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1 Introduction

In this paper we study the boundary value problem (BVP) on the half-line for difference
equation with the Euclidean mean curvature operator

∆

(
ak

∆xk√
1 + (∆xk)2

)
+ bkF(xk+1) = 0, (1.1)

subject to the conditions

xm = c, xk > 0, ∆xk ≤ 0, lim
k→∞

xk = 0, (1.2)
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where m ∈ Z+ = N∪ {0}, k ∈ Zm := {k ∈ Z : k ≥ m} and c ∈ (0, ∞).
Throughout the paper the following conditions are assumed:

(H1) The sequence a satisfies ak > 0 for k ∈ Zm and

∞

∑
j=m

1
aj

< ∞.

(H2) The sequence b satisfies bk ≥ 0 for k ∈ Zm and

∞

∑
j=m

bj

∞

∑
i=j

1
ai

< ∞.

(H3) The function F is continuous on R, F(u)u > 0 for u 6= 0, and

lim
u→0+

F(u)
u

< ∞. (1.3)

When modeling real life phenomena, boundary value problems for second order differ-
ential equations play important role. The BVP (1.1)–(1.2) originates from the discretization
process for searching radial solutions, which are globally positive and decaying, for PDE with
Euclidean mean curvature operator. By globally positive solutions we mean solutions which
are positive on the whole domain Zm. The Euclidean mean curvature operator arises in the
study of some fluid mechanics problems, in particular capillarity-type phenomena for com-
pressible and incompressible fluids.

Recently, discrete BVPs, associated to equation (1.1), have been widely studied, both in
bounded and unbounded domains, see, e.g., [2] and references therein. Many of these papers
can be seen as a finite dimensional variant of results established in the continuous case. For
instance, we refer to [5–7, 21] for BVPs involving mean curvature operators in Euclidean and
Minkowski spaces, both in the continuous and in the discrete case. Other results in this
direction are in [8, 9], in which the multiplicity of solutions of certain BVPs involving the
p-Laplacian is examined. Finally, in [12, 14] for second order equations with p-Laplacian the
existence of globally positive decaying Kneser solutions, that is solutions x such that xn > 0,
∆xn < 0 for n ≥ 1 and limn→∞ xn = 0, is examined.

Several approaches have been used in literature for treating the above problems. Especially,
we refer to variational methods [22], the critical point theory [9] and fixed point theorems on
cones [24, 25].

Here, we extend to second order difference equations with Euclidean mean curvature
some results on globally positive decaying Kneser solutions stated in [12] for equations with
p-Laplacian and bn < 0.

This paper is motivated also by [13], in which BVPs for differential equation with the Eu-
clidean mean curvature operator on the half-line [1, ∞) have been studied subjected to the
boundary conditions x(1) = 1 and limt→∞ x(t) = 0. The study in [13] is accomplished by
using a linearization device and some properties of principal solutions of certain disconju-
gate second-order linear differential equations. Here, we consider the discrete setting of the
problem studied in [13]. However, the discrete analogue presented here requires different
technique. This is caused by a different behavior of decaying solutions as well as by peculiari-
ties of the discrete setting which lead to a modified fixed point approach. Jointly with this, we
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prove new Sturm comparison theorems and new properties of recessive solutions for linear
difference equations. Our existence result is based on a fixed point theorem for operators
defined in a Fréchet space by a Schauder’s linearization device. This method is originated
in [10], later extended to the discrete case in [20], and recently developed in [15]. This tool
does not require the explicit form of the fixed point operator T and simplifies the check of
the topological properties of T on the unbounded domain, since these properties become an
immediate consequence of a-priori bounds for an associated linear equation. These bounds
are obtained in an implicit form by means of the concepts of recessive solutions for second
order linear equations. The main properties and results which are needed in our arguments,
are presented in Sections 2 and 3. In Section 4 the solvability of the BVP (1.1)–(1.2) is given, by
assuming some implicit conditions on sequences a and b. Several effective criteria are given,
too. These criteria are obtained by considering suitable linear equations which can be viewed
as Sturm majorants of the auxiliary linearized equation. In Section 5 we compare our results
with those stated in the continuous case in [13]. Throughout the paper we emphasize some
discrepancies, which arise between the continuous case and the discrete one.

2 Discrete versus continuous decay

Several properties in the discrete setting have no continuous analogue. For instance, for a
positive sequence x we always have

∆xk

xk
=

xk+1

xk
− 1 > −1.

In the continuous case, obviously, this does not occur in general, and the decay can be com-
pletely different. For example, if x(t) = e−2t then x′(t)/x(t) = −2 for all t. Further, the ratio
x′/x can be also unbounded from below, as the function x(t) = e−et

shows.
Another interesting observation is the following. If two positive continuous functions x, y

satisfy the inequality
x′(t)
x(t)

≤ M
y′(t)
y(t)

, t ≥ t0,

then there exists K > 0 such that x(t) ≤ KyM(t) for t ≥ t0. This is not true in the discrete case,
as the following example illustrates.

Example 2.1. Consider the sequences x, y given by

xk =
1

22k , yk =
1

22k+2 .

Then
xk+1

xk
=

1
22k ,

yk+1

yk
=

1
22k+2 ,

and
∆xk

xk
=

1
22k − 1 ≤ 1

2
− 1 = −1

2
≤ 1

2

(
1

22k+2 − 1
)
=

1
2

∆yk

yk
.

On the other hand, the inequality xk ≤ Ky1/2
k is false for every value of K > 0. Indeed,

xk√
yk

=
22k+1

22k = 22k

which is clearly unbounded.
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The situation in the discrete case is described in the following two lemmas.

Lemma 2.2. Let x, y be positive sequences on Zm such that M ∈ (0, 1) exists, satisfying

∆xk

xk
≤ M

∆yk

yk
(2.1)

for k ∈ Zm. Then 1 + M∆yk/yk > 0 for k ∈ Zm, and

xk ≤ xm

k−1

∏
j=m

(
1 + M

∆yj

yj

)
.

Proof. First of all note that, from M ∈ (0, 1) and the positivity of y, we have

1 + M
∆yk

yk
= 1 + M

yk+1

yk
−M > 0, k ∈ Zm.

From (2.1) we get
xk+1

xk
≤ 1 + M

∆yk

yk
,

and taking the product from m to k− 1, k > m, we obtain

xk

xm
=

xm+1

xm

xm+2

xm+1
· · · xk

xk−1
≤

k−1

∏
j=m

(
1 + M

∆yj

yj

)
.

From the classical theory of infinite products (see for instance [19]) the infinite product
P = ∏∞

k=m(1 + qk) of real numbers is said to converge if there is N ∈ Zm such that 1 + qk 6= 0
for k ≥ N and

Pn =
n

∏
k=N

(1 + qk)

has a finite and nonzero limit as n→ ∞.
In case −1 < qk ≤ 0, {Pn} is a positive nonincreasing sequence, thus P being divergent (not

converging to a nonzero number) means that

lim
n→∞

n

∏
k=N

(1 + qk) = 0. (2.2)

Moreover, the convergence of P is equivalent to the convergence of the series ∑∞
k=N ln(1 + qk)

and this is equivalent to the convergence of the series ∑∞
k=N qk. Indeed, if ∑∞

k=m qk is conver-
gent, then limk→∞ qk = 0 and hence,

lim
k→∞

ln(1 + qk)

qk
= 1,

i.e., ln(1 + qk) ∼ qk as k → ∞. Since summing preserves asymptotic equivalence, we get that
∑∞

k=m ln(1 + qk) converges. Similarly, we obtain the opposite direction.
Therefore, in case −1 < qk ≤ 0, (2.2) holds if and only if ∑∞

k=N qk diverges to −∞.
The following holds.

Lemma 2.3. Let y be a positive nonincreasing sequence on Zm such that limk→∞ yk = 0. Then, for
any M ∈ (0, 1),

lim
k→∞

k

∏
j=m

(
1 + M

∆yj

yj

)
= 0.
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Proof. From the theory of infinite products it is sufficient to show that

∞

∑
j=m

∆yj

yj
= −∞. (2.3)

We distinguish two cases:
1) there exists N > 0 such that yk+1/yk ≥ N for k ∈ Zm;
2) infk∈Zm yk+1/yk = 0.

As for the former case, from the Lagrange mean value theorem, we have

−∆ ln yk = −
∆yk

ξk
≤ − ∆yk

yk+1
= −∆yk

yk
· yk

yk+1
≤ − ∆yk

Nyk
,

where ξk is such that yk+1 ≤ ξk ≤ yk for k ∈ Zm. Summing the above inequality from m to
n− 1, n > m, we get

ln ym − ln yn ≤ −
1
N

n−1

∑
j=m

∆yj

yj
.

Since limn→∞ yn = 0, letting n→ ∞ we get (2.3).
Next we deal with the case infk∈Zm yk+1/yk = 0. This is equivalent to

lim inf
k→∞

∆yk

yk
= lim inf

k→∞

yk+1

yk
− 1 = −1,

which implies (2.3), since ∑k
j=m ∆yj/yj is negative nonincreasing.

3 A Sturm-type comparison theorem for linear equations

The main idea of our approach is based on an application of a fixed point theorem and on
global monotonicity properties of recessive solutions of linear equations. To this goal, in this
section we prove a new Sturm-type comparison theorem for linear difference equations.

Consider the linear equation

∆(rk∆yk) + pkyk+1 = 0, (3.1)

where pk ≥ 0 and rk > 0 on Zm. We say that a solution y of equation (3.1) has a generalized
zero in n if either yn = 0 or yn−1yn < 0, see e.g. [1, 3]. A (nontrivial) solution y of (3.1) is said
to be nonoscillatory if ykyk+1 > 0 for all large k. Equation (3.1) is said to be nonoscillatory if all
its nontrivial solutions are nonoscillatory. It is well known that, by the Sturm type separation
theorem, the nonoscillation of (3.1) is equivalent to the existence of a nonoscillatory solution
see e.g. [2, Theorem 1.4.4], [3].

If (3.1) is nonoscillatory, then there exists a nontrivial solution u, uniquely determined up
to a constant factor, such that

lim
k→∞

uk

yk
= 0,

where y denotes an arbitrary nontrivial solution of (3.1), linearly independent of u. Solution
u is called recessive solution and y a dominant solution, see e.g. [4]. Recessive solutions can be
characterized in the following ways (both these properties are proved in [4]):
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(i) A solution u of (3.1) is recessive if and only if

∞

∑
j=m

1
rjujuj+1

= ∞.

(ii) For a recessive solution u of (3.1) and any linearly independent solution y (i.e. dominant
solution) of (3.1), one has

∆uk

uk
<

∆yk

yk
eventually. (3.2)

Along with equation (3.1) consider the equation

∆(Rk∆xk) + Pkxk+1 = 0 (3.3)

where Pk ≥ pk ≥ 0 and 0 < Rk ≤ rk on Zm; equation (3.3) is said to be a Sturm majorant of
(3.1).

From [2, Lemma 1.7.2], it follows that if (3.3) is nonoscillatory, then (3.1) is nonoscillatory
as well. In this section we always assume that (3.3) is nonoscillatory.

The following two propositions are slight modifications of results in [16]. They are prepara-
tory to the main comparison result.

Proposition 3.1 ([16, Lemma 2]). Let x be a positive solution of (3.3) on Zm and y be a solution of
(3.1) such that ym > 0 and rm∆ym/ym ≥ Rm∆xm/xm. Then

yk > 0 and
rk∆yk

yk
≥ Rk∆xk

xk
, for k ∈ Zm.

Moreover, if y, ȳ are solutions of (3.1) such that yk > 0, k ∈ Zm, and ȳm > 0, ∆ȳm/ȳm > ∆ym/ym,
then

ȳk > 0 and
∆ȳk

ȳk
>

∆yk

yk
, for k ∈ Zm.

Proposition 3.2 ([16, Theorem 3]). If a recessive solution v of (3.1) has a generalized zero in N ∈ Zm

and has no generalized zero in (N, ∞), then any solution of (3.3) has a generalized zero in (N− 1, ∞).

The following lemma is an improved version of [16, Theorem 1].

Lemma 3.3. Let u, v be recessive solutions of (3.1) and (3.3), respectively, satisfying uk > 0, vk > 0
for k ∈ Zm. Then

rk∆uk

uk
≤ Rk∆vk

vk
for k ∈ Zm. (3.4)

Proof. By contradiction, assume that there exists N ∈ Zm such that rN∆uN/uN > RN∆vN/vN .
Let y be a solution of (3.1) satisfying yN > 0 and rN∆yN/yN = RN∆vN/vN . Then rN∆yN/yN <

rN∆uN/uN , (which implies that y is linearly independent with u) and from Proposition 3.1 we
get yk > 0, ∆yk/yk < ∆uk/uk for k ∈ ZN , which contradicts (3.2).

Lemma 3.4. Let x be a positive solution of (3.3) on Zm. Then there exists a recessive solution u of
(3.1), which is positive on Zm.
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Proof. Let u be a recessive solution of (3.1), whose existence is guaranteed by nonoscillation of
majorant equation (3.3). By contradiction, assume that there exists N ∈ Zm such that

uN 6= 0, uNuN+1 ≤ 0.

Then u cannot have a generalized zero in (N + 1, ∞). Indeed, if u has a generalized zero in
M ∈ ZN+2, then by the Sturm comparison theorem on a finite interval (see e.g., [2, Theo-
rem 1.4.3], [3, Theorem 1.2]), every solution of (3.3) has a generalized zero in (N, M], which
is a contradiction with the positivity of x. Applying now Proposition 3.2, we get that any
solution of (3.3) has a generalized zero in (N, ∞) which again contradicts the positivity of x
on Zm.

The next theorem is, in fact, the main statement of this section and it plays an important
role in the proof of Theorem 4.1.

Theorem 3.5. Let x be a positive solution of (3.3) on Zm. Then there is a recessive solution u of (3.1),
which is positive on Zm and satisfies

rk∆uk

uk
≤ Rk∆xk

xk
, k ∈ Zm. (3.5)

In addition, if x is decreasing (nonincreasing) on Zm, then u is decreasing (nonincreasing) on Zm.

Proof. Let x be a positive solution of (3.3) on Zm. From Lemma 3.4, there exist a recessive
solution u of (3.1) and a recessive solution v of (3.3), which are both positive on Zm. We claim
that

∆vk

vk
≤ ∆xk

xk
for k ∈ Zm. (3.6)

Indeed, suppose by contradiction that there is N ∈ Zm such that ∆xN/xN < ∆vN/vN . Then,
in view of Proposition 3.1, ∆xk/xk < ∆vk/vk for k ∈ ZN , which contradicts (3.2). Combining
(3.6) and (3.4), we obtain (3.5). The last assertion of the statement is an immediate consequence
of (3.5).

Taking p = P and r = R in Theorem 3.5, we get the following corollary.

Corollary 3.6. If (3.3) has a positive decreasing (nonincreasing) solution on Zm, then there exists a
recessive solution of (3.3) which is positive decreasing (nonincreasing) on Zm.

We close this section by the following characterization of the asymptotic behavior of reces-
sive solutions which will be used later.

Lemma 3.7. Let
∞

∑
j=m

1
rj

< ∞ and
∞

∑
j=m

pj

∞

∑
i=j+1

1
ri

< ∞.

Then (3.1) is nonoscillatory. Moreover, for every d 6= 0, (3.1) has an eventually positive, nonincreasing
recessive solution u, tending to zero and satisfying

lim
k→∞

uk

∑∞
j=k r−1

j

= d.

Proof. It follows from [11, Lemma 2.1 and Corollary 3.6]. More precisely, the result [11,
Lemma 2.1] guarantees limk→∞ rk∆uk = −d < 0. Now, from the discrete L’Hospital rule,
we get

lim
k→∞

uk

∑∞
j=k r−1

j

= lim
k→∞

∆uk

−r−1
k

= d.
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4 Main result: solvability of BVP

Our main result is the following.

Theorem 4.1. Let (Hi), i=1,2,3, be satisfied and

Lc = sup
u∈(0,c]

F(u)
u

. (4.1)

If the linear difference equation

∆
(

ak√
1 + c2

∆zk

)
+ Lcbkzk+1 = 0, (4.2)

has a positive decreasing solution on Zm, then BVP (1.1)–(1.2) has at least one solution.

Effective criteria, ensuring the existence of a positive decreasing solution of (4.2), are given
at the end of this section.

From this theorem and its proof we get the following.

Corollary 4.2. Let (Hi), i = 1, 2, 3, be satisfied. If (4.2) has a positive decreasing solution on Zm for
c = c0 > 0, then (1.1)–(1.2) has at least one solution for every c ∈ (0, c0].

To prove Theorem 4.1, we use a fixed point approach, based on the Schauder–Tychonoff
theorem on the Fréchet space

X = {u : Zm → R}

of all sequences defined on Zm, endowed with the topology of pointwise convergence on Zm.
The use of the Fréchet space X, instead of a suitable Banach space, is advantageous especially
for the compactness test. Even if this is true also in the continuous case, in the discrete case
the situation is even more simple, since any bounded set in X is relatively compact from the
discrete Arzelà–Ascoli theorem. We recall that a set Ω ⊂ X is bounded if the sequences in
Ω are equibounded on every compact subset of Zm. The compactness test is therefore very
simple just owing to the topology of X, while in discrete Banach spaces can require some
checks which are not always immediate.

Notice that, if Ω ⊂ X is bounded, then Ω∆ = {∆u, u ∈ Ω} is bounded, too. This is a
significant discrepancy between the continuous and the discrete case; such a property can
simplify the solvability of discrete boundary value problems associated to equations of order
two or higher with respect to the continuous counterpart because a-priori bounds for the first
difference

∆xn = xn+1 − xn

are a direct consequences of a-priori bounds for xn, and similarly for higher order differences.

In [20, Theorem 2.1], the authors proved an existence result for BVPs associated to func-
tional difference equations in Fréchet spaces (see also [20, Corollary 2.6], [15, Theorem 4] and
remarks therein). That result is a discrete counterpart of an existence result stated in [10, The-
orem 1.3] for the continuous case, and reduces the problem to that of finding good a-priori
bounds for the unknown of a auxiliary linearized equation.

The function
Φ(v) =

v√
1 + v2
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can be decomposed as
Φ(v) = vJ(v),

where J is a continuous function on R such that limv→0 J(v) = 1. This suggests the form of an
auxiliary linearized equation. Using the same arguments as in the proof of [20, Theorem 2.1],
with minor changes, we have the following.

Theorem 4.3. Consider the (functional) BVP{
∆(an∆xn J(∆xn)) = g(n, x), n ∈ Zm,

x ∈ S,
(4.3)

where J : R→ R and g : Zm ×X→ R are continuous maps, and S is a subset of X.
Let G : Zm×X2 → R be a continuous map such that G(k, q, q) = g(k, q) for all (k, q) ∈ Zm×X.

If there exists a nonempty, closed, convex and bounded set Ω ⊂ X such that:

a) for any u ∈ Ω the problem{
∆(an J(∆un)∆yn) = G(n, y, u), n ∈ Zm,

y ∈ S,
(4.4)

has a unique solution y = T(u);

b) T(Ω) ⊂ Ω;

c) T(Ω) ⊂ S,

then (4.3) has at least one solution.

Proof. We briefly summarize the main arguments, for reader’s convenience, which are a minor
modification of the ones in [20, Theorem 2.1].

Let us show that the operator T : Ω → Ω is continuous with relatively compact image.
The relatively compactness of T(Ω) follows immediately from b), since Ω is bounded. To
prove the continuity of T in Ω, let {uj} be a sequence in Ω, uj → u∞ ∈ Ω, and let vj = T(uj).
Since T(Ω) is relatively compact, {vj} admits a subsequence (still indicated with {vj}) which
is convergent to v∞, with v∞ ∈ S from c). Since J, G are continuous on their domains, we
obtain

0 = ∆(an J(∆uj
n)∆vj

n)− G(n, vj, uj)→ ∆(an J(∆u∞
n )∆v∞

n )− G(n, v∞, u∞)

as j → ∞. The uniqueness of the solution of (4.4) implies v∞ = T(u∞), and therefore T is
continuous. By the Schauder–Tychonoff fixed point theorem, T has at least one fixed point in
Ω, which is clearly a solution of (4.3).

Proof of Theorem 4.1. Let z be the recessive solution of (4.2) such that zm = c, zk > 0, ∆zk ≤ 0,
k ∈ Zm; the existence of a recessive solution with these properties follows from Corollary 3.6.
Further, from Lemma 3.7, we have limk→∞ zk = 0.

Define the set Ω by

Ω =

{
u ∈ X : 0 ≤ uk ≤ c

k−1

∏
j=m

(
1 + M

∆zj

zj

)
, k ∈ Zm

}
,



10 Z. Došlá, S. Matucci and P. Řehák

where X is the Fréchet space of all real sequences defined on Zm, endowed with the topology
of pointwise convergence on Zm, and M = 1/

√
1 + c2 ∈ (0, 1). Clearly Ω is a closed, bounded

and convex subset of X.
For any u ∈ Ω, consider the following BVP∆

(
ak√

1 + (∆uk)2
∆yk

)
+ bk F̃(uk+1)yk+1 = 0, k ∈ Zm,

y ∈ S

(4.5)

where

F̃(v) =
F(v)

v
for v > 0, F̃(0) = lim

v→0+

F(v)
v

is continuous on R+, due to assumption (1.3), and

S =

{
y ∈ X : ym = c, yk > 0, ∆yk ≤ 0 for k ∈ Zm,

∞

∑
j=m

1
ajyjyj+1

= ∞

}
.

Since 0 ≤ uk ≤ c, for every u ∈ Ω, we have −c ≤ ∆uk ≤ c, and so (∆uk)
2 ≤ c2. Therefore,

1√
1 + (∆uk)2

≥ 1√
1 + c2

for every u ∈ Ω and k ∈ Zm. Further F̃(uk+1) ≤ Lc for u ∈ Ω, and hence (4.2) is Sturm
majorant for the linear equation in (4.5). Let ŷ = ŷ(u) be the recessive solution of the equation
in (4.5) such that ŷm = c. Then ŷ is positive nonincreasing on Zm by Theorem 3.5, and, in view
of ŷm = c and the uniqueness of recessive solutions up to the constant factor, ŷ is the unique
solution of (4.5). Define the operator T : Ω→ X by (T u)k = ŷk for u ∈ Ω.

From Theorem 3.5, we get

ak∆ŷk

ŷk
≤ ak∆ŷk

ŷk
√

1 + (∆uk)2
≤ ak M∆zk

zk
≤ 0,

which implies ∆ŷk/ŷk ≤ M∆zk/zk, k ∈ Zm. By Lemma 2.2,

ŷk ≤ c
k−1

∏
j=m

(
1 + M

∆zj

zj

)
, k ∈ Zm,

which yields T (Ω) ⊆ Ω.
Next we show that T (Ω) ⊆ S. Let y ∈ T (Ω). Then there exists {uj} ⊂ Ω such that {T uj}

converges to y (in the topology of X). It is not restrictive to assume {uj} → ū ∈ Ω since Ω is
compact. Since T uj =: ŷj is the (unique) solution of (4.5), we have ŷj

m = c, ŷj
k > 0 and ∆ŷj

k ≤ 0
on Zm for every j ∈ N. Consequently, ym = c, yk ≥ 0, ∆yk ≤ 0 for k ∈ Zm. Further, since
F̃ is continuous, y is a solution of the equation in (4.5) for u = u. Suppose now that there is
T ∈ Zm such that yT = 0. Then clearly ∆yT = 0 and by the global existence and uniqueness
of the initial value problem associated to any linear equation, we get y ≡ 0 on Zm, which
contradicts to ym = c > 0. Thus yk > 0 for all k ∈ Zm.

We have just to prove that ∑∞
j=m(ajyjyj+1)

−1 = ∞. In view of Lemma 3.7, there exists N > 0
such that yk ≤ N ∑∞

j=k a−1
j on Zm. Noting that

∆

(
1

∑∞
j=k a−1

j

)
=

1
ak ∑∞

j=k a−1
j ∑∞

j=k+1 a−1
j

,
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we obtain

k−1

∑
j=m

1
ajyjyj+1

≥
k−1

∑
j=m

1
N2aj ∑∞

i=j a−1
i ∑∞

i=j+1 a−1
i

=
1

N2

k−1

∑
j=m

∆

(
1

∑∞
i=j a−1

i

)

=
1

N2

(
1

∑∞
j=k a−1

j

− 1

∑∞
j=m a−1

j

)
→ ∞ as k→ ∞.

Thus y ∈ S, i.e., T (Ω) ⊆ S. By applying Theorem 4.3, we obtain that the problem∆

(
ak

∆xk√
1 + (∆xk)2

)
+ bkF(xk+1) = 0, k ∈ Zm,

x ∈ S

has at least a solution x̄ ∈ Ω. From the definition of the set Ω,

xk ≤ c
k−1

∏
j=m

(
1 + M

∆zj

zj

)
and since M ∈ (0, 1) and limk→∞ zk = 0, we have

lim
k→∞

k−1

∏
j=m

(
1 + M

∆zj

zj

)
= 0

by Lemma 2.3. Thus x̄k → 0 as k→ ∞, and x̄ is a solution of the BVP (1.1)–(1.2).

Proof of Corollary 4.2. Assume that (4.2) has a positive decreasing solution for c = c0 > 0,
and let c1 ∈ (0, c0). Then equation (4.2) with c = c0 is a Sturm majorant of (4.2) with c = c1,
and from Theorem 3.5, equation (4.2) with c = c1 has a positive decreasing solution. The
application of Theorem 4.1 leads to the existence of a solution of (1.1)–(1.2) for c = c1.

Effective criteria for the solvability of BVP (1.1)–(1.2) can be obtained by considering as a
Sturm majorant of (4.2) any linear equation that is known to have a global positive solution.

In the continuous case, a typical approach to obtaining global positivity of solutions for
equation

(t2y′)′ + γy = 0, t ≥ 1, (4.6)

where 0 < γ ≤ 1/4, is based on the Sturm theory. In virtue of the transformation x = t2y′,
this equation is equivalent to the Euler equation

x′′ +
γ

t2 x = 0, t ≥ 1, (4.7)

whose general solutions are well-known.
In the discrete case, various types of Euler equations are considered in the literature, see,

e.g. [18, 23] and references therein. It is somehow problematic to find a solution for some
natural forms of discrete Euler equations in the self-adjoint form (3.1).

Here our aim is to deal with solutions of Euler type equations.

Lemma 4.4. The equation

∆
(
(k + 1)2∆xk

)
+

1
4

xk+1 = 0 (4.8)

has a recessive solution which is positive decreasing on N.
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Proof. Consider the sequence

yk =
k−1

∏
j=1

2j + 1
2j

, k ≥ 1,

with the usual convention ∏0
j=1 uj = 1. One can verify that y is a positive increasing solution

of the equation

∆2yk +
1

2(k + 1)(2k + 1)
yk+1 = 0 (4.9)

on N.
Set xk = ∆yk. Then x is a positive decreasing solution of the equation

∆(2(k + 1)(2k + 1)∆xk) + xk+1 = 0 (4.10)

on N. Obviously,
2(k + 1)(2k + 1) ≤ 4(k + 1)2, k ≥ 1,

thus (4.10) is a Sturm majorant of (4.8). By Theorem 3.5, (4.8) has a recessive solution which
is positive decreasing on N.

Equation (4.8) can be understand as the reciprocal equation to the Euler difference equation

∆2uk +
1

4(k + 1)2 uk+1 = 0, (4.11)

i.e., these equations are related by the substitution relation uk = d∆xk, d ∈ R, where u satisfies
(4.11) provided x is a solution of (4.8). The form of (4.11) perfectly fits the discretization of the
differential equation (4.7) with γ = 1/4, using the usual central difference scheme.

Corollary 4.5. Let (Hi), i = 1, 2, 3, be satisfied and Lc be defined by (4.1). The BVP (1.1)–(1.2) has at
least one solution if there exists λ > 0 such that for k ≥ 1

ak ≥ 4λ(k + 1)2,
√

1 + c2 Lc bk ≤ λ. (4.12)

Proof. Consider the equation (4.8). By Lemma 4.4, it has a positive decreasing solution on N.
The same trivially holds for the equivalent equation

∆
(
4λ(k + 1)2∆xk

)
+ λxk+1 = 0. (4.13)

Since (4.12) holds, (4.13) is a Sturm majorant of (4.2), and by Theorem 3.5, equation (4.2) has a
positive decreasing solution on N. Now the conclusion follows from Theorem 4.1.

Remark. Note that the sequence b does not need to be bounded. For example, consider as a
Sturm majorant of (4.2) the equation

∆
(
λk2k+1∆xk

)
+ λ2k+1xk+1 = 0, k ≥ 0.

One can check that this equation has the solution xk = 2−k. This leads to the conditions

ak ≥ λk2k+1,
√

1 + c2 Lc bk ≤ λ2k+1 for k ≥ 0

ensuring the solvability of the BVP (1.1)–(1.2).
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Another criteria can be obtained by considering the equation

∆
(
λk3∆xk

)
+ λ

k2 + 3k + 1
k + 2

xk+1 = 0, k ≥ 1

having the solution xk = 1/k. This comparison with (4.2) leads to the conditions

ak ≥ λk3,
√

1 + c2 Lc bk ≤ λ
k2 + 3k + 1

k + 2
for k ≥ 1 .

The following example illustrates our result.

Example 4.6. Consider the BVP
∆
(
(k + 1)2Φ(∆xk)

)
+
| sin k|
4
√

2 k
x3

k+1 = 0, k ≥ 1,

x1 = c, xk > 0, ∆xk ≤ 0, lim
k→∞

xk = 0.
(4.14)

We have Lc = c2, ak = (k + 1)2, and bk = | sin k|
4
√

2 k
. Conditions in (4.12) are fulfilled for any

c ∈ (0, 1] when taking λ = 1/4. Indeed,

ak = (k + 1)2 = 4λ(k + 1)2

and √
1 + c2Lcbk =

√
1 + c2c2bk ≤

√
2bk ≤

1
4
| sin k| ≤ 1

4
= λ.

Corollary 4.5 now guarantees solvability of the BVP (4.14) for any c ∈ (0, 1].

5 Comments and open problems

It is interesting to compare our discrete BVP with the continuous one investigated in [13].
Here the BVP for the differential equation with the Euclidean mean curvature operator

(
a(t)

x′√
1 + x′2

)′
+ b(t)F(x) = 0, t ∈ [1, ∞),

x(1) = 1, x(t) > 0, x′(t) ≤ 0 for t ≥ 1, lim
t→∞

x(t) = 0,
(P)

has been considered. Sometimes solutions of differential equations satisfying the condition

x(t) > 0, x′(t) ≤ 0 , t ∈ [1, ∞),

are called Kneser solutions and the problem to find such solution is called Kneser problem.
The problem (P) has been studied under the following conditions:

(C1) The function a is continuous on [1, ∞), a(t) > 0 in [1, ∞), and∫ ∞

1

1
a(t)

dt < ∞.

(C2) The function b is continuous on [1, ∞), b(t) ≥ 0 and∫ ∞

1
b(t)

∫ ∞

t

1
a(s)

dsdt < ∞.
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(C3) The function F is continuous on R, F(u)u > 0 for u 6= 0, and such that

lim sup
u→0+

F(u)
u

< ∞. (5.1)

The main result for solvability of (P) is the following. Note that the principal solution for
linear differential equation is defined similarly as the recessive solution, see e.g. [13, 17].

Theorem 5.1 ([13, Theorem 3.1]). Let (Ci), i = 1, 2, 3, be verified and

L = sup
u∈(0,1]

F(u)
u

.

Assume
α = inf

t≥1
a(t)A(t) > 1,

where
A(t) =

∫ ∞

t

1
a(s)

ds.

If the principal solution z0 of the linear equation(
a(t)z′

)′
+

α√
α2 − 1

L b(t)z = 0, t ≥ 1,

is positive and nonincreasing on [1, ∞), then the BVP (P) has at least one solution.

It is worth to note that the method used in [13] does not allow that α = 1 and thus
Theorem 5.1 is not immediately applicable when a(t) = t2. In [13] there are given several
effective criteria for the solvability of the BVP (P) which are similar to Corollary 4.5. An
example, which can be viewed as a discrete counterpart, is the above Example 4.6.

Open problems.

(1) The comparison between Theorem 4.1 for the discrete BVP and Theorem 5.1 for the con-
tinuous one, suggests to investigate the BVP (1.1)–(1.2) on times scales.

(2) In [13], the solvability of the continuous BVP has been proved under the weaker assump-
tion (5.1) posed on F. This is due to the fact that the set Ω is defined using a precise lower
bound which is different from zero. It is an open problem if a similar estimation from below
can be used in the discrete case and assumption (1.3) can be replaced by (5.1).

(3) Similar BVPs concerning the existence of Kneser solutions for difference equations with
p-Laplacian operator are considered in [12] when bk < 0 for k ∈ Z+. It should be interesting
to extend the solvability of the BVP (1.1)–(1.2) to the case in which the sequence b is negative
and in the more general situation when the sequence b is of indefinite sign.

Acknowledgements

The authors thank to anonymous referee for his/her valuable comments.

The research of the first and third authors has been supported by the grant GA20-11846S
of the Czech Science Foundation. The second author was partially supported by Gnampa,
National Institute for Advanced Mathematics (INdAM).



Global positive decaying solutions for difference equations 15

References

[1] R. P. Agarwal, Difference equations and inequalities. Theory, methods, and applications, 2nd
Ed., Monographs and Textbooks in Pure and Applied Mathematics, Vol. 228, Marcel
Dekker, Inc., New York, 2000. MR1740241

[2] R. P. Agarwal, M. Bohner, S. R. Grace, D. O’Regan, Discrete oscillation theory, Hindawi
Publishing Corporation, New York, 2005. MR2179948

[3] D. Aharonov, M. Bohner, U. Elias, Discrete Sturm comparison theorems on finite and
infinite intervals, J. Difference Equ. Appl. 18(2012), 1763–1771. https://doi.org/10.1080/
10236198.2011.594440; MR2979834

[4] C. D. Ahlbrandt, Dominant and recessive solutions of symmetric three term recur-
rences, J. Differential Equations 107(1994), 238–258. https://doi.org/10.1006/jdeq.
1994.1011; MR1264521

[5] C. Bereanu, J. Mawhin, Existence and multiplicity results for some nonlinear problems
with singular ϕ-Laplacian, J. Differential Equations 243(2007), 536–557. https://doi.org/
10.1016/j.jde.2007.05.014; MR2371799

[6] C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of ϕ-Laplacians
with possibly bounded ϕ, Nonlinear Anal. 68(2008), 1668–1681. https://doi.org/10.
1016/j.na.2006.12.049; MR2388840

[7] C. Bereanu, J. Mawhin, Boundary value problems for second-order nonlinear difference
equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl. 14(2008), 1099–
1118. https://doi.org/10.1080/10236190802332290; MR2447187

[8] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic
problems with discontinuous nonlinearities, J. Differential Equations 244(2008), 3031–3059.
https://doi.org/10.1016/j.jde.2008.02.025; MR2420513

[9] G. Bonanno, P. Candito, Nonlinear difference equations investigated via critical point
methods, Nonlinear Anal. 70(2009), 3180–3186. https://doi.org/10.1016/j.na.2008.04.
021; MR2503063

[10] M. Cecchi, M. Furi, M. Marini, On continuity and compactness of some nonlinear
operators associated with differential equations in noncompact intervals, Nonlinear Anal.
9(1985), 171–180. https://doi.org/10.1016/0362-546X(85)90070-7; MR777986

[11] Z. Došlá, M. Cecchi, M. Marini, Nonoscillatory half-linear difference equations and
recessive solutions, Adv. Difference Equ. 2005, No. 2, 193–204. https://doi.org/10.1155/
ade.2005.193; MR2197132

[12] Z. Došlá, M. Marini, S. Matucci, Decaying solutions for discrete boundary value prob-
lems on the half-line, J. Difference Equ. Appl. 22(2016), 1244–1260. https://doi.org/10.
1080/10236198.2016.1190349; MR3589590

[13] Z. Došlá, M. Marini, S. Matucci, Positive decaying solutions to BVPs with mean cur-
vature operator, Rend. Istit. Mat. Univ. Trieste 49(2017), 147–164. https://doi.org/10.
13137/2464-8728/16210; MR3748508

https://www.ams.org/mathscinet-getitem?mr=1740241
https://www.ams.org/mathscinet-getitem?mr=2179948
https://doi.org/10.1080/10236198.2011.594440
https://doi.org/10.1080/10236198.2011.594440
https://www.ams.org/mathscinet-getitem?mr=2979834
https://doi.org/10.1006/jdeq.1994.1011
https://doi.org/10.1006/jdeq.1994.1011
https://www.ams.org/mathscinet-getitem?mr=1264521
https://doi.org/10.1016/j.jde.2007.05.014
https://doi.org/10.1016/j.jde.2007.05.014
https://www.ams.org/mathscinet-getitem?mr=2371799
https://doi.org/10.1016/j.na.2006.12.049
https://doi.org/10.1016/j.na.2006.12.049
https://www.ams.org/mathscinet-getitem?mr=2388840
https://doi.org/10.1080/10236190802332290
https://www.ams.org/mathscinet-getitem?mr=2447187
https://doi.org/10.1016/j.jde.2008.02.025
https://www.ams.org/mathscinet-getitem?mr=2420513
https://doi.org/10.1016/j.na.2008.04.021
https://doi.org/10.1016/j.na.2008.04.021
https://www.ams.org/mathscinet-getitem?mr=2503063
https://doi.org/10.1016/0362-546X(85)90070-7
https://www.ams.org/mathscinet-getitem?mr=777986
https://doi.org/10.1155/ade.2005.193
https://doi.org/10.1155/ade.2005.193
https://www.ams.org/mathscinet-getitem?mr=2197132
https://doi.org/10.1080/10236198.2016.1190349
https://doi.org/10.1080/10236198.2016.1190349
https://www.ams.org/mathscinet-getitem?mr=3589590
https://doi.org/10.13137/2464-8728/16210
https://doi.org/10.13137/2464-8728/16210
https://www.ams.org/mathscinet-getitem?mr=3748508


16 Z. Došlá, S. Matucci and P. Řehák
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