see Braga and Mello [9] in
2013, Buzzi, Pessoa and Torregrosa [10] in 2013, Liping Li [22] in 2014, Freire, Ponce and Torres
[13] in 2014, and Llibre, Novaes and Teixeira [23] in 2015. But proving that discontinuous
piecewise linear differential systems separated by a straight line have at most three crossing
limit cycles is an open problem.

Recently, in [4, 6, 7, 19, 20] the authors have studied the extended 16th Hilbert problem
to discontinuous piecewise linear differential centers separated by either conics, or cubics.
However for the discontinuous piecewise linear Hamiltonian systems without equilibrium
points, it was proven in [12] that such systems separated by two parallel straight lines can
have at most one crossing limit cycle. In [5] it was proven that there is an example of two
crossing limit cycles when these systems are separated by three parallel straight lines, and
they can also have two crossing limit cycles if the curve of separation is a parabola, and three
crossing limit cycles if the curve of separation is either an ellipse or a hyperbola. In [2] the
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authors provided the maximum number of crossing limit cycles when the curve of separation
of these systems is an irreducible cubic.

In this paper we give the solution of the extended 16th Hilbert problem for discontinuous
piecewise linear differential Hamiltonian systems without equilibrium points separated by
two different reducible cubic curves, formed either by an ellipse and a straight line, or by
a parabola and a straight line parallel to the tangent at the vertex of the parabola. More
precisely, we provide the maximum number of crossing limit cycles for these systems, when
these limit cycles intersected with the cubic of separation in four points.

Note that if a crossing limit cycle of a discontinuous piecewise linear differential Hamilto-
nian systems without equilibrium points intersects in two points the discontinuity line formed
either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tan-
gent at the vertex of the parabola, this crossing limit cycle must intersect in two points either
the straight line, or the ellipse or the parabola, and these types of crossing limit cycles already
have been studied in [5, 12], as we have mention previously. For this reason in this paper
we study the crossing limit cycles with intersect in four points the reducible cubic formed
by either by an ellipse and a straight line, or by a parabola and a straight line parallel to the
tangent at the vertex of the parabola.

Doing an affine change if the reducible cubic is formed by an ellipse and a straight line we
can transform it into the reducible cubic

Γk = {(x, y) ∈ R2 : (x− k)(x2 + y2 − 1) = 0, k ≥ 0},

formed by the circle x2 + y2 = 1 and the straight line x = k with k ≥ 0. In a similar way if the
reducible cubic is formed by a parabola and a straight line parallel to the tangent at the vertex
of the parabola we can transform it into the reducible cubic

Σk =
{
(x, y) ∈ R2 : (y− k)(y− x2) = 0, k ∈ R

}
,

formed by the parabola y = x2 and the straight line y = k with k ∈ R

First in Subsection 1.1 we shall consider the piecewise linear Hamiltonian systems without
equilibrium points separated by the reducible cubic Γk, and after in Subsection 1.2 we shall
consider the piecewise linear Hamiltonian systems without equilibrium points separated by
the reducible cubic Σk.

The next result is proved in [12].

Lemma 1.1. An arbitrary linear differential Hamiltonian system in R2 without equilibrium points can
be written as

ẋ = −λbx + by + µ, ẏ = −λ2bx + λby + σ,

where σ 6= λµ and b 6= 0. The Hamiltonian function of this Hamiltonian system is

H(x, y) = −1
2

λ2bx2 + λbxy− b
2

y2 + σx− µy. (1.1)

Of course H(x, y) is a first integral of the Hamiltonian system.

1.1 The line of discontinuity is a circle and a straight line

We denote by C1 the class of planar discontinuous piecewise linear Hamiltonian systems with-
out equilibrium points separated by Γk with k > 1. Let C2 be the class of planar discontinuous
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piecewise linear Hamiltonian systems without equilibrium points separated by Γk with k = 1.
For these two classes we get the following three zones

Z1 = {(x, y) ∈ R2 : x2 + y2 < 1},
Z2 = {(x, y) ∈ R2 : x2 + y2 > 1 and x < k},
Z3 = {(x, y) ∈ R2 : x2 + y2 > 1 and x > k}.

(1.2)

Now we denote by C3 the class of piecewise linear Hamiltonian systems without equilibrium
points separated by Γk with 0 ≤ k < 1. In this case Γk separate the plane into four zones

Z1 = {(x, y) ∈ R2 : x2 + y2 > 1 and x > k},
Z2 = {(x, y) ∈ R2 : x2 + y2 > 1 and x < k},
Z3 = {(x, y) ∈ R2 : x2 + y2 < 1 and x < k},
Z4 = {(x, y) ∈ R2 : x2 + y2 < 1 and x > k}.

(1.3)
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Figure 1.1: (a) The three zones for the class C1. (b) The four zones for the class C3.

We have three different configurations of crossing limit cycles for the class C3. The first
one which will be denoted by Conf 1, here we have the limit cycles formed by four pieces of
orbits, such that in each zone of (1.3) we have one piece of orbit of each of the four Hamiltonian
systems considered, see Figure 1.4a.

The second configuration of limit cycles denoted by Conf 2, where we have the limit
cycles formed by pieces of orbits belonging to the three zones either Z1, Z2 and Z4, or Z1, Z2

and Z3. We are going to consider only the three zones Z1, Z2 and Z4, because by a similar
analysis we obtain the crossing limit cycles intersecting the three zones Z1, Z2 and Z3, for this
configuration, see Figure 1.4b.

Finally the third configuration namely Conf 3 where we have limit cycles formed by pieces
of orbits belonging to the three zones either Z1, Z3 and Z4, or Z2, Z3 and Z4. For the same
reason as in the second configuration, we are going to consider only the three zones Z1, Z3

and Z4, see Figure 1.4c.
We notice that we can obtain two new configurations by combining the three previous

ones, such as Conf 1 and Conf 2, Conf 1 and Conf 3. Note that we cannot have the configu-
ration Conf 2 and Conf 3, and Conf 1, Conf 2 and Conf 3.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamil-
tonian systems without equilibria when the discontinuity line is formed by a circle and a
straight line is the following one.
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Theorem 1.2. The following statements hold for the discontinuous piecewise linear Hamiltonian sys-
tems without equilibria when the discontinuity line is formed by a circle and a straight line. The
maximum number of crossing limit cycles intersecting the cubic of separation in four points for the
class

(i) C1 or C2 is three and this maximum is reached in Example 1 for the class C1 and in Example 2
for the class C2, see Figures 1.3a and 1.3b, respectively;

(ii) C3 with Conf 1 is three and this maximum is reached in Example 3, see Figure 1.4a;

(iii) C3 with Conf 2 is three and this maximum is reached in Example 4, see Figure 1.4b;

(iv) C3 with Conf 3 is three and this maximum is reached in Example 5, see Figure 1.4c;

(v) C3 with Conf 1 and Conf 2 simultaneously is six and this maximum is reached in Example 6,
see Figure 1.5;

(vi) C3 with Conf 1 and Conf 3 simultaneously is six and this maximum is reached in Example 7,
see Figure 1.6.

Theorem 1.2 is proved in Section 2.

1.2 The line of discontinuity is a parabola and a straight line parallel to the tan-
gent at the vertex of the parabola
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Figure 1.2: (a) Three zones for the class Ck− . (b) Four zones for the class C0. (c)
Five zones for the class Ck+ .

Let CΣk−
be the class of discontinuous piecewise linear Hamiltonian systems without equi-

libria separated by Σk− with k < 0. In this case we have following three zones in the plane

Z1
Σk−

= {(x, y) ∈ R2 : y > x2},
Z2

Σk−
= {(x, y) ∈ R2 : y < x2 and y > k},

Z3
Σk−

= {(x, y) ∈ R2 : y < x2 and y < k},

see Figure 1.2a. Let CΣ0 be the class of discontinuous piecewise linear Hamiltonian systems
without equilibria separated by Σk with k = 0. When the discontinuity curve is Σ0 we have
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following four zones in the plane

Z1
Σ0

= {(x, y) ∈ R2 : y > x2 },
Z2

Σ0
= {(x, y) ∈ R2 : y < x2 and y > 0, x < 0},

Z3
Σ0

= {(x, y) ∈ R2 : y < x2 and y < 0},
Z4

Σ0
= {(x, y) ∈ R2 : y < x2 and y > 0, x > 0},

see Figure 1.2b. In this class we have two configurations of crossing limit cycles, first crossing
limit cycles with Conf 4 which are constituted by pieces of orbits of the four Hamiltonian
systems considered, see Figure 3.2a. Second crossing limit cycles with Conf 5 which intersect
only three zones, in this case we have two options, first we have the case where the crossing
limit cycles are formed by parts of orbits of the Hamiltonian systems in the zones Z1

Σ0
, Z3

Σ0

and Z4
Σ0

and second the crossing limit cycles that intersect only the three zones Z1
Σ0

, Z2
Σ0

and Z3
Σ0

, without loss of generality we can consider the first case because the study of the
second is the same, see Figure 3.2b. Here we observe that it is not possible to have crossing
limit cycles with Conf 5 that satisfy those two cases simultaneously, because the orbits of the
Hamiltonian system in the zone Z3

Σ0
would not be nested. In statement (ii) of Theorem 1.3

we study the discontinuous piecewise linear Hamiltonian systems without equilibria in CΣ0

which have crossing limit cycles with Conf 4 and Conf 5 separately, and in statement (iii) of
Theorem 1.3 we study the case when the crossing limit cycles with Conf 4 and Conf 5 appear
simultaneously.

Let CΣk+
be the class of discontinuous piecewise linear Hamiltonian systems without equi-

libria separated by Σk with k > 0, in this case we have the following five zones in the plane

Z1
Σk+

= {(x, y) ∈ R2 : y > x2 and y > k},

Z2
Σk+

= {(x, y) ∈ R2 : y < x2 and y > k, x < −
√

k},
Z3

Σk+
= {(x, y) ∈ R2 : y > x2 and y < k},

Z4
Σk+

= {(x, y) ∈ R2 : y < x2 and y > k, x >
√

k},
Z5

Σk+
= {(x, y) ∈ R2 : x2 < y < k},

see Figure 1.2c. In this class we have six different configurations of crossing limit cycles.
First we have crossing limit cycles such that are formed by pieces of orbits of the four

Hamiltonian systems in the zones Z1
Σk+

, Z5
Σk+

, Z3
Σk+

and Z4
Σk+

, or crossing limit cycles formed
by pieces of orbits of the four Hamiltonian systems in the zones Z1

Σk+
, Z2

Σk+
, Z3

Σk+
and Z5

Σk+
,

namely crossing limit cycles with Conf 6+ and crossing limit cycles with Conf 6−, respectively,
see Figure 3.5. In statement (ii) of Theorem 1.3 we study the crossing limit cycles with Conf
6+ because the study for the case of crossing limit cycles with Conf 6− is the same. Second
we have crossing limit cycles with Conf 7, which intersect the three zones Z1

Σk+
, Z5

Σk+
and

Z3
Σk+

, see Figure 3.3b. Third we have the crossing limit cycles with Conf 8, which intersect
the zones Z1

Σk+
, Z2

Σk+
, Z3

Σk+
and Z4

Σk+
, see Figure 3.3c. And finally we have the crossing limit

cycles formed by pieces of orbits of the three Hamiltonian systems in the zones Z1
Σk+

, Z3
Σk+

and
Z4

Σk+
, or crossing limit cycles formed by pieces of orbits of the three Hamiltonian systems in

the zones Z1
Σk+

, Z2
Σk+

and Z3
Σk+

, namely crossing limit cycles with Conf 9+ and crossing limit
cycles with Conf 9−, respectively, see Figure 3.3d. Without loss of generality in statement
(ii) of Theorem 1.3 we study the crossing limit cycles with Conf 9+ because the study by
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the crossing limit cycles with Conf 9− is the same. We observe that there are no crossing
limit cycles that intersect the five zones Zi

Σk+
for i = 1, 2, 3, 4, 5. Then in statement (ii) of

Theorem 1.3 we study the crossing limit cycles with Conf 6+, Conf 7, Conf 8 and Conf 9+

separately. In statements (iii)-(ix) of Theorem 1.3 we study the discontinuous piecewise linear
Hamiltonian systems without equilibria in the class CΣk+

which have crossing limit cycles with
two configurations simultaneously. Finally in statements (x)–(xii) we study the discontinuous
piecewise linear Hamiltonian systems without equilibria in the class CΣk+

which have crossing
limit cycles with three different configurations simultaneously.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamil-
tonian systems without equilibria when the discontinuity curve is formed by a parabola and
a straight line parallel to the tangent at the vertex of the parabola is the following one.

Theorem 1.3. The following statements hold for the discontinuous piecewise linear Hamiltonian sys-
tems without equilibria when the discontinuity line is formed by a parabola and a straight line parallel
to the tangent at the vertex of the parabola. The maximum number of crossing limit cycles intersecting
the cubic of separation in four points for the class

(i) CΣk−
is three and this maximum is reached, see Figure 3.1;

(ii) CΣ0 or CΣk+
with either Conf 4, or Conf 5, or Conf 6+, or Conf 7, or Conf 8, or Conf 9+ is

three, respectively, see Figures 3.2a–3.3d;

(iii) CΣk+
with Conf 4 and Conf 5 simultaneously is six, see Figure 3.4;

(iv) CΣk+
with Conf 6+ and Conf 6− simultaneously is six, see Figure 3.5;

(v) CΣk+
with Conf 6− and Conf 7 simultaneously is six, see Figure 3.6a;

(vi) CΣk+
with Conf 6+ and Conf 8 simultaneously is six, see Figure 3.6b;

(vii) CΣk+
with Conf 6+ and Conf 9+ simultaneously is six, see Figure 3.7;

(viii) CΣk+
with Conf 7 and Conf 8 simultaneously is six, see Figure 3.8;

(ix) CΣk+
with Conf 8 and Conf 9+ simultaneously is six, see Figure 3.9;

(x) CΣk+
with Conf 6−, Conf 7 and Conf 8 simultaneously is nine, see Figure 3.10;

(xi) CΣk+
with Conf 6+, Conf 8 and Conf 9+ simultaneously is nine, see Figure 3.11;

(xii) CΣk+
with Conf 6−, Conf 6+ and Conf 8 simultaneously is six with 2 (resp. 3) limit cycles

with Conf 6−, 3 (resp. 2) limit cycles with Conf 6+ and 1 limit cycle with Conf 8, Figure 3.12
(resp. 3.13).

Theorem 1.3 is proved in Section 3.

2 Proof of Theorem 1.2

Proof of statement (i) of Theorem 1.2. We have to prove that the maximum number of crossing
limit cycles of the class C1 intersecting the curve Γk in four points is three. In a similar way we
should prove the statement for the classes C2 and C3.



8 R. Benterki, J. Jimenez and J. Llibre

-1 0 1 2 3 4

-2

-1

0

1

(a)
-1 0 1 2 3 4

-2

-1

0

1

2

(b)

Figure 1.3: (a) The three limit cycles of the discontinuous piecewise differential
system (2.3). (b) The three limit cycles of the discontinuous piecewise differen-
tial system (2.4).

By Lemma 1.1 we can consider the discontinuous piecewise linear Hamiltonian systems

ẋ = −λibix + biy + µi, ẏ = −λ2
i bix + λibiy + σi, in the zone Zi, with i = 1, 2, 3. (2.1)

with bi 6= 0 and σi 6= λiµi, and the three zones Zi are defined in (1.2). Their corresponding
Hamiltonian first integrals are as (1.1)

Hi(x, y) = −(λ2
i bi/2)x2 + λibixy− (bi/2)y2 + σix− µiy, with i = 1, 2, 3.

In order to have a crossing limit cycle which intersects Γk in the points Ai = (xi, yi), Bi =

(zi, wi), Ci = (k, fi) and Di = (k, hi), where k > 1, Ai and Bi are points on the circle x2 + y2 −
1 = 0, these points must satisfy the following system

e1 = H1(xi, yi)− H1(zi, wi) = 0,

e2 = H2(xi, yi)− H2(k, fi) = 0,

e3 = H2(zi, wi)− H2(k, hi) = 0,

e4 = H3(k, fi)− H3(k, hi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0.

(2.2)

We suppose that the discontinuous piecewise linear differential system (2.1) has four limit cy-
cles. For this we must suppose that system (2.2) has four real solutions, namely (Ai, Bi, Ci, Di),
i = 1, 2, 3, 4. The points Ai and Bi can take the form Ai = (cos ri, sin ri), Bi = (cos si, sin si).
Then by solving e1 = 0 for the parameter σ1 and e4 = 0 for µ3, we get

σ1 =
1

2(cos r1 − cos s1)

(
b1 sin(r1 − s1)

(
−

(
λ2

1 − 1
)

sin(r1 + s1)− 2λ1

cos(r1 + s1)
)
+ 2µ1(sin r1 − sin s1)

)
,
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Figure 1.4: (a) The three limit cycles of Conf 1 of the discontinuous piecewise
differential system (2.5). (b) The three limit cycles of Conf 2 of the discontinuous
piecewise differential system (2.7). (c) The three limit cycles of Conf 3 of the
discontinuous piecewise differential system (2.9).

and µ3 =
b3

2
( f1 + h1 − 2kλ3), respectively.

Now we consider the second real solution of (2.2) for i = 2, and we fix the three points
A2 = (cos r2, sin r2), B2 = (cos s2, sin s2) and (k, f2), so by solving e1 = 0 for µ1 and e4 = 0 for
h2, we obtain

µ1 =
1

4
(

cos
(

1
2 (r1 − 2r2 + s1)

)
− cos

(
1
2 (r1 + s1 − 2s2)

))(b1 csc
(

r1−s1
2

)
(
− λ1 cos r1 sin(2r2) + cos r2 sin(r1 − s1)

((
λ2

1 − 1
)

sin(r1 + s1) + 2λ1

cos(r1 + s1)
)
−

(
λ2

1 − 1
)

cos r1 sin(r2 − s2) sin(r2 + s2) + λ2
1(− cos s2)

sin(r1 − s1) sin(r1 + s1) + cos s2 sin(r1 − s1) sin(r1 + s1)− λ1 sin(2r1)

cos s2 + λ1 cos r1 sin(2s2)− λ2
1 cos2 r2 cos s1 + cos s1

(
λ1 sin(2r2)

− sin2 r2 + (sin s2 − λ1 cos s2)2
)
+ λ1 sin(2s1) cos s2

))
,



10 R. Benterki, J. Jimenez and J. Llibre

-20 -15 -10 -5 0 5

-15

-10

-5

0

5

10

-1 0 1 2 3 4 5 6

-15

-10

-5

0

5

Figure 1.5: Three limit cycles of Conf 1 and three limit cycles of Conf 2 for the
class of the discontinuous piecewise differential system (2.10).
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Figure 1.6: Three limit cycles of Conf 1 and three limit cycles of Conf 3 for the
class of the discontinuous piecewise differential system (2.11).

and h2 = f1 − f2 + h1.
Likewise, the points A3 = (cos r3, sin r3), B3 = (cos s3, sin s3), (k, f3) and (k, h3) are solution

of (2.2), we fix A3, B3 and (k, f3), then by solving equation e4 = 0 for h3 and e1 = 0 for
λ1 we have h3 = f1 − f3 + h1 and we get the two values λ1,2

1 = (A ± 2
√

2 sin
( 1

2 (r1 − r2+

s1 − s2)
)√

B)/C given in the appendix.
Finally, if we fix the three points A4 = (cos r4, sin r4), B4 = (cos s4, sin s4), and (k, f4), then

from the equation e4 = 0 and e1 = 0 we have that h4 = f1 − f4 + h1 and b1 = 0 which is a
contradiction to the assumptions. Therefore we have proved that the maximum number of
crossing limit cycles for the class C1 intersecting the curve Γk in four points is three.

Now we shall provide differential systems of class C1, C2 and C3 separated by Γk with three
limit cycles.

We will explain the method for constructing an example of three crossing limit cycles
intersecting Γk in four points, and by a similar way we build the remaining examples.

Example 1: Three crossing limit cycles for the class C1. Here we consider the three zones
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defined in (1.2) for k = 2.5. We consider the Hamiltonian systems

ẋ = − 0.02..x + 0.2..y + 0.316667.., ẏ = 0.02..y− 0.002..x in Z1,

ẋ = 10.8..x + 18y− 3, ẏ = −6.48..x− 10.8..y in Z2,

ẋ = 5.x− 3y− 1.38889.., ẏ = 8.33333..x− 5y in Z3.

(2.3)

The first integrals of the linear Hamiltonian systems (2.3) are

H1(x, y) = − 0.001..x2 + 0.02..xy− 0.1..y2 − 0.316667..y,

H2(x, y) = − 3.24..x2 − 10.8..xy− 9y2 + 3y,

H3(x, y) = 4.16667..x2 − 5xy + 1.5y2 + 1.38889..y,

respectively.
The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.3) has exactly three crossing limit cycles, because the system of equations (2.2) has
the three real solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.244811..,−0.969571.., 0.767202.., 0.641406..,−2.05982..,−0.60685..),

S2 = (0.390566..,−0.920575.., 0.912879.., 0.40823..,−1.8861..,−0.780563..),

S3 = (0.535321..,−0.844649.., 0.979509.., 0.201401..,−1.62201.., 1.04466..).

Then these three limit cycles are drawn in 1.3a.

Example 2: Three crossing limit cycles for the class C2. We consider the three zones
defined in (1.2) with k = 1. We consider the Hamiltonian systems

ẋ = 15x− 3y− 11.25.., ẏ = 75.x− 15.y + 22.5 in Z1,

ẋ = 4x + 20y− 3, ẏ = −0.8x− 4y + 6 in Z2,

ẋ = − 0.4x + 4y + 0.6, ẏ = −0.04x + 0.4y− 1 in Z3.

(2.4)

The first integrals of the Hamiltonian systems (2.4) are

H1(x, y) = 37.5..x2 − 15xy + 22.5..x +
3y2

2
+ 11.25..y,

H2(x, y) = − 0.4x2 − 4xy + 6x− 10y2 + 3y,

H3(x, y) = − 0.02..x2 + 0.4..xy− x− 2y2 − 0.6..y,

respectively.
The discontinuous piecewise linear Hamiltonian system (2.4) has exactly three crossing

limit cycles, because the system of equations (2.2) has the three real solutions Si =

(xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.559983.., 0.828504.., 0.619895..,−0.784685.., 0.878709..,−0.978709..),

S2 = (0.755607.., 0.655025.., 0.754335..,−0.65649.., 0.7,−0.8),

S3 = (0.903742.., 0.881627..,−0.471947.., 0.428077.., 0.462348..,−0.562348..).

These solutions provide three crossing limit cycles of the piecewise linear differential Hamil-
tonian system (2.2), which are illustrate in Figure 1.3b. This completes the proof of state-
ment (i).
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To complete the proof of statements (ii)–(iv) of Theorem 1.2 we shall provide discontinuous
piecewise linear Hamiltonian systems without equilibrium points separated by the cubic curve
Γk with three limit cycles for the class C3 of Conf 1; Conf 2; Conf 3.

Example 3: Three crossing limit cycles of Conf 1 for the class C3. For this class we
consider the four zones defined in (1.3). We consider the Hamiltonian systems

ẋ = − 6.8..x + 4y− 2, ẏ = −11.56x + 6.8y− 2 in Z1,

ẋ = 1.06216..x + 2y− 1.28925.., ẏ = −0.564089..x− 1.06216..y + 3.92358.. in Z2,

ẋ = − 4x + 2y− 2.8.., ẏ = −8x + 4y− 1 in Z3,

ẋ = 121.33..x + 3y + 508.239.., ẏ = −4907.01..x− 121.33..y + 611.017.. in Z4.

(2.5)

The linear Hamiltonian systems in (2.5) have the first integrals

H1(x, y) = − 5.78..x2 + 6.8..xy− 2x− 2y2 + 2y,

H2(x, y) = − 0.282045..x2 − 1.06216..xy + 3.92358..x− y2 + 1.28925..y,

H3(x, y) = − 4x2 + 4xy− x− y2 + 2.8..y,

H4(x, y) = − 2453.5..x2 − 121.33..xy + 611.017..x− 1.5y2 − 508.239..y,

respectively.
The discontinuous piecewise linear Hamiltonian system (2.5) has exactly three crossing

limit cycles intersecting Γk in the points Ai = (xi, yi), Bi = (zi, wi), Ci = (k, fi) and D4 = (k, hi)

for i = 1, 2, 3, where Ai and Bi are points on the circle x2 + y2 − 1 = 0, because the system of
equations

H1(xi, yi)− H1(k, fi) = 0,

H2(zi, wi)− H2(k, fi) = 0,

H3(zi, wi)− H3(k, hi) = 0,

H4(xi, yi)− H4(k, hi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0,

(2.6)

with k = 0, has only three real solutions Si = (xi, y,i, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.859402.., 0.5113..,−0.573716.., 0.819054.., 3.12047..,−0.724745..),

S2 = (0.795991.., 0.605309..,−0.403541.., 0.914962.., 2.8..,−0.5..),

S3 = (0.708174.., 0.706038..,−0.208691.., 0.977982.., 2.3798..,−0.207107..).

These three limit cycles are drawn in Figure 1.4a. This completes the proof of statement (ii).

Example 4: Three crossing limit cycles of Conf 2 for the class C3. In (1.3), we work only
with the three zones Z1, Z2 and Z4, with k = 0, and we consider the Hamiltonian systems

ẋ = 19− 18x− 3y, ẏ = −68 + 108x + 18y in Z1,

ẋ = −3.88389x− 2y + 5.99641.., ẏ = 7.54231..x + 3.88389..y− 7.99048.. in Z2,

ẋ = 6 + 2x− 2y, ẏ = −2 + 2x− 2y in Z4.

(2.7)
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The first integrals of the Hamiltonian systems (2.7) are

H1(x, y) = 54x2 + 18xy− 68x +
3y2

2
− 19y,

H2(x, y) = 3.77115..x2 + 3.88389..xy− 7.99048..x + y2 − 5.99641..y,

H4(x, y) = x2 − 2xy− 2x + y2 − 6y,

respectively
The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.7) has exactly three crossing limit cycles, because the system of equations

H1(xi, yi)− H1(k, fi) = 0,

H1(zi, wi)− H1(k, hi) = 0,

H2(k, hi)− H2(k, fi) = 0,

H4(xi, yi)− H4(zi, wi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0,

(2.8)

for k = 0 has the three real solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.597407.., 0.801938.., 0.29046.., 0.956887.., 4.80282.., 1.19718..),

S2 = (0.736107.., 0.676866.., 0.161682.., 0.986843.., 4.86511.., 1.13489..),

S3 = (0.831057.., 0.556188.., 0.0773343.., 0.997005.., 4.92764.., 1.07236..).

These three limit cycles are drawn in Figure 1.4b. This completes the proof of statement (iii).
Example 5: Three crossing limit cycles of Conf 3 for the class C3 . Here we consider the

three zones Z1, Z3 and Z4 defined in (1.3) with k = 0.

ẋ = − 43x
2

+ 43y + 6, ẏ = −43x
4

+
43y

2
− 2, in Z1,

ẋ = − 5.01788..x + 10y + 1.37209.., ẏ = −2.51792..x + 5.01788..y

− 0.356396.., in Z4,

ẋ = − 5.2..x + 13y + 1.78427.., ẏ = −2.08..x + 5.2..y + 7, in Z3.

(2.9)

The first integrals of the Hamiltonian systems (2.9) are

H1(x, y) = − 43x2

8
+

43xy
2
− 2x− 43y2

2
− 6y,

H2(x, y) = − 1.25896..x2 + 5.01788..xy− 0.356396..x− 5y2 − 1.37209..y,

H3(x, y) = − 1.04..x2 + 5.2xy + 7x− 13y2

2
− 1.78427..y,

respectively.
The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.9) has exactly three crossing limit cycles, because the system of equations (2.2) has
the solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.92178..,−0.387712.., 0.478499.., 0.878088..,−0.974503.., 0.7),
S2 = (0.988715..,−0.149808.., 0.647429.., 0.762126..,−0.819428.., 0.544924..),
S3 = (0.980618.., 0.195928.., 0.855019.., 0.518597..,−0.616986.., 0.342483..).

These three limit cycles are drawn in Figure 1.4c. This completes the proof of statement (iv).
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Proof of statement (v) of Theorem 1.2. In order to have limit cycles with Conf 1 and Conf 2 si-
multaneously, the intersection points of the limit cycles of Conf 1 with Γk must satisfy system
(2.6) with k = 0, and the points of intersection of the limit cycles with Conf 2 with Γk must
satisfy system (2.8). In statement (ii) and (iii) of Theorem 1.2 we proved that the maximum
number of limit cycles with Conf 1 and Conf 2 is three , then we know that the upper bound
of maximum number of limit cycles with both configurations is six.

Example 6: Six crossing limit cycles for the class C3, with three limit cycles of Conf 1
and three limit cycles of Conf 2. Here we consider the four zones defined in (1.3).

ẋ = − 3.37125..x− y + 3.95604.., ẏ = 11.3653..x + 3.37125..y− 11.7972.. in Z1,

ẋ = − 0.121473..x− 1
2

y + 2.02017.., ẏ = 0.0295115..x + 0.121473..y− 0.684232.. in Z2,

ẋ = 0.328515..x + y + 3, ẏ = −0.107922..x− 0.328515..y− 1.29868.. in Z3,

ẋ = − 9.2x− 2.3y + 17, ẏ = 36.8x + 9.2y− 56 in Z4.

(2.10)

The first integrals of the Hamiltonian systems (2.10) are

H1(x, y) = 5.68265..x2 + 3.37125..xy− 11.7972..x +
y2

2
− 3.95604..y,

H2(x, y) = 0.0147557..x2 + 0.121473..xy− 0.684232..x +
1
4

y2 − 2.02017..y,

H3(x, y) = − 0.0539609x2 − 0.328515xy− 1.29868x− y2

2
− 3y,

H4(x, y) = 18.4x2 + 9.2xy− 56x + 1.15y2 − 17y,

respectively.
For the discontinuous piecewise differential system (2.11), system (2.6) with k = 0, has the

three real solutions

S1 = (0.224513..,−0.974471..,−0.98, 0.198997, 8.21167..,−0.231664..),

S2 = (0.359928..,−0.93298..,−0.812094.., 0.583526.., 7.77944.., 0.239163..),

S2 = (0.503738..,−0.863856..,−0.41, 0.912086.., 7.31697.., 0.743252..).

and system (2.8), has the three real solutions

S1 = (0.65827..,−0.752782.., 0.093398.., 0.995629.., 6.82398.., 1.25669..),

S2 = (0.825187..,−0.56486.., 0.309897.., 0.95077.., 6.31504.., 1.76563..),

S2 = (0.986374..,−0.164516.., 0.630863.., 0.775894.., 5.87164.., 2.20904..).

These six limit cycles are presented in Figure 1.5. This completes the proof of statement
(v).

Proof of statement (vi) of Theorem 1.2. To get limit cycles with Conf 1 and Conf 3 simultane-
ously, the points of intersection of the limit cycles with Conf 1 and Conf 3 with Γk must
satisfy system (2.6) and (2.2), respectively, with k = 0. In statement (ii) and (iv) of Theorem
1.2 we showed that the maximum number of limit cycles with Conf 1 and Conf 3 is three , then
we know that the upper bound of maximum number of limit cycles with both configurations
is six.
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Example 7: Six crossing limit cycles for the class C3, with three limit cycles of Conf 1
and three others of Conf 3. Here we consider the four zones defined in (1.3) with k = 0 with
the following Hamiltonian systems

ẋ = −8.8x + 22y− 3, ẏ = −3.52x + 8.8y− 4 in Z1,

ẋ = 30.9637..x + 30y + 0.9.., ẏ = −31.9584..x− 30.9637..y + 24.1071.. in Z2,

ẋ = 0.713131..x + 0.9y− 0.162525.., ẏ = −0.565063..x− 0.713131..y + 0.620587.. in Z3,

ẋ = −8.37872..x + 22y− 3.97708.., ẏ = −3.19104..x + 8.37872..y− 3.05205.. in Z4.

(2.11)

The first integrals of the Hamiltonian systems (2.11) are

H1(x, y) = −1.76x2 + 8.8xy− 4x− 11y2 + 3y,

H2(x, y) = −13.0028..x2 − 27.9315..xy + 24.0252..x− 15y2 − 0.9y,

H3(x, y) = −0.282531..x2 − 0.713131..xy + 0.620587..x− 0.45..y2 + 0.162525..y,

H4(x, y) = −1.59552..x2 + 8.37872..xy− 3.05205..x− 11y2 + 3.97708..y,

respectively.
For the discontinuous piecewise differential system (2.11), system (2.6) with k = 0, has the

three real solutions

S1 = (0.859956..,−0.510369.., 0.89, 0.45596.., 1.232..,−0.895261..),

S2 = (0.925727..,−0.378193..,−0.818732.., 0.574176.., 1.14562..,−0.79916..),

S3 = (0.969836..,−0.243758..,−0.7, 0.714143.., 1.05112..,−0.694334..),

and system (2.2), has the three real solutions

S1 = (0.995048..,−0.0993944.., 0.167496.., 0.985873.., 0.937707..,−0.576541..),

S2 = (0.997733.., 0.0672986.., 0.41691.., 0.908948.., 0.799221..,−0.438055..),

S3 = (0.954489.., 0.298247.., 0.659704.., 0.751525..0.621163..,−0.259997..).

These six limit cycles are drawn in 1.6. This completes the proof of statement (vi).

3 Proof of Theorem 1.3

We will prove the statement (i). For the other statements the proof is completely analogous.

Proof of statement (i) of Theorem 1.3. From Lemma 1.1 we can consider an arbitrary piecewise
linear differential Hamiltonian system in CΣk−

formed by the following three linear Hamilto-
nian systems without equilibrium points

ẋ = −λibix + biy + µi, ẏ = −λ2
i bix + λibiy + σi in Zi

Σk−
, (3.1)

for i = 1, 2, 3, where σi 6= λiµi and bi 6= 0. The Hamiltonian functions associated to these
systems are

Hi(x, y) = −1
2

λ2
i bix2 + λibixy− bi

2
y2 + σix− µiy, in Zi

Σk−
for i = 1, 2, 3.
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Figure 3.1: Three limit cycles of system (3.3) intersecting Σ−1.

In order to have a limit cycle which intersects Σk− in four different points (x1, x2
1), (x2, x2

2),
(x3, k) and (x4, k) with k < 0, these points must satisfy the system

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H2(x2, x2
2)− H2(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H2(x4, k)− H2(x1, x2
1) = 0, k < 0.

(3.2)

Assume that the discontinuous piecewise linear differential system (3.1) has four limit cycles.
For this we must suppose that system (3.2) has four real solutions, namely (x(i)1 , x(i)2 , x(i)3 , x(i)4 ),
with i = 1, 2, 3, 4. Firstly we consider that (x(1)1 , x(1)2 , x(1)3 , x(1)4 ) satisfies system (3.2). From the
first equation, and by assuming that x(1)1 + x(1)2 6= 0, we obtain the expression

µ1 = (2σ1 − b1(x(1)1 + x(1)2 − λ1)((x(1)1 )2 + (x(1)2 )2 − (x(1)1 + x(1)2 )λ1))/(2(x(1)1 + x(1)2 )).

By the second equation we get µ2,

µ2 = (−b2(x(1)2 )2 + b2(x(1)2 )4 − 2b2(x(1)2 )3λ2 + 2b2kx(1)3 λ2 + b2(x(1)2 )2λ2
2

− b2(x(1)3 )2λ2
2 − 2x(1)2 σ2 + 2x(1)3 σ2)/2(k− (x(1)2 )2).

We observed that k− (x(1)2 )2 < 0, since k < 0.
Solving the third equation we have the parameter σ3,

σ3 = b3λ3(−2k + (x(1)3 + x(1)4 )λ3)/2.

By the fourth equation we obtain

σ2 = (−b2k3 + b2k2(x(1)1 )2 + b2k(x(1)2 )4 − b2(x(1)1 )2(x(1)2 )4 − 2b2k(x(1)2 )3λ2 + 2b2(x(1)1 )2(x(1)2 )3λ2

+ 2b2k2x(1)3 λ2 − 2b2k(x(1)1 )2x(1)3 λ2 + b2k(x(1)2 )2λ2
2 − b2(x(1)1 )2(x(1)2 )2λ2

2 − b2k(x(1)3 )2λ2
2

+ b2(x(1)1 )2(x(1)3 )2λ2
2 + (k− (x(1)2 )2)b2(k− (x(1)1 )2 + x(1)1 λ2 − x(1)4 λ2)(k + (x(1)1 )2

− (x(1)1 + x(1)4 )λ2))/2((x(1)2 − x(1)3 )(k− (x(1)1 )2) + (x(1)4 − x(1)1 )(k− (x(1)2 )2)),
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considering (x(1)2 − x(1)3 )(k− (x(1)1 )2) + (x(1)4 − x(1)1 )(k− (x(1)2 )2) 6= 0.
Now we suppose the second solution of system (3.2), we fixed the points (x(2)2 , x(2)3 ), then

by the second equation we obtain the parameter λ2, then we have determined the values of
the parameters µ2, σ2 and λ2 of the Hamiltonian function H2 in the zone Z2

Σ− . By solving the

third equation we get that x(2)4 = x(1)3 + x(1)4 − x(2)3 , solving the fourth equation we get the
point x(2)1 which depends of parameters µ2, σ2, λ2 and b2, moreover the parameter λ2 depends
of parameters µ2, σ2 and b2, therefore we write x(2)1 depends of λ2, this is x(2)1 = x(2)1 (λ2). With
these points (x(2)1 , x(2)2 , x(2)3 , x(2)4 ) and solving first equation we obtain the parameter σ1

σ1 =− b1
(
(x(1)1 + x(1)2 )(x(2)2 + x(2)1 )(−(x(1)1 )2 − (x(1)2 )2 + (x(2)2 )2 + (x(2)1 )2) + 2(x(2)2 ((x(1)1 )2

+ x(1)1 x(1)2 + (x(1)2 )2 − (x(1)1 + x(1)2 )x(2)2 ) + ((x(1)1 )2 + x(1)1 x(1)2 + (x(1)2 )2 − (x(1)1

+ (x(1)2 ))x(2)2 )x(2)1 − (x(1)1 + x(1)2 )(x(2)1 )2)λ1
)
/(2(−x(1)1 − x(1)2 + x(2)2 + x(2)1 )),

considering (−x(1)1 − x(1)2 + x(2)2 + x(2)1 ) 6= 0.
Likewise, we consider the third solution, and we fixed the point x(3)2 . Then by the second

equation we obtain the point x(3)3 which depends of parameter λ2, solving the third equation
we get that x(3)4 = x(1)3 + x(1)4 − x(3)3 and by fourth equation we obtain the point x(3)1 which
depends of parameter λ2, finally with these points (x(3)1 , x(3)2 , x(3)3 , x(1)3 + x(1)4 − x(3)3 ) and by the
first equation we obtain λ1 = A/B with B 6= 0, where

A =
(
(x(1)1 )3(x(2)1 + x(2)2 − x(3)1 − x(3)2 ) + (x(1)1 )2x(1)2 (x(2)1 + x(2)2 − x(3)1 − x(3)2 ) + (x(1)2 )3(x(2)1

+ x(2)2 − x(3)1 − x(3)2 ) + (x(2)1 + x(2)2 )(x(3)1 + x(3)2 )((x(2)1 )2 + (x(2)2 )2 − (x(3)1 )2 − (x(3)2 )2)

+ x(1)2 (−(x(2)1 )3 − (x(2)1 )2x(2)2 − x(2)1 (x(2)2 )2 − (x(2)2 )3 + (x(3)1 )3 + (x(3)1 )2x(3)2

+ x(3)1 (x(3)2 )2 + (x(3)2 )3) + x(1)1 (−(x(2)1 )3 − (x(2)1 )2x(2)2 − x(2)1 (x(2)2 )2 − (x(2)2 )3 + (x(3)1 )3

+ (x(1)2 )2(x(2)1 + x(2)2 − x(3)1 − x(3)2 ) + (x(3)1 )2x(3)2 + x(3)1 (x(3)2 )2 + (x(3)2 )3)
)
,

B = 2
(
(x(2)1 )2x(3)1 + x(2)1 x(2)2 x(3)1 + (x(2)2 )2x(3)1 − x(2)1 (x(3)1 )2 − x(2)2 (x(3)1 )2 + (x(1)1 )2(x(2)1

+ x(2)2 − x(3)1 − x(3)2 ) + (x(1)2 )2(x(2)1 + x(2)2 − x(3)1 − x(3)2 ) + (x(2)1 )2x(3)2 + x(2)1 x(2)2 x(3)2

+ (x(2)2 )2x(3)2 − x(2)1 x(3)1 x(3)2 − x(2)2 x(3)1 x(3)2 − x(2)1 (x(3)2 )2 − x(2)2 (x(3)2 )2 + x(1)2 (−(x(2)1 )2

− x(2)1 x(2)2 − (x(2)2 )2 + (x(3)1 )2 + x(3)1 x(3)2 + (x(3)2 )2) + x(1)1 (−(x(2)1 )2 − x(2)1 x(2)2 − (x(2)2 )2

+ (x(3)1 )2 + x(1)2 (x(2)1 + x(2)2 − x(3)1 − x(3)2 ) + x(3)1 x(3)2 + (x(3)2 )2)
)
.

We observed that we have determined the values of the parameters µ1, σ1 and λ1 of the
Hamiltonian function H1 in the zone Z1

Σ− .

By a similar way, we consider the fourth solution, and we fixed the point x(4)2 , then by the
second equation we obtain the point x(4)3 , solving the third equation we get that x(4)4 = x(1)3 +

x(1)4 − x(4)3 , by the fourth equation we get the point x(4)1 . With these points (x(4)1 , x(4)2 , x(4)3 , x(1)3 +

x(1)4 − x(4)3 ) from the first equation we have that b1 = 0 which is a contradiction, because from
Lemma 1.1 bi 6= 0 for i = 1, 2, 3. Therefore the maximum number of limit cycles in this case is
three.

Now we prove that this upper bound is attached. We have that the unique restriction
of value k is that the denominator in the expressions of σ2 is different from zero. We ob-
served that it is possible to choose values to the points x(1)1 , x(1)2 , x(1)3 and x(1)4 such that
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k 6=
(
(x(1)1 )2(x(2)2 − x(1)3 ) + (x(1)1 )2(x(2)2 − x(1)3 )

)
/
(
x(1)2 − x(1)3 + x(1)4 − x(1)1

)
, for instance if we

consider x(1)2 < 0, x(1)1 > −x(1)2 , x(1)1 < x(1)4 < x(1)1 − x(1)2 and x(1)3 <
(
(x(1)1 )2x(1)2 − x(1)1 (x(1)2 )2 +

(x(1)2 )2x(1)4

)
/(x(1)1 )2 we have that the expression

(
(x(1)1 )2(x(2)2 − x(1)3 ) + (x(1)1 )2(x(2)2 − x(1)3 )

)
/(

x(1)2 − x(1)3 + x(1)4 − x(1)1

)
is always positive therefore it is different of value of k, since that

k < 0. Then we can consider without loss of generality that k = −1. We consider the discon-
tinuous piecewise linear differential system defined by the following three linear Hamiltonian
systems

ẋ = −24.293899..− 0.692634..x +
3
2

y, ẏ = −19.232427..− 0.319828..x + 0.692634..y,

ẋ = −378.204351.. + 62.383901..x− 4y, ẏ = 916.621187.. + 972.937795..x− 62.383901..y,

ẋ =
9
10
− 7

2
x− 35

4
y, ẏ =

7
2
+

7
5

x +
7
2

y,

(3.3)

in the zones Z1
Σ−1

, Z2
Σ−1

and Z3
Σ−1

, respectively. Then for system (3.3), we have that system (3.2)

has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3, namely(
3,−2,− 7

2 , 7
2

)
,

(
2.625658..,− 17

10 ..,− 31
10 , 31

10

)
,

( 14
5 ,−1.843412..,−3.287307.., 3.287307..

)
.

These three real solutions provide the three limit cycles intersecting Σ−1 shown in Figure 3.1.
This completes the proof of statement (i).
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Figure 3.2: (a) Three limit cycles with Conf 4 of system (3.4). (b) Three limit
cycles with Conf 5 of system (3.6).

Proof of statement (ii) of Theorem 1.3. The proof in this statement is similar to the proof of state-
ment (i). For each configuration of limit cycles that intersect Σk with k ≥ 0 we have that the
upper bound of limit cycles is three. In what follows we show examples of piecewise linear
differential system in CΣ0 with three limit cycles with Conf 4 and Conf 5, respectively. And
piecewise linear differential system in CΣk+

with three limit cycles with Conf 6+, Conf 7, Conf
8 and Conf 9+, respectively.
Crossing limit cycles with Conf 4: In order to have a limit cycle with Conf 4 which intersects
Σ0 in four different points (x1, x2

1), (x2, x2
2), (x3, 0) and (x4, 0), these points must satisfy system
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(3.2) with k = 0. We consider the discontinuous piecewise linear differential system defined
by the following four linear Hamiltonian systems

ẋ =
17
2
− 207

50
x− 69

10
y, ẏ = −53

10
+

621
250

x +
207
50

y,

ẋ = 48.069511.. + 11.825263..x− 31
5

y, ẏ = −7.155434.. + 22.554330..x− 11.825263..y,

ẋ =
9
2
+

156
25

x− 39
10

y, ẏ = −13
10

+ 9.984000..x− 156
25

y,

ẋ = 17.727172..− 7.176019..x− 27
5

y, ẏ = −1.428092.. + 9.536159..x + 7.176019..y,

(3.4)

in the zones Z1
Σ0

, Z2
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential

system (3.4), system (3.2) has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3 given by(
1.517382..,−2.102549..,−1.142394.., 1.402811..

)
,(

1.474836..,−2.058730..,−0.973819.., 1.234236..
)
,(

1.427170..,−2.00939..,−0.774355.., 1.034772..
)
.

These solutions provide the three limit cycles with Conf 4 shown in Figure 3.2a. Crossing
limit cycles with Conf 5: In order to have a limit cycle with Conf 5 which intersects Σ0 in the
four different points (x1, x2

1), (x2, x2
2), (x3, 0) and (x4, 0), they must satisfy

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H4(x2, x2
2)− H4(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, with k = 0.

(3.5)

We consider the discontinuous piecewise linear differential system defined by the following
three linear Hamiltonian systems

ẋ = −4.711119.. + 3.915394..x− 3
2

y, ẏ = −11.965988.. + 10.220210..x− 3.915394..y,

ẋ =
9

10
+

27
10

x− 3
2

y, ẏ = −5.022000.. +
243
50

x− 27
10

y,

ẋ = −3.005265.. + 2.848936..x− 11
10

y, ẏ = −7.616106.. + 7.378583..x− 2.848936..y,

(3.6)

in the zones Z1
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential system

(3.6), system (3.5) has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3 given by(
2, 1

2 , 2
5 , 5

3

)
,
( 93

50 , 0.628914.., 47
100 , 479

300

)
,
(
1.696225.., 0.780317.., 0.534387.., 1.532279..

)
.

These solutions provide the three limit cycles with Conf 5 shown in Figure 3.2b.
Crossing limit cycles with Conf 6+: In order to have a limit cycle with Conf 6+ which
intersects Σ+ in four different points (x1, x2

1), (x2, k), (x3, x2
3) and (x4, k), these points must

satisfy

H1(x1, x2
1)− H1(x2, k) = 0,

H5(x2, k)− H5(x3, x2
3) = 0,

H3(x3, x2
3)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, for k > 0.

(3.7)
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Figure 3.3: (a) Three limit cycles with Conf 6+ of system (3.9). (b) Three limit
cycles with Conf 7 of system (3.11). (c) Three limit cycles with Conf 8 of system
(3.13). (d) Three limit cycles with Conf 9+ of system (3.14).

To have a limit cycle with Conf 6− which intersects Σ+ in four different points, these points
must satisfy the system

H2(x1, x2
1)− H2(x2, k) = 0,

H3(x2, k)− H3(x3, x2
3) = 0,

H5(x3, x2
3)− H5(x4, k) = 0,

H1(x4, k)− H1(x1, x2
1) = 0, for k > 0.

(3.8)

We provide an example of a piecewise linear differential system with three limit cycles with
Conf 6+. We observed that the upper bound found does not depend of the value of the
parameter k > 0, then we can consider without loss of generality that k = 4. We consider
the discontinuous piecewise linear differential system defined by the following four linear
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Hamiltonian systems

ẋ = −4.133710.. + 6.015251..x− 3
2

y, ẏ = −5.920817.. + 24.122170..x− 6.015251..y,

ẋ = 5.325742.. + 2.017936..x− 17
5

y, ẏ = 4.036253.. + 1.197666..x− 2.017936..y,

ẋ = −8.981178.. + 3.946297..x− y, ẏ = −15.942643.. + 15.573265..x− 3.946297..y,

ẋ = −2.454956.. + 4.664679..x +
3
2

y, ẏ = 6.613677..− 14.506158..x− 4.664679..y,

(3.9)

in the zones Z1
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differential

system (3.9), system (3.7) has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3 given by(
4,− 2

5 , 1
2 , 5

)
,

( 193
50 ,− 31

100 , 13
20 , 483

100

)
,

( 7
2 ,− 3

25 , 83
100 , 441

100

)
.

These solutions provide the three limit cycles with Conf 6+ shown in Figure 3.3a.
Crossing limit cycles with Conf 7: In order to have a limit cycle with Conf 7 which intersects
Σ+ in the four different points (x1, k), (x2, k), (x3, x2

3) and (x4, x2
4), they must satisfy the system

H1(x1, k)− H1(x2, k) = 0,

H5(x2, k)− H5(x3, x2
3) = 0,

H3(x3, x2
3)− H3(x4, x2

4) = 0,

H5(x4, x2
4)− H5(x1, k) = 0, with k > 0.

(3.10)

We can suppose without loss of generality that k = 4. We consider the discontinuous piece-
wise linear differential system defined by the following three linear Hamiltonian systems

ẋ = −2− 6x− 3
2

y, ẏ = −5.491482.. + 24x + 6y,

ẋ = 22.645454..− 36.659999..x− 47
5

y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 5.300000..− 8.579999..x− 11
5

y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.11)

in the zones Z1
Σ3

, Z3
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differential system

(3.11), system (3.10) has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3 given by(
0.502842..,−1.545218..,−0.572025.., 0.848539..

)
,(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)
,(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)
.

These solutions provide the three limit cycles with Conf 7 shown in 3.3b.
Crossing limit cycles with Conf 8: In order to have a limit cycle with Conf 8 which intersects
Σ+ in four different points (x1, x2

1), (x2, x2
2), (x3, k) and (x4, k), they must satisfy

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H2(x2, x2
2)− H2(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, with k > 0.

(3.12)
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We can consider without loss of generality that k = 2. We consider the discontinuous piece-
wise linear differential system defined by the following four linear Hamiltonian systems

ẋ =
9
2
+

19
50

x− 19
10

y, ẏ =
17
10

+ 0.076000..x− 19
50

y,

ẋ = 10.930108.. + 7.204668..x− 11
5

y, ẏ = 99.090506.. + 23.594202.x− 7.204668..y,

ẋ = −69
2
− 6.229999..x− 89

10
y, ẏ = −93

10
+

4361
1000

x + 6.229999..y,

ẋ = 32.954952..− 16.575663..x− 17
5

y, ẏ = −277.274017.. + 80.809593..x + 16.575663..y,

(3.13)

in the pieces Z1
Σ2

, Z2
Σ2

, Z3
Σ2

and Z4
Σ2

, respectively. For the discontinuous piecewise differential

system (3.13), system (3.12) has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3 given by(
2.514526..,−2.427396..,−6.114467.., 4.665258..

)
,(

2.449236..,−2.371782..,−6.028697.., 4.579488..
)
,(

2.374832..,−2.310077..,−5.941517.., 4.492308..
)
.

These solutions provide the three limit cycles with Conf 8 shown in Figure 3.3c.
Crossing limit cycles with Conf 9+: In order to have a limit cycle with Conf 9+ which
intersects Σ+ in the four different points (x1, x2

1), (x2, x2
2), (x3, k) and (x4, k), they must satisfy

system (3.5) with k > 0. Without loss of generality we can suppose that k = 4. We consider
the discontinuous piecewise linear differential system defined by the following three linear
Hamiltonian systems

ẋ = −170.859539.. + 99.779168..x− 15y, ẏ = −1139.726782.. + 663.725497..x− 99.779168..y,

ẋ =
9

10
+

148
5

x− 4y, ẏ = −779.664000.. + 219.040000..x− 148
5

y,

ẋ = 116.632274..− 30.946111..x− 23
10

y, ẏ = −1635.644521.. + 416.374692..x + 30.946111..y,

(3.14)

in the zones Z1
Σ4

, Z3
Σ4

, and Z4
Σ4

, respectively. For the discontinuous piecewise differential

system (3.14), system (3.5) with k = 4, has three real solutions (x(i)1 , x(i)2 , x(i)3 , x(i)4 ), i = 1, 2, 3
given by (

4, 3, 16
5 , 5

)
,
(
4.109491.., 141

50 , 303
100 , 517

100

)
,
( 47

10 , 2.053733.., 2.068270.., 6.131729..
)
.

These solutions provide the three limit cycles with Conf 9+ shown in Figure 3.3d. This
completes the proof of statement (ii).

Proof of statement (iii) of Theorem 1.3. In order to have limit cycles with Conf 4 and Conf 5
simultaneously, the points of intersection of the limit cycles with Conf 4 with Σ0 must satisfy
system (3.2) with k = 0, and the points of intersection of the limit cycles with Conf 5 with Σ0

must satisfy system (3.5). In statement (ii) we proved that the maximum number of limit cycles
with Conf 4 and Conf 5 is three, then we have that the upper bound of maximum number
of limit cycles with both configurations is six. We provide an example of a piecewise linear
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Figure 3.4: Three limit cycles with Conf 4, and three limit cycles with Conf 5 of
system (3.15) simultaneously.

differential system in CΣ0 such that have six limit cycles with three limit cycles with Conf 4
and Conf 5, respectively. This is the upper bound is reached. We consider the discontinuous
piecewise linear differential system defined by the following four linear Hamiltonian systems

ẋ = −154.076990..− 28.017658..x + 15y, ẏ = −387.181918..− 52.332611..x + 28.017658..y,

ẋ = −0.400024.. + 0.532848..x− 3
10

y, ẏ = 0.058205.. + 0.946425..x− 0.532848..y,

ẋ =
9
10

+
28
5

x− 4y, ẏ = −8.101333.. + 7.839999..x− 28
5

y,

ẋ = −3.005265.. + 2.848936..x− 11
10

y, ẏ = −7.616106.. + 7.378583..x− 2.848936..y,

(3.15)

in the zones Z1
Σ0

, Z2
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential
system (3.15), system (3.2) with k = 0, has the following three real solutions( 27

10 ,− 1
10 ,−0.166825.., 2.233491..

)
,

( 69
25 ,−0.147032..,−0.232725.., 2.299392..

)
,( 14

5 ,−0.177898..,−0.278200.., 2.344866..
)
,

and system (3.5) with k = 0, has the three real solutions(
2, 1

2 , 2
5 , 5

3

)
,
( 93

50 , 0.628914.., 47
100 , 479

300

)
,
(
1.393438.., 1.075216.., 0.604474.., 1.462192..

)
.

These solutions provide the three limit cycles with Conf 4 and Conf 5 shown in Figure 3.4.
This completes the proof of statement (iii).

Proof of statement (iv) of Theorem 1.3. In order to have limit cycles with Conf 6− and Conf
6+ simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+ must
satisfy system (3.7), and the points of intersection of the limit cycles with Conf 6− and Σk+

must satisfy system (3.8). In statement (ii) we proved that the maximum number of limit cycles
with each configuration is three, then we have that the upper bound of maximum number of
limit cycles with both configurations is six. We provide an example of a piecewise linear
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Figure 3.5: Three limit cycles with Conf 6− and Conf 6+ of system (3.16).

differential system in CΣk+
such that have six limit cycles with three limit cycles with each

configuration. This is the upper bound is reached. Without loss of generality we can suppose
that k = 4. We consider the discontinuous piecewise linear differential system defined by the
following five linear Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9
2

y, ẏ = 2942.120325..− 36212.150741..x

− 403.676452..y,

ẋ = 4.276633.. + 1.873985..x− 3
10

y, ẏ = 4.991226.. + 11.706072..x− 1.873985..y,

ẋ = 15.472057..− 3.117904..x− 17
5

y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 48.158492..− 6.082779..x− y, ẏ = −31.590984.. + 37.000210..x + 6.082779..y,

ẋ = − 151.854124..− 136.354901..x +
3
2

y, ẏ = −10611.949690..− 12395.106180..x

+ 136.354901..y,

(3.16)

in the pieces Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-
ential system (3.16), (3.7), has the three real solutions(

5, 1
2 , 9

20 , 23
5

)
,

( 9
2 , 19

20 , 91
100 , 7

2

)
,

( 41
10 , 1.196150.., 1.163297.., 2.719447..

)
,

and system (3.8), has the following three real solutions(
− 18

5 ,− 9
2 ,− 49

50 ,−1
)
,

(
− 3,−3.411586..,−1.557354..,−1.546135..

)
,(

− 2.809209..,− 31
10 ,−1.671884..,−1.662653..

)
.

These solutions provide the three limit cycles with Conf 6− and Conf 6+ shown in Figure 3.5.
This completes the proof of statement (iv).

Proof of statement (v) of Theorem 1.3. In order to have limit cycles with Conf 6− and Conf 7
simultaneously, the points of intersection of the limit cycles with Conf 6− and Σk+ must satisfy
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system (3.8), and the points of intersection of the limit cycles with Conf 7 and Σk+ must satisfy
system (3.10). In statement (ii) we proved that the maximum number of limit cycles with each
configuration is three, then we have that the maximum number of limit cycles with both
configurations is six. Moreover this upper bound is reached. Without loss of generality we
can suppose that k = 3. We consider the discontinuous piecewise linear differential system
defined by the following four linear Hamiltonian systems

ẋ = −0.567977..− 5.151614..x− 3
2

y, ẏ = −6.233588.. + 17.692757..x + 5.151614..y,

ẋ = 11.250254.. + 0.637407..x− 2
5

y, ẏ = −35.085985.. + 1.015720..x− 0.637407..y,

ẋ = 22.645454..− 36.659999..x− 47
5

y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 5.300000..− 8.579999..x− 11
5

y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.17)

in the pieces Z1
Σ3

, Z2
Σ3

, Z3
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differential
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Figure 3.6: (a) Three limit cycles with Conf 6− and Conf 7 of system (3.17). (b)
Three limit cycles with Conf 6+ and Conf 8 of system (3.18).

system (3.17), system (3.8), has the following three real solutions(
− 41

10 ,− 5
2 , 1.569412.., 1.457623..

)
,

(
− 106

25 ,− 263
100 , 1.647799.., 1.587623..

)
,(

− 199
50 ,−2.401954.., 1.508473.., 1.359577..

)
,

and (3.10), has the three real solutions(
0.502842..,−1.545218..,−0.572025.., 0.848539..

)
,(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)
,(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)
.

These solutions provide the three limit cycles with Conf 6− and Conf 7 shown in Figure 3.6a.
This completes the proof of statement (v).
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Proof of statement (vi) of Theorem 1.3. In order to have limit cycles with Conf 6+ and Conf 8
simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+ must satisfy
system (3.8), and the points of intersection of the limit cycles with Conf 8 and Σk+ must satisfy
system (3.12). In statement (ii) we proved that the maximum number of limit cycles with each
configuration is three, then we have that the maximum number of limit cycles with both
configurations is six. Moreover this upper bound is reached. Without loss of generality we
can consider that k = 4. We consider the discontinuous piecewise linear differential system
defined by the following five linear Hamiltonian systems

ẋ = −0.325270..− 1.247316..x− 3
2

y, ẏ = −35.808990.. + 1.037199..x + 1.247316..y,

ẋ = −13.295856..− 8.394370..x− 2y, ẏ = 47.825295.. + 35.232724..x + 8.394370..y,

ẋ = 33.366737..− 7.961636..x− 17
5

y, ẏ = −44.896945.. + 18.643428..x + 7.961636..y,

ẋ = 65.056521..− 17.010074..x− y, ẏ = −1052.5380642.. + 289.342621..x + 17.010074..y,

ẋ = 74.167422.. + 12.003227..x +
3
2

y, ẏ = −187.420662..− 96.051650..x− 12.003227..y,

(3.18)

in the pieces Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-
ential system (3.18), system (3.7), has the following three real solutions( 7

2 ,− 6
5 , 2

5 , 19
5

)
,

( 71
20 ,− 143

100 , 31
100 , 389

100

)
,

( 343
100 ,−0.893313.., 0.533583.., 3.654678..

)
,

and (3.12), has the three real solutions(
4,−3,− 16

5 , 23
5

)
,

(
4.073407..,−3.179377..,−3.311999.., 589

125

)
,(

4.144187..,−3.341881..,−3.420000.., 241
50

)
.

These solutions provide the three limit cycles with Conf 6+ and Conf 8 shown in Figure 3.6b.
This completes the proof of statement (vi).

Proof of statement (vii) of Theorem 1.3. In order to have limit cycles with Conf 6+ and Conf
9+ simultaneously, the points of intersection of the limit cycles with Conf 6+and Σk+ must
satisfy system (3.7), and the points of intersection of the limit cycles with Conf 9+ and Σk+

must satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum number
of limit cycles with each configuration is three, then we have that the maximum number of
limit cycles with both configurations is six. Moreover this upper bound is reached. We can
suppose without loss of generality that k = 4. We consider the discontinuous piecewise linear
differential system defined by the following four linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x− 3
2

y, ẏ = −113.972678.. + 66.372549..x− 9.977916..y,

ẋ = 34.897550..− 4.677048..x− 7
2

y, ẏ = −44.332934.. + 6.249936..x + 4.677048..y,

ẋ = 65.922589..− 17.491280..x− 13
10

y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

ẋ = 13.883036.. + 3.280745..x− 9
2

y, ẏ = −44.382913.. + 2.391842..x− 3.280745..y,

(3.19)
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in the pieces Z1
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differential
system (3.19), system (3.7), has the following three real solutions(

6, 1.209968.., 7
5 , 8.457532..

)
,

( 156
25 , 1.006799.., 5

4 , 8.915579..
)
,( 117

20 , 1.328327.., 1.486618.., 8.175706..
)
,

and (3.5), has the three real solutions(
4, 3, 16

5 , 5
)
,

(
4.109491.., 141

50 , 303
100 , 517

100

)
,

( 47
10 , 2.053733.., 2.068270.., 6.131729..

)
.

These solutions provide the three limit cycles with Conf 6+ and Conf 9+ shown in Figure 3.7.
This completes the proof of statement (vii).
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Figure 3.7: Three limit cycles with Conf 6+ and Conf 9+ of system (3.19).

Proof of statement (viii) of Theorem 1.3. In order to have limit cycles with Conf 7 and Conf 8
simultaneously, the points of intersection of the limit cycles with Conf 7 and Σk+ must satisfy
system (3.10), and the points of intersection of the limit cycles with Conf 8 and Σk+ must
satisfy system (3.12). In statement (ii) we proved that the maximum number of limit cycles
with each configuration is three, then we have that the maximum number of limit cycles with
both configurations is six. Moreover this upper bound is reached. Without loss of generality
we can suppose that k = 3. We consider the discontinuous piecewise linear differential system
defined by the following five linear Hamiltonian systems

ẋ = −453.807220..− 20.414445..x− 3
2

y, ẏ = 83.559977.. + 277.833055..x + 20.414445..y,

ẋ = −29.218386..− 5.465711..x +
2
5

y, ẏ = −414.702614..− 74.685013..x + 5.465711..y,

ẋ = 22.645454..− 36.659999..x− 47
5

y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 3.918325..− 3.744301..x +
6
5

y, ẏ = 33.556264..− 11.683162..x + 3.744301..y,

ẋ = 5.300000..− 8.579999..x− 11
5

y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.20)
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in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-
ential system (3.20), system (3.10), has the following three real solutions(

0.502842..,−1.545218..,−0.572025.., 0.848539..
)
,(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)
,(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)
,

and (3.12), has the three real solutions( 84
25 ,− 79

20 ,−4.562376.., 88
25

)
,

( 3297
1000 ,− 387

100 ,−4.492376.., 69
20

)
,( 34301

10000 ,−4.039424..,−4.622376.., 179
50

)
.

These solutions provide the three limit cycles with Conf 7 and Conf 8 shown in Figure 3.8.
This completes the proof of statement (viii).
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Figure 3.8: Three limit cycles with Conf 7 and Conf 8 of system (3.20).

Proof of statement (ix) of Theorem 1.3. In order to have limit cycles with Conf 8 and Conf 9+

simultaneously, the points of intersection of the limit cycles with Conf 8 and Σk+ must satisfy
system (3.12), and the points of intersection of the limit cycles with Conf 9+ and Σk+ must
satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum number of
limit cycles with each configuration is three, then we have that the maximum number of limit
cycles with both configurations is six. Moreover this upper bound is reached. Without loss
of generality we can suppose that k = 4. We consider the discontinuous piecewise linear
differential system defined by the following four linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x− 3
2

y, ẏ = −113.972678.. + 66.372549..x− 9.977916..y,

ẋ = −23.136372.. + 2.354826..x− 3
10

y, ẏ = 81.642102.. + 18.484031..x− 2.354826..y,

ẋ =
431
10

+ 14.700000..x− 7
2

y, ẏ = −194.334000.. +
3087
50

x− 14.700000..y,

ẋ = 65.922589..− 17.491280..x− 13
10

y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

(3.21)
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in the zones Z1
Σ4

, Z2
Σ4

, Z3
Σ4

and Z4
Σ4

, respectively. For the discontinuous piecewise differential
system (3.21), system (3.12), has the following three real solutions(

9,−2.341532..,−6.604799.., 14.804799..
)
,

( 457
50 ,−2.481840..,−6.933823.., 15.133823..

)
,( 187

20 ,−2.692262..,−7.432829.., 15.632829..
)
,

and (3.5), has the three real solutions(
4, 3, 16

5 , 5
)
,

(
4.109491.., 141

50 , 303
100 , 517

100

)
,

( 47
10 , 2.053733.., 2.068270.., 6.131729..

)
.

These solutions provide the three limit cycles with Conf 8 and Conf 9+ shown in Figure 3.9.
This completes the proof of statement (ix).
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Figure 3.9: Three limit cycles with Conf 8 and Conf 9+ of system (3.21).
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Figure 3.10: Three limit cycles with Conf 6−, Conf 7 and Conf 8 of system
(3.22).

Proof of statement (x) of Theorem 1.3. In order to have limit cycles with Conf 6−, Conf 7 and
Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6− and Σk+
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Figure 3.11: Three limit cycles with Conf 6+, Conf 8 and Conf 9+ of system
(3.23).

must satisfy system (3.8), the points of intersection of the limit cycles with Conf 7 and Σk+

must satisfy system (3.10) and the points of intersection of the limit cycles with Conf 8 and
Σk+ must satisfy system (3.12). In statement (ii) we proved that the maximum number of
limit cycles with each configuration is three, then we have that the maximum number of limit
cycles with the three configurations simultaneously, is nine. Moreover this upper bound is
reached. Without loss of generality we can suppose that k = 3. We consider the discontinuous
piecewise linear differential system defined by the following five linear Hamiltonian systems

ẋ = −0.567977..− 5.151614..x− 3
2

y, ẏ = −6.233588.. + 17.692757..x + 5.151614..y,

ẋ = 11.250254.. + 0.637407..x− 2
5

y, ẏ = −35.085985.. + 1.015720..x− 0.637407..y,

ẋ = 22.645454..− 36.659999..x− 47
5

y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = −13.170507.. + 3.348185..x +
6
5

y, ẏ = 36.547853..− 9.341954..x− 3.348185..y,

ẋ = 5.300000..− 8.579999..x− 11
5

y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.22)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-
ential system (3.22), system (3.8), has the following three real solutions(

− 41
10 ,− 5

2 , 1.569412.., 1.457623..
)
,

(
− 106

25 ,− 263
100 , 1.647799.., 1.587623..

)
,(

− 199
50 ,−2.401954.., 1.508473.., 1.359577..

)
,

and (3.10), has the three real solutions(
0.502842..,−1.545218..,−0.572025.., 0.848539..

)
,(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)
,(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)
,
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and system (3.12), has the three real solutions(
1.847758..,−4.593279..,−3.042376.., 2

)
,

(
1.910216..,−4.699349..,−3.192376.., 43

20

)
,(

1.962805..,−4.784530..,−3.322376.., 57
25

)
.

These solutions provide the three limit cycles with Conf 6−, Conf 7 and Conf 8 shown in
Figure 3.10. This completes the proof of statement (x).

Proof of statement (xi) of Theorem 1.3. In order to have limit cycles with Conf 6+,Conf 8 and
Conf 9+ simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+

must satisfy system (3.7), the points of intersection of the limit cycles with Conf 8 and Σk+

must satisfy system (3.12) and the points of intersection of the limit cycles with Conf 9+ and
Σk+ must satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum
number of limit cycles with each configuration is three, then we have that the maximum
number of limit cycles with the three configurations, is nine. Moreover this upper bound is
reached. Without loss of generality we can suppose that k = 3. We consider the discontinuous
piecewise linear differential system defined by the following five linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x− 3
2

y, ẏ = −113.972678.. + 66.372549..x− 9.977916..y,

ẋ = −2.306102..− 0.633078..x− 3
10

y, ẏ = 2.662449.. + 1.335961..x + 0.633078..y,

ẋ = 34.897550..− 4.677048..x− 7
2

y, ẏ = −44.332934.. + 6.249936..x + 4.677048..y,

ẋ = 65.922589..− 17.491280..x− 13
10

y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

ẋ = 13.883036.. + 3.280745..x− 9
2

y, ẏ = −44.382913.. + 2.391842..x− 3.280745..y,
(3.23)

in the zones Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-
ential system (3.23), system (3.7), has the following three real solutions(

6, 1.209968.., 7
5 , 8.457532..

)
,

( 156
25 , 1.006799.., 5

4 , 8.915579..
)
,( 117

20 , 1.328327.., 1.486618.., 8.175706..
)
,

and (3.12), has the three real solutions(
9,−2.341532..,−6.604799.., 14.804799..

)
,

( 93
10 ,−2.642166..,−7.313423.., 15.513423..

)
,( 943

100 ,−2.772412..,−7.624652.., 15.824652..
)
,

and system (3.5), has the three real solutions(
4, 3, 16

5 , 5
)
,

(
4.109491.., 141

50 , 303
100 , 517

100

)
,

( 47
10 , 2.053733.., 2.068270.., 6.131729..

)
.

These solutions provide the three limit cycles with Conf 6+, Conf 8 and Conf 9+ shown in
3.11. This completes the proof of statement (xi).

Proof of statement (xii) of Theorem 1.3. In order to have limit cycles with Conf 6+,Conf 6−

and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6+ and
Σk+ must satisfy system (3.7), the points of intersection of the limit cycles with Conf 6− and
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Figure 3.12: Three limit cycles with Conf 6+, two limit cycles with Conf 6− and
one limit cycle with Conf 8 of system (3.24).
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Figure 3.13: Two limit cycles with Conf 6+, three limit cycles with Conf 6− and
one limit cycle with Conf 8 of system (3.25).

Σk+ must satisfy system (3.8) and the points of intersection of the limit cycles with Conf 8 and
Σk+ must satisfy system (3.12). If we suppose that there is one solution for each system (3.7)
and (3.8), then similar to statement (i) of Theorem 1.3, we obtain the value of the parameters
γ1, δ1, γ2, γ3, δ3, γ4, γ5, δ5.

Now we have two options, first we suppose that there is a solution of system (3.12), then
we obtain the value of the parameters λ1, δ2, λ3 and δ4, therefore we have two options, first
we can suppose that there is a second solution of system (3.12) then we obtain the value of
the parameters λ2 and λ4, hence in the zones Z1

Σ+ , Z2
Σ+ , Z3

Σ+ , Z4
Σ+ we only have the parameters

b1, b2, b3, b4 as unknowns and in the zone Z5
Σ+ we have λ5, b5 as unknowns. Therefore we can

obtain at most one solution either of system (3.7) or of system (3.8) and we cannot obtain
more solutions of systems (3.7), (3.8) and (3.12), because we would have that bi = 0 for some
i = 1, 2, 3, 4, 5. Hence we would have five limit cycles with two (resp. one) limit cycles with
Conf 6+, one (resp. two) limit cycle(s) with Conf 6− and two limit cycles with Conf 8. Second
we can suppose that there is a second solution for each system (3.7) and (3.8), then we obtain
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the values of the parameters λ2, λ4, λ5 hence we cannot obtain more solutions of systems (3.7),
(3.8) and (3.12), because we would have that bi = 0 for some i = 1, 2, 3, 4, 5. Therefore in this
case we would obtain five limit cycles with two limit cycles with Conf 6+, two limit cycles
with Conf 6− and one limit cycle with Conf 8.

Second, after considering the first solution of each system (3.7) and (3.8), we can suppose
that there is a second solution for each system (3.7) and (3.8), then we obtain the values of
λ1, δ2, λ3 and δ4. Then in the zones Z1

Σ+ , Z3
Σ+ and Z5

Σ+ we only have the parameters b1, b3 and
b5 as unknowns and in the zones Z2

Σ+ and Z4
Σ+ we have the parameters λ2, b2, λ4, b4 unknowns.

Hence can have two cases, first we can suppose that there is a solution of system (3.12), then
we determine the value of parameters λ2 and λ4, hence we cannot to have more limit cycles
because we would have that bi = 0 for some i = 1, 2, 3, 4, 5. Therefore we would have five limit
cycles with two limit cycles with Conf 6+, two limit cycles with Conf 6− and one limit cycle
with Conf 8. Second we can suppose that there is a third solution of system (3.7) (resp. (3.8))
and we obtain the value of parameter λ4 (res. λ2), then in the zone Z4

Σ+ (resp. Z2
Σ+) we only

have the parameter b4 (resp. b2) as unknown and in the zone Z2
Σ+ (resp. Z4

Σ+) we have that
the parameters λ2, b2 (res. λ4, b4) as unknowns. Now we suppose that there is one solution
of system (3.12) and we obtain the parameter λ2 (res. λ4). We observe that we cannot obtain
more solutions of systems (3.7), (3.8) and (3.12), because we would have that bi = 0 for some
i = 1, 2, 3, 4, 5. Therefore we have at most six limit cycles with three (resp. two) limit cycles
with Conf 6+, two (resp. three) limit cycles with Conf 6− and one limit cycle with Conf 8.
We observe that these six limit cycles can be either three limit cycles with Conf 6+, two limit
cycles with Conf 6− and one limit cycle with Conf 8 or two limit cycles with Conf 6+, three
limit cycles with Conf 6− and one limit cycle with Conf 8. We shall give an example of each
case.

We observe that without loss of generality we can suppose that k = 4. We consider
the discontinuous piecewise linear differential system defined by the following five linear
Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9
2

y, ẏ = 2942.120325..− 36212.150741..x

− 403.676452..y,

ẋ = 1.812606.. + 1.308936..x− 3
10

y, ẏ = −25.828218.. + 5.711045..x− 1.308936..y,

ẋ = 15.472057..− 3.117904..x− 17
5

y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 48.158492..− 6.082779..x− y, ẏ = −31.590984.. + 37.000210..x + 6.082779..y,

ẋ = − 151.854124..− 136.354901..x +
3
2

y, ẏ = −10611.949690..− 12395.106180..x

+ 136.354901..y,

(3.24)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-
ential system (3.24), system (3.7) has the following three real solutions(

5, 1
2 , 9

20 , 23
5

)
,

( 9
2 , 19

20 , 91
100 , 7

2

)
,

( 41
10 , 1.196150.., 1.163297.., 2.719447..

)
;

and (3.8) has the two real solutions(
− 18

5 ,− 9
2 ,− 49

50 ,−1
)
,

(
− 3,−3.411586..,−1.557354..,−1.546135..

)
;
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and system (3.12) has the real solution(
5.688640..,−4.154651..,−5.682382.., 63

10

)
.

These solutions provide the three limit cycles with Conf 6+, the two limits cycles with Conf
6− and the limit cycle with Conf 8 shown in Figure 3.12.

Now we consider the discontinuous piecewise linear differential system defined by the
following five linear Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9
2

y, ẏ = 2942.120325..− 36212.150741..x

− 403.676452..y,

ẋ = 4.276633.. + 1.873985..x− 3
10

y, ẏ = 4.991226.. + 11.706072..x− 1.873985..y,

ẋ = 15.472057..− 3.117904..x− 17
5

y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 293.931246..− 44.804431..x− y, ẏ = −6905.938713.. + 2007.437106..x

+ 44.804431..y,

ẋ = − 151.854124..− 136.354901..x +
3
2

y, ẏ = −10611.949690..− 12395.106180..x

+ 136.354901..y,

(3.25)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-
ential system (3.25), system (3.7) has the following two real solutions(

5, 1
2 , 9

20 , 23
5

)
,

( 9
2 , 19

20 , 91
100 , 7

2

)
;

and (3.8) has the three real solutions(
− 18

5 ,− 9
2 ,− 49

50 ,−1
)
,

(
− 3,−3.411586..,−1.557354..,−1.546135..

)
,(

− 2.809209..,− 31
10 ,−1.671884..,−1.662653..

)
;

and system (3.12) has the real solution( 667
100 ,−4.419374..,−6.225080.., 6.842698..

)
.

These solutions provide the two limit cycles with Conf 6+, the three limits cycles with Conf
6− and the limit cycle with Conf 8 shown in Figure 3.13. This completes the proof of statement
(xii).

4 Appendix

Here we provide the values A, B and C

A = csc
( r3 − s3

2

)(
− cos

(1
2
(3r1 − r2 + 2r3 + s1 − s2)

)
+ cos

(1
2
(r1 − r2 + 4r3 + s1 − s2)

)
+ cos

(1
2
(r1 − 3r2 − 2r3 + s1 − s2)

)
− cos

(1
2
(r1 − r2 − 4r3 + s1 − s2)

)
− cos

(1
2
(r1 − r2 + 2r3 + 3s1 − s2)

)
− cos

(1
2
(3r1 + r2 − 2r3 + s1 + s2)

)
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+ cos
(1

2
(r1 + 3r2 − 2r3 + s1 + s2)

)
− cos

(1
2
(r1 + r2 − 2r3 + 3s1 + s2)

)
+ cos

(1
2
(r1 + r2 − 2r3 + s1 + 3s2)

)
+ cos

(1
2
(r1 − r2 − 2r3 + s1 − 3s2)

)
+ cos

(1
2
(3r1 − r2 + s1 − s2 + 2s3)

)
+ cos

(1
2
(r1 − r2 + 3s1 − s2 + 2s3)

)
− cos

(1
2
(r1 − r2 + s1 − s2 + 4s3)

)
− cos

(1
2
(r1 − 3r2 + s1 − s2 − 2s3)

)
+ cos

(1
2
(3r1 + r2 + s1 + s2 − 2s3)

)
− cos

(1
2
(r1 + 3r2 + s1 + s2 − 2s3)

)
+ cos

(1
2
(r1 + r2 + 3s1 + s2 − 2s3)

)
− cos

(1
2
(r1 + r2 + s1 + 3s2 − 2s3)

)
− cos

(1
2
(r1 − r2 + s1 − 3s2 − 2s3)

)
+ cos

(1
2
(r1 − r2 + s1 − s2 − 4s3)

)
,

B = − (cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)− 2 cos(r1 − s1) + cos(r2 − s1)

+ cos(r3 − s1) + cos(r1 − s2)− 2 cos(r2 − s2) + cos(r3 − s2) + cos(s1 − s2)

+ 2 cos(r1 − r2 + s1 − s2) + cos(2r1 − 2r2 + s1 − s2)− cos(2r1 − r2 − r3 + s1 − s2)

− cos(r1 − 2r2 + r3 + s1 − s2) + cos(r1 − 2r2 + 2s1 − s2)− cos(r1 − r2 − r3 + 2s1 − s2)

+ cos(2r1 − r2 + s1 − 2s2)− cos(r1 − r2 + r3 + s1 − 2s2)

+ cos(r1 − r2 + 2s1 − 2s2) + cos(r1 − s3) + cos(r2 − s3)− 2 cos(r3 − s3)

+ cos(s1 − s3) + 2 cos(r1 − r3 + s1 − s3)− cos(2r1 − r2 − r3 + s1 − s3)

+ cos(2r1 − 2r3 + s1 − s3)− cos(r1 + r2 − 2r3 + s1 − s3)− cos(r1 − r2 − r3 + 2s1 − s3)

+ cos(r1 − 2r3 + 2s1 − s3)− cos(2r1 − r2 + s1 − s2 − s3)− cos(2r1 − r3 + s1 − s2 − s3)

+ cos(r1 + r2 − r3 + s1 − s2 − s3) + cos(r1 − r2 + r3 + s1 − s2 − s3)

− cos(r1 − r2 + 2s1 − s2 − s3)− cos(r1 − r3 + 2s1 − s2 − s3) + cos(s2 − s3)

+ 2 cos(r2 − r3 + s2 − s3)− cos(r1 + r2 − 2r3 + s2 − s3) + cos(2r2 − 2r3 + s2 − s3)

+ cos(r1 + r2 − r3 − s1 + s2 − s3)− cos(2r2 − r3 − s1 + s2 − s3)

+ cos(r1 − r2 − r3 + s1 + s2 − s3)− cos(r1 − 2r3 + s1 + s2 − s3)

− cos(r2 − 2r3 + s1 + s2 − s3) + cos(r2 − 2r3 + 2s2 − s3)− cos(r2 − r3 − s1 + 2s2 − s3)

− cos(r1 − 2r2 + r3 − s2 + s3) + cos(r1 − r2 + r3 − s1 − s2 + s3)

− cos(r1 − 2r2 + s1 − s2 + s3) + cos(r1 − r2 − r3 + s1 − s2 + s3)

− cos(r1 − r2 + r3 − 2s2 + s3)− cos(r1 − r2 + s1 − 2s2 + s3) + cos(2r1 − r3 + s1 − 2s3)

− cos(r1 + r2 − r3 + s1 − 2s3) + cos(r1 − r3 + 2s1 − 2s3)− cos(r1 + r2 − r3 + s2 − 2s3)

+ cos(2r2 − r3 + s2 − 2s3)− cos(r1 − r3 + s1 + s2 − 2s3)− cos(r2 − r3 + s1 + s2 − 2s3)

+ cos(r2 − r3 + 2s2 − 2s3)− 6) csc2
(1

2
(r1 − r2 + s1 − s2)

)
sin2

( r3 − s3

2

)
,

C =2
(
− cos

(1
2
(r1 − 3r2 − r3 + s1 − s2 − s3)

)
+ cos

(1
2
(r1 − r2 − 3r3 + s1 − s2 − s3)

)
− cos

(1
2
(3r1 + r2 − r3 + s1 + s2 − s3)

)
+ cos

(1
2
(r1 + 3r2 − r3 + s1 + s2 − s3)

)
− cos

(1
2
(r1 + r2 − r3 + 3s1 + s2 − s3)

)
+ cos

(1
2
(r1 + r2 − r3 + s1 + 3s2 − s3)

)
− cos

(1
2
(r1 − r2 − r3 + s1 − 3s2 − s3)

)
+ cos

(1
2
(3r1 − r2 + r3 + s1 − s2 + s3)

)
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− cos
(1

2
(r1 − r2 + 3r3 + s1 − s2 + s3)

)
+ cos

(1
2
(r1 − r2 + r3 + 3s1 − s2 + s3)

)
− cos

(1
2
(r1 − r2 + r3 + s1 − s2 + 3s3)

)
+ cos

(1
2
(r1 − r2 − r3 + s1 − s2 − 3s3)

))
.
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