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1 Introduction

In this short paper we investigate the somewhat puzzling connection between the existence of
an explicit travelling wave solution and the travelling wave with minimal speed in a monos-
table reaction-diffusion equation. More precisely, there are examples in the literature (see
below) where the explicitly computable travelling wave solution is the solution with minimal
speed. Moreover, for parameter-dependent problems with a parameter-dependent family of
explicit solutions, there are many cases where in fact there is a switching between the minimal
speed being given by this explicit solution for some parameters, while for others it is given
by the so-called linear speed, defined as the minimal value for which the problem linearised
about the unstable steady state has a suitable eigenvalue. For a particular set of equations,
of a type encountered in applications, we formulate sufficient conditions for each of these
phenomena to occur.
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The plan of the paper is as follows. In this section, we introduce scalar monostable
reaction-diffusion equations, define what we mean by a minimal speed, and discuss the linear
(pulled) and the non-linear (pushed) regimes.

In Section 2, we define the set of exactly solvable equations and prove a result connecting
the minimal wave speed and the speed of an explicit travelling wave solution.

Finally, in Section 3 we consider conditions for the exchange of minimality between the
linear minimal speed and the speed of an explicit travelling wave solution.

Our proofs exploit two main tools: the variational principle due to Hadeler and Rothe [4]
and the integrability characterisations of the minimal speed proved by Lucia, Muratov and
Novaga in [6].

We consider reaction-diffusion equations of the form

ut = uxx + f (u, β), (1.1)

where β ∈ R is a parameter, and f is a monostable nonlinearity, i.e.,

f (0, β) = f (1, β) = 0, f ′(0, β) > 0, f ′(1, β) < 0, f (u, β) > 0 for u ∈ (0, 1).

In the travelling wave frame z = x − ct, c ≥ 0, setting U(z) = u(x, t), and denoting
derivatives with respect to z by primes, (1.1) becomes

− cU′ = U′′ + f (U). (1.2)

We seek monotone fronts connecting 1 and 0, i.e., solutions U(z) of (1.2) with U′(z) < 0
and

lim
z→−∞

U(z) = 1 and lim
z→∞

U(z) = 0.

Linearisation around the rest point with U = 0 shows that there cannot be any monotone
fronts connecting 1 and 0 for c < cl := 2

√
f ′(0). Phase plane analysis shows that there exists

cmin ≥ cl such that there exists a monotone front for all c ≥ cmin ≥ cl . Determining cmin is
often of interest in applications, see e.g. [2] for a discussion.

Definition 1.1. If cmin = cl , we say that we are in the case of linear selection mechanism (“pulled
case”) and if cmin > cl , of nonlinear selection mechanism (“pushed case”).

Frequently, the basis of analysis of monotone fronts in the scalar monostable case (1.2) is
the following construction: As U(z) is a monotone solution, its derivative is a well-defined
function of U. Set F(U) := −U′. Note that F(U) is non-negative. Also, F(0) = F(1) = 0.
Now,

F(U)′ = (−U′)′ = −U′′.

On the other hand, by the chain rule,

F(U)′ =
dF
dU

U′ = − dF
dU

F.

Hence the problem of solving U′′+ cU′+ f (U) = 0 with the conditions that limz→−∞ U(z) = 1
and limz→∞ U(z) = 0 is equivalent to solving

F
dF
dU
− cF + f (U) = 0, F(0) = F(1) = 0. (1.3)

Using this construction, we have the Hadeler–Rothe variational principle [4]:
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cmin = inf
g∈G

sup
0<U<1

{
g′(U) +

f (U)

g(U)

}
, (1.4)

where
G =

{
g ∈ C1([0, 1]) | g(U) > 0 for 0 < U < 1, g(0) = 0, g′(0) > 0

}
. (1.5)

2 Exact solvability

We are interested in the situation when (1.2) has a solution U(z) that can be determined by
quadratures. A sufficient condition is:

Lemma 2.1. The travelling wave equation of (1.3) with speed c = A(β)/
√

B(β) is solvable by
quadratures if f can be written in the form

f (u, β) = h(u)
(

A(β)− B(β)h′(u)
)

, h ∈ C1([0, 1]), (2.1)

where h(0) = h(1) = 0, h(u) ≥ 0, h′(0) > 0 (without loss of generality h′(0) = 1), A(β) > B(β) >

0, and for all u ∈ [0, 1], A(β)− B(β)h′(u) > 0.

Proof. In this case a solution of (1.3) is F(U) = γh(U) with

γ =
√

B(β), (2.2)

from which U and c can be computed by quadratures.

We introduce notation for the speeds of the explicit fronts in Lemma 2.1:

cnl(β) :=
A(β)√

B(β)
. (2.3)

We will describe as the solvable case the situation in which the nonlinearity f (u, β) satis-
fies the conditions of Lemma 2.1. In the solvable case, we have that

cl = 2
√

A(β)− B(β). (2.4)

Note that the fact that A(β) > B(β) follows from the conditions of Lemma 2.1.
Of course, by the definition of minimal speed, we always have that

cmin(β) ≤ cnl(β) =
A(β)√

B(β)
. (2.5)

3 Minimality exchange

In this section, for a nonlinearity f (u, β) of solvable type, we investigate conditions under
which there exists a value β∗, such that for values β to one side of β∗, cmin(β) = cl(β), and
for values of β to the other side of β∗, cmin(β) = cnl(β), so that at β∗ minimality is exchanged
between cl(β) and cnl(β). This is what we call a minimality exchange. Examples, two of
which we outline below, are discussed in [4, 6] and the isotropic case of [2], which is also
investigated in [3, 8].
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First note that for a minimality exchange, the graphs of cl(β) and cnl(β) must clearly
intersect. Therefore the equation

2
√

A(β)− B(β) =
A(β)√

B(β)

must have a solution, which is equivalent to demanding the existence of β∗ such that A(β∗) =

2B(β∗).
Hence, for instance, in any equation (1.1) with solvable f (u, β) such that A(β) = 2B(β)+ 1,

there can never be a minimality exchange between the linear and the nonlinear speeds.
Before continuing with the analysis, we present two concrete examples of minimality ex-

change. In [4, Eq. (27)], Hadeler and Rothe consider the nonlinearity

f (u, β) = u(1− u)(1 + βu), β ≥ −1,

which can be put into the framework of Lemma 2.1 by setting h(u) = u(1− u), so that

f (u, β) = h(u)(A(β)− B(β)h′(u)),

where
A(β) = 1 +

β

2
, B(β) =

β

2
.

The solution of A(β) = 2B(β) is therefore β∗ = 2, the nonlinear speed is

cnl(β) =
2 + β√

2β
,

and it is shown in [4] that a minimality exchange occurs at β = β∗, with cmin(β) = cl(β) for
β < β∗ and cmin(β) = cnl(β) for β > β∗.

Our second example is given by the isotropic case of [2], where

f (u, β) =
sin(πu)

2π
[1− β cos(πu)] ,

which fits into the framework of Lemma 2.1 by setting h(u) = sin(πu)
π , so that

f (u, β) = h(u)(A(β)− B(β)h′(u)),

where
A(β) =

1
2

B(β) =
β

2
.

The equation A(β) = 2B(β) then has solution β∗ = 1
2 , the nonlinear speed is

cnl(β) =
1√
2β

,

and it is proved in [2, 3] that here too, a minimality exchange occurs at β = β∗, again with
cmin(β) = cl(β) for β < β∗ and cmin(β) = cnl(β) for β > β∗.

We now establish our general results, starting with a sufficient condition for nonlinear
selection.

Lemma 3.1. For all β such that A(β) < 2B(β), cmin(β) = cnl(β).
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Proof. For any c > 0, denote by H1
c (R) the completion of C∞

0 (R) with respect to the norm

‖u‖1,c = ‖u‖c + ‖ux‖c, where ‖u‖2
c =

∫
R

ecxu2(x) dx.

If U(z) is an explicit travelling front with −U′ = F(U) = γh(U), we have

lim
z→∞

U′(z)
U(z)

= lim
z→∞
−γ

h(U(z))
U(z)

= −γ h′(0) = −γ.

Hence for those values of the parameter β for which cnl(β) < 2γ, U ∈ H1
cnl(β)(R) and hence

for such β, by Corollary 2.7 of [6] (see also Proposition 2 of [2]), c(β) is the (nonlinear) minimal
wave speed. The claim then follows by (2.2) and (2.3).

We note that this lemma can also be obtained by the methods of [1]. To formulate our next
results, we set

L = max
u∈(0,1)

h′(u) ≥ 1.

We adapt some arguments from [2].

Proposition 3.2. If A(β) > 2LB(β),

cmin(β) ≤ 2
√

L
√

A(β)− LB(β), (3.1)

and in particular,
cmin(β) 6= cnl(β).

Proof. Recall from Hadeler and Rothe [4] (see also [2], equation (11)) that

cmin(β) = inf
g∈Λ

sup
U∈(0,1)

{
g′(U) +

f (U, β))

g(U)

}
, (3.2)

where
Λ =

{
g ∈ C1([0, 1]) : g(U) > 0 if U ∈ (0, 1), g(0) = 0, g′(0) > 0

}
. (3.3)

Hence taking g(U) = νh(U), ν > 0, yields that

cmin(β) ≤ inf
ν>0

sup
U∈(0,1)

{
νh′(U) +

A(β)

ν
− B(β)

ν
h′(U)

}
.

To understand

sup
U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
,

there are two cases:
(i) ν2 ≤ B(β): Then

sup
U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
=

A(β)− lB(β)

ν
+ lν,

which is monotone decreasing in ν, so

inf
ν≤
√

B(β)

sup
U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
=

A(β)√
B(β)

.
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(Note that this recovers the estimate (2.5) for cmin(β).)
(ii) ν2 ≥ B: Then

sup
U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
=

A(β)− LB(β)

ν
+ Lν := q(ν).

Since A(β)− B(β)h′(u) > 0 for all u ∈ [0, 1], it follows that A(β)− LB(β) > 0. So differenti-
ating q(ν) gives that its global minimum for ν ∈ (0, ∞) occurs at

ν0 :=

√
A(β)− LB(β)

L
.

There are two possibilities: (a) If

A(β)− LB(β)

L
≤ B(β),

the function q(ν) reaches its minimum over [
√

B(β), ∞) at the point ν =
√

B(β), so that

inf
ν≥
√

B(β)

sup
U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
=

A(β)√
B(β)

,

in which case we again just recover the estimate (2.5) for cqmin(β).
(b) On the other hand, if

A(β)− LB(β)

L
> B(β),

that is, A(β) > 2LB(β), we have that

cmin(β) ≤ inf
ν>
√

B
sup

U∈(0,1)

{(
ν− B(β)

ν

)
h′(U) +

A(β)

ν

}
= q(ν0) = 2

√
L
√

A(β)− LB(β). (3.4)

Comparison of q(ν0) in (3.4) with cnl(β) then shows that cmin(β) 6= cnl(β) if A(β) >

2LB(β).

Now we can formulate sufficient conditions for minimality exchange. Below we say that
a solution β∗ of the equation A(β) = 2B(β) is non-degenerate if the graphs of the functions
A(·) and 2B(·) intersect transversely at β∗. The following result applies in all the examples
in [2, 4] mentioned above and covers the general case when h(u) is concave and there is a
non-degenerate solution to A(β) = 2B(β).

Theorem 3.3. Suppose there is a non-degenerate solution β∗ to the equation A(β) = 2B(β). Then if

L = h′(0) = 1,

there is a minimality exchange at β = β∗.

Proof. Since if A(β) < 2B(β) we have that cmin(β) = cnl(β) by Lemma 3.1, and since by (3.4)
with L = 1, for all A(β) > 2B(β), cmin(β) = cl(β), non-degeneracy of the solution β∗ of
A(β) = 2B(β) implies that there is an exchange of minimality at β∗.



Minimal travelling wave speed and explicit solutions 7

Theorem 3.3 fully characterises minimality exchange when L = 1, that is, when h′(u)
attains its supremum L at u = 0, which holds in particular when h is concave. If L > 1, how-
ever, the situation is less clear. Lemma 3.1 clearly still implies that cmin(β) = cnl(β) > cl(β),
so in particular nonlinear selection holds, if A(β) < 2B(β), and linear selection holds, with
cmin(β) = cnl(β) = cl(β) if A(β) = 2B(β), but whether it is possible to have again nonlinear
selection for some β with A(β) > 2B(β), either with the minimal speed corresponding to
the explicit solution or another value, is not obvious. The estimate (3.4) only applies when
A(β) > 2LB(β), and even in that range, (3.4) is no longer sufficient to imply linear selection if
L > 1.

In Theorem 3.6 below, we present a result complementary to Theorem 3.3 that makes no
assumption on h beyond the hypotheses in Lemma 2.1, but instead imposes monotonicity
conditions on the dependence of A and B on β. This yields a partial answer to what happens
when L > 1 and A(β) > 2B(β). We begin with the following preliminary result, based on
[6, Theorem 2.8], which forms the basis for the alternative sufficient condition for minimality
exchange in Theorem 3.6.

Lemma 3.4. Suppose that A(β) and B(β) are each non-decreasing in β, and A(β)− B(β) is non-
increasing in β. If cmin(β1) > cl(β1) and β2 > β1, then

cmin(β2) > cl(β2).

that is, if nonlinear selection holds for some β1, nonlinear selection also holds for any β2 > β1,

Proof. We draw on Theorem 2.8 of Lucia, Muratov and Novaga [6], which says that cmin(β) >

cl(β) if and only if there exists c > cl(β) and u ∈ H1
c (R) such that

Φβ
c [u] :=

∫
R

ecx
(

1
2

u2
x −

∫ u

0
f (s, β) ds

)
dx ≤ 0, (3.5)

where H1
c (R) is as defined in the proof of Lemma 3.1.

First note that it follows from [6, Theorem 2.8] that since cmin(β1) > cl(β1), there exists
c > cl(β1) and u ∈ H1

c (R) such that Φβ1
c [u] ≤ 0. Then

Φβ1
c [u] =

∫
R

ecx
(

1
2

u2
x −

∫ u

0
f (s, β1)ds

)
dx

=
∫

R
ecx
(

1
2

u2
x −

∫ u

0
h(s)(A(β1)− B(β1)h′(s))ds

)
dx

=
∫

R
ecx
(

1
2

u2
x − A(β1)

∫ u

0
h(s) ds− B(β1)

2
h(u)2

)
dx

≤ 0,

as h(0) = 0, and since β2 > β1 and A(·) and B(·) are non-decreasing, we have A(β2) ≥ A(β1)

and B(β2) ≥ B(β1), so that
Φβ2

c [u] ≤ Φβ1
c [u] ≤ 0,

since h(s) > 0 for 0 < s < 1. Moreover, A(·)− B(·) is non-increasing, so

cl(β2) = 2
√

A(β2)− B(β2) ≤ 2
√

A(β1)− B(β1) = cl(β1),

and hence
c > cl(β1) ≥ cl(β2).

Thus c > cl(β2) and Φβ2
c [u] ≤ 0, and hence [6, Theorem 2.8] implies that cmin(β2) > cl(β2).
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The following is an immediate consequence of Lemma 3.4.

Corollary 3.5. Suppose that A(β) and B(β) are each non-decreasing in β, and that A(β)− B(β) is
non-increasing in β. If cmin(β2) = cl(β2) for some β2 and β1 < β2, then cmin(β1) = cl(β1).

We can now prove our second set of sufficient conditions for minimality exchange.

Theorem 3.6. Suppose that A(β) and B(β) are each non-decreasing in β, and A(β)− B(β) is non-
increasing in β. If there is a non-degenerate solution β∗ to the equation A(β) = 2B(β), then there is a
minimality exchange at β = β∗, with cmin(β) = cl(β) for β ≤ β∗ and cmin(β) = cnl(β) > cl(β) for
β > β∗.

Proof. Note first that A(β) − 2B(β = [A(β) − B(β)] − B(β) is non-increasing in β, so since
the graphs of A(·) and 2B(·) intersect transversally at β∗, it follows that A(β) > 2B(β) when
β < β∗, whereas A(β) < 2B(β) when β > β∗. Lemma 3.1 then implies that cmin(β) = cnl(β)

when β > β∗, whereas Corollary 3.5 implies that linear selection holds when β < β∗.

Note that for the two concrete examples of minimality exchange discussed in Section 3,
both Theorem 3.3 and Theorem 3.6 apply.

An example of a solvable problem for which Theorem 3.6 applies but Theorem 3.3 does
not, is given by taking A = 1, B = β/2 and h(u) = e2uu(1− u), which is not concave. Then
L = 1.52218, cl =

√
4− 2β, cnl =

√
2/β, cl(β) = cnl(β) at β∗ = 1, and Theorem 3.6 ensures

that there is minimality exchange at β∗ = 1.

4 Conclusions

In this article we have focussed on a class of parameter-dependent monostable reaction-
diffusion equations with explicit travelling-wave solutions and used this class to explore the
phenomenon of minimality exchange, when the minimal wave speed switches from a linearly
determined value to the speed of the explicitly determined front as a parameter changes. Two
alternative sets of sufficient conditions for minimality exchange are proved, in Theorems 3.3
and 3.6. Why there should be such an exchange, not only from linear selection to nonlinear
selection, but to nonlinear selection given by an explicit solution, is quite puzzling at first sight.
Our framework here provides insight into why minimality exchange of this type occurs, and
includes concrete examples from [2–4, 6]. The proofs draw on various tools for determining
whether there is linear or nonlinear selection - in particular, ideas developed previously in
the special case of an isotropic liquid-crystal model [2], as well as general results from [4, 6].
Some additional interesting material about minimal wave speeds is given in [3, Section 10.1.1],
including Theorem 10.12, which provides sufficient criteria that can be used to identify cases
when a given explicit solution has the minimal wave speed, and the examples that follow.

As suggested by the anonymous referee, instead of considering in (2.1) a nonlinearity
parameterised by β, as was also done in [4, 6, 8] and in many examples in [3], our methods
could have been used to treat a two-parameter system f (u, A, B) = h(u)(A− Bh′(u)) to map
out domains of linear and nonlinear speed selection in the (A, B) plane.

We have treated one class of parameter-dependent solvable equations that includes impor-
tant special cases, but clearly there are many further solvability results for explicit travelling-
wave solutions in the literature. See, for instance, [3, Chapter 13] and [7]. In addition, the
change of variables G := 1/F converts (1.3) into an Abel equation, for which certain classes
of explicit solutions can be found using tools such as the Chiellini integrability condition and
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the Lemke transformation (see, for example, [5] and the references therein). It would be inter-
esting to expand and develop the approach introduced here to cover a larger range of explicit
solutions to obtain further insight into the mechanisms for minimality exchange.
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