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Abstract. In 1998, Artés, Kooij and Llibre proved that there exist 44 structurally stable

topologically distinct phase portraits modulo limit cycles, and in 2018 Artés, Llibre and
Rezende showed the existence of at least 204 (at most 211) structurally unstable topo-

logically distinct codimension-one phase portraits, modulo limit cycles. Artés, Oliveira
and Rezende (2020) started the study of the codimension-two systems by the set (AA),

of all quadratic systems possessing either a triple saddle, or a triple node, or a cusp

point, or two saddle-nodes. They got 34 topologically distinct phase portraits mod-
ulo limit cycles. Here we consider the sets (AB) and (AC). The set (AB) contains all

quadratic systems possessing a finite saddle-node and an infinite saddle-node obtained
by the coalescence of an infinite saddle with an infinite node. The set (AC) describes all

quadratic systems possessing a finite saddle-node and an infinite saddle-node, obtained

by the coalescence of a finite saddle (respectively, finite node) with an infinite node (re-
spectively, infinite saddle). We obtain all the potential topological phase portraits of

these sets and we prove their realization. From the set (AB) we got 71 topologically
distinct phase portraits modulo limit cycles and from the set (AC) we got 40 ones.
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portrait, saddle-node.
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1 Introduction and statement of the main results

Mathematicians are fascinated in closing problems. Having a question solved or even sign

with a “q.e.d” a question asked in the past is a pleasure which is directly proportional to the

time elapsed between the formulation of the question and the moment of the answer.
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The advent of the differential calculus opened the possibility of solving many questions

that medieval mathematicians asked, but at the same time it opened the possibility of for-

mulating many new other questions. The search for primitive functions that could not be

expressed algebraically or with a finite number of analytic terms complicated the future re-

search lines, and even new areas of Mathematics were created to give answers to these ques-

tions. And beside the problem of finding a primitive to a differential equation in a single

dimension, if we add the possibility of more dimensions, the problem becomes much more

difficult.

Therefore, it took almost 200 years between the appearance of the first system of linear

differential equations and its complete resolution by Laplace in 1812. After the resolution of

linear differential systems, for any dimension, it seemed natural to address the classification

of quadratic differential systems. However, it was found that the problem would not have

an easy and fast solution. Unlike the linear systems that can be solved analytically, quadratic

systems (or higher degree systems) do not generically admit a solution of that kind, calculable

in a finite number of terms.

Therefore, for the resolution of non-linear differential systems, another strategy was chosen

and it allowed the creation of a new area of knowledge in Mathematics: the Qualitative Theory

of Ordinary Differential Equations [27]. Since we are not able to give a concrete mathematical

expression to the solution of a system of differential equations, this theory intends to express

by means of a complete and precise drawing the behavior of any particle located in a vector

field governed by such a differential equation, i.e. its phase portrait.

Even with all the reductions made to the problem until now, there are still difficulties.

The most expressive difficulty is that the phase portraits of differential systems may have

invariant sets as limit cycles and graphics. A linear system cannot generate limit cycles; at

most they can present a completely circular phase portrait where all the orbits are periodic.

But a differential system in the plane, polynomial or not, and starting with the quadratic ones,

may present several limit cycles. It is natural to find an infinite number of these cycles in non-

polynomial problems, but the intuition seems to indicate that a polynomial system should not

have an infinite number of limit cycles in a similar way as it cannot have an infinite number

of isolated singular points. And because the number of singular points is linked to the degree

of the polynomial system, it also seems logical to think that the number of limit cycles could

also have a similar link, either directly as the number of singular points, or even in an indirect

way from the number the parameters of such systems.

In 1900, David Hilbert [21] proposed a set of 23 problems to be solved in the 20th century,

and among them, the second part of his well-known 16th problem asks for the maximum

number of limit cycles that a polynomial differential system in the plane with degree n may

have. More than one hundred years after, we do not have an uniform upper bound for this

generic problem, only for specific families of such a system.

During discussions, in 1966 Coppel [16] expressed the belief that we could obtain the

classification of phase portraits of quadratic systems by purely algebraic means. That is, by

means of algebraic equalities and inequalities, it should be possible to determine the phase

portrait of a quadratic system. This claim was not easy to refute at that time, since the isolated

finite singular points of a quadratic system can be found by means of the resultant that is of

fourth degree, and its solutions can be calculated algebraically, like those of infinity. Moreover,

at that time it was known how to generate limit cycles by a Hopf bifurcation, whose conditions

are also determined algebraically.

On the other hand, in 1991, Dumortier and Fiddelears [17] showed that, starting with the
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quadratic systems (and following all the higher-degree systems), there exist geometric and

topological phenomena in phase portraits of such a system whose determination cannot be

fixed by means of algebraic expressions. More specifically, most part of the connections among

separatrices and the occurrence of double or semi-stable limit cycles cannot be algebraically

determined.

Therefore, the complete classification of quadratic systems is a very difficult task at the

moment and it depends on the solution of the second part of Hilbert’s 16th problem, even at

least partially for the quadratic case.

Even so, a lot of problems have been appearing related to quadratic systems to which it has

been possible to give an answer. In fact, there are more than one thousand articles published

that are directly related to quadratic systems. John Reyn, from Delft University (Netherlands),

prepared a bibliography that was published several times until his retirement (see [28,30–33]).

It is worth mentioning that in the last two decades many other articles related to quadratic

systems have appeared, so that the number of one thousand published papers on the subject

may have been widely exceeded.

Many of the questions proposed and the problems solved have dealt with subclassifica-

tions of quadratic systems, that is, classifications of systems that shared some characteristic

in common. For instance, we have systems with a center [26, 35, 36, 38], with a weak focus of

third order [3,24], with a nilpotent singularity [22], without real singular points [20], with two

invariant lines [28] and so on, up to a thousand articles. In some of them complete answers

could be given, including the problem of limit cycles (the existence and the number of limit

cycles), but in other cases, the classification was done modulo limit cycles, that is, all the pos-

sible phase portraits without taking into account the presence and number of cycles. Since in

quadratic systems a limit cycle can only surround a single finite singular point, which must

necessarily be a focus [16], then it is enough to identify the outermost limit cycle of a nesting

of cycles with a point, and interpret the stability of that point as the outer stability of this

cycle, and study everything that can happen to the phase portrait in the rest of the space.

Within the families of quadratic systems that were studied in the 20th century, we would

highlight the study of the structurally stable quadratic systems, modulo limit cycles. That is,

the goal was to determine how many and which phase portraits of a quadratic system cannot

be modified by small perturbations in their coefficients. To obtain a structurally stable system

modulo limits cycles we need a few conditions: we do not allow the existence of multiple

singular points and the existence of connections of separatrices. Centers, weak foci, semi-

stable cycles, and all other unstable elements belong to the quotient modulo limit cycles. This

systematic analysis [2] showed that the structurally stable quadratic systems have a total of 44

topologically distinct phase portraits.

From this scenario we observe that if we intent to work with classification of phase portraits

of quadratic systems before the solution of the second part of Hilbert’s 16th problem, this will

have to be done modulo limit cycles.

Additionally, the entire family of quadratic systems by definition depends on twelve pa-

rameters, but due to the action of the group of the real affine transformations and time rescal-

ing, this family ultimately depends on five parameters, but this is still a large number.

There are two ways to carry out a systematic study of all the phase portraits of the

quadratic systems. One of them is the one initiated by Reyn in which he began by study-

ing the phase portraits of all the quadratic systems in which all the finite singular points have

coalesced with infinite singular points [29]. Later, he studied those in which exactly three

finite singular points have coalesced with points of infinity, so there remains one real finite
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singularity. And then he completed the study of the cases in which two finite singular points

have coalesced with points of infinity, originating two real points, or one double point, or two

complex points. His work on finite multiplicity three was incomplete and the one on finite

multiplicity four was inaccessible.

In another approach, instead of working from the highest degrees of degeneracy to the

lower ones, is going to reverse direction. We already know that the structurally stable qua-

dratic systems produce 44 topologically distinct phase portrait, as already mentioned before.

In [6] the authors classified the structurally unstable quadratic systems of codimension one

modulo limit cycles, which are systems having one and only one of the simplest structurally

unstable objects: a saddle-node of multiplicity two (finite or infinite), a separatrix from one

saddle point to another, or a separatrix forming a loop for a saddle point with its divergence

nonzero. All the phase portraits of codimension one are split into four sets according to the

possession of a structurally unstable element: (A) possessing a finite semi-elemental saddle-

node, (B) possessing an infinite semi-elemental saddle-node (0
2)SN, (C) possessing an infinite

semi-elemental saddle-node (1
1)SN, and (D) possessing a separatrix connection. This last set

is split into five subsets according to the type of the connection: (a) finite-finite (heteroclinic

orbit), (b) loop (homoclinic orbit), (c) finite-infinite, (d) infinite-infinite between symmetric

points, and (e) infinite-infinite between adjacent points. The study of the codimension-one

systems was done in approximately 20 years and finally it was obtained at least 204 (and at

most 211) topologically distinct phase portraits of codimension one modulo limit cycles.

The next step is to study the structurally unstable quadratic systems of codimension two

(see [12]), modulo limit cycles. Up to now, we have mentioned many times the word “codi-

mension” and this is a clear concept in Geometry. However, in this classification we want

to obtain topologically distinct phase portraits, and we want to group them according to

their level of degeneracy. So, what was clear for structurally stable phase portraits and for

codimension-one phase portraits (modulo limit cycles) may become a little weird if we con-

tinue in this same way, so we must give a definition of codimension adapted to this specific

set that we want to classify.

Definition 1.1. We say that a phase portrait of a quadratic vector field is structurally stable if

any sufficiently small perturbation in the parameter space leaves the phase portrait topologi-

cally equivalent to the previous one.

Definition 1.2. We say that a phase portrait of a quadratic vector field is structurally unstable

of codimension k ∈ N if any sufficiently small perturbation in the parameter space either

leaves the phase portrait topologically equivalent the previous one or it moves it to a lower

codimension one, and there is at least one perturbation that moves it to the codimension k− 1.

Remark 1.3.

1. When applying these definitions, modulo limit cycles, to phase portraits with centers,

it would say that some phase portraits with centers would be of codimension as low as

two, while geometrically they occupy a much smaller region in R12. So, the best way to

avoid inconsistencies in the definitions is to tear apart the phase portraits with centers,

that we know they are in number 31 (see [36]), and just work with systems without

centers.

2. Starting in cubic systems, the definition of topologically equivalence, modulo limit cy-

cles, becomes more complicated since we can have limit cycles having only one singu-
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larity in its interior or more than one. So we cannot collapse the limit cycle because its

interior is also relevant for the phase portrait.

3. Moreover, our definition of codimension needs also more precision starting with cubic

systems due to new phenomena that may happen there.

Let Pn(R2) be the set of all vector fields in R2 of the form X(x, y) = (P(x, y), Q(x, y)),

with P and Q polynomials in the variables x and y of degree at most n (with n ∈ N). In

this set we consider the coefficient topology by identifying each vector field X ∈ Pn(R2) with a

point of R(n+1)(n+2) (see more details in [6]). According to the previous definition concerning

codimension two, and also according to the previously known results of codimension one, we

have the result.

Theorem 1.4. A polynomial vector field in P2(R2) is structurally unstable of codimension two modulo

limit cycles if and only if all its objects are stable except for the break of exactly two stable objects. In

other words, we allow the presence of two unstable objects of codimension one or one of codimension

two.

In what follows, instead of talking about codimension one modulo limit cycles, we will

simply say codimension one∗. Analogously we will simply say codimension two∗ instead of

talking about codimension two modulo limit cycles.

Combining the classes of codimension one∗ quadratic vector fields one to each other, we

obtain 10 new classes, where one of them is split into 15 subsets, according to Tables 1.1 and

1.2.

(A) (B) (C) (D)

(A) (AA) - - -

(B) (AB) (BB) - -

(C) (AC) (BC) (CC) -

(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) see Table 1.2

Table 1.1: Sets of structurally unstable quadratic vector fields of codimension

two considered from combinations of the classes of codimension one∗: (A), (B),

(C), and (D) (which in turn is split into (a), (b), (c), (d), and (e)).

(a) (b) (c) (d) (e)

(a) (aa)

(b) (ab) (bb)

(c) (ac) (bc) (cc)

(d) (ad) (bd) (cd) (dd)

(e) (ae) (be) (ce) (de) (ee)

Table 1.2: Sets of structurally unstable quadratic vector fields of codimension two∗

in the class (DD) (see Table 1.1).

Geometrically, the codimension two∗ classes can be described as follows. Let X be a codi-

mension one∗ quadratic vector field. We have the following classes:

(AA) When X already has a finite saddle-node and either a finite saddle (respectively a fi-

nite node) of X coalesces with the finite saddle-node, giving birth to a semi-elemental
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triple saddle: s(3) (respectively a triple node: n(3)), or when both separatrices of the

saddle-node limiting its parabolic sector coalesce, giving birth to a cusp of multiplic-

ity two: ĉp(2), or when another finite saddle-node is formed, having then two finite

saddle-nodes: sn(2)+sn(2). Since the phase portraits with s(3) and with n(3) would be

topologically equivalent to structurally stable phase portraits and we are mainly inter-

ested in new phase portraits, we will skip them in this classification. Anyway, we may

find them in the papers [11] and [13].

(AB) When X already has a finite saddle-node and an infinite saddle, and an infinite node

of X coalesce with a finite saddle-node: sn(2)+(
0
2)SN.

(AC) When X already has a finite saddle-node and a finite saddle (respectively node), and

an infinite node (respectively saddle) of X coalesce: sn(2)+(
1
1)SN.

(AD) When X has already a finite saddle-node and a separatrix connection is formed, con-

sidering all five types of class (D).

(BB) When an infinite saddle (respectively an infinite node) of X coalesces with an existing

infinite saddle-node (0
2)SN of X, leading to a triple saddle: (0

3)S (respectively a triple

node: (0
3)N). This case is irrelevant to the production of new phase portraits since

all the possible phase portraits that may produce are topologically equivalent to an

structurally stable one.

(BC) When a finite antisaddle (respectively finite saddle) of X coalesces with an existing

infinite saddle-node (0
2)SN of X, leading to a nilpotent elliptic saddle (̂1

2)E − H (re-

spectively nilpotent saddle (̂1
2)HHH − H). Or it may also happen that a finite saddle

(respectively node) coalesces with an elemental node (respectively saddle) in a phase

portrait having already an (0
2)SN, having then in total (1

1)SN +(0
2)SN.

(BD) When we have an infinite saddle-node(0
2)SN plus a separatrix connection, considering

all five types of class (D).

(CC) This case has two possibilities:

i) a finite saddle (respectively finite node) of X coalesces with an existing infinite

saddle-node (1
1)SN, leading to an semi-elemental triple saddle (2

1)S (respectively

an semi-elemental triple node (2
1)N),

ii) a finite saddle (respectively node) and an infinite node (respectively saddle) of

X coalesce plus an another existing infinite saddle-node (1
1)SN, leading to two

infinite saddle-nodes(1
1)SN+(1

1)SN.

The first case is irrelevant to the production of new phase portraits since all the possible

phase portraits that may produce are topologically equivalent to an structurally stable

one.

(CD) When we have an infinite saddle-node (1
1)SN plus a saddle to saddle connection, con-

sidering all five types of class (D).

(DD) When we have two saddle to saddle connections, which are grouped as follows:
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(aa) two finite-finite heteroclinic connections;

(ab) a finite-finite heteroclinic connection and a loop;

(ac) a finite-finite heteroclinic connection and a finite-infinite connection;

(ad) a finite-finite heteroclinic connection and an infinite-infinite connection between

symmetric points;

(ae) a finite-finite heteroclinic connection and an infinite-infinite connection between

adjacent points;

(bb) two loops;

(bc) a loop and a finite-infinite connection;

(bd) a loop and an infinite-infinite connection between symmetric points;

(be) a loop and an infinite-infinite connection between adjacent points;

(cc) two finite-infinite connections;

(cd) a finite-infinite connection and an infinite-infinite connection between symmetric

points;

(ce) a finite-infinite connection and an infinite-infinite connection between adjacent

points;

(dd) two infinite-infinite connections between symmetric points;

(de) an infinite-infinite connection between symmetric points and an infinite-infinite

connection between adjacent points;

(ee) two infinite-infinite connections between adjacent points.

Some of these cases have also been proved to be empty in an on course paper [8].

In [12] the authors begin the study of codimension-two quadratic systems. The approach is

the same used in the previous two works [2,6]. One must start by looking for all the potential

topological phase portraits (i.e. phase portraits that can be drawn on paper) of codimension

two modulo limit cycles, and then try to realize all of them (i.e. to find examples of quadratic

differential systems whose phase portraits are exactly those phase portraits obtained previ-

ously) or to show that some of them are non-realizable or impossible (i.e. in case of absence

of examples for the realization of a phase portrait, say Ψ, it is necessary to prove that there is

no quadratic differential system whose phase portrait is topologically equivalent to Ψ).

In [12] the authors have considered the set (AA) obtained by the coalescence of two finite

singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-

nodes. They obtained all the potential topological phase portraits modulo limit cycles of the

set (AA) and proved their realization. In their study they got 34 new topologically distinct

phase portraits (of codimension two) in the Poincaré disc modulo limit cycles. Moreover, they

also proved the impossibility of one phase portrait among the 204 phase portraits from [6].

Therefore, in [6] they actually have at least 203 (and at most 210) topologically distinct phase

portraits of codimension one modulo limit cycles. Additionally, more recent studies (in a

preprint level) have shown the impossibility of another phase portrait among the 203 cited

above. In that study it was also verified that, in fact, there exist at least 202 (and at most 209)

topologically distinct phase portraits of codimension one modulo limit cycles.

In this paper we intend to contribute to the classification of the phase portraits of planar

quadratic differential systems of codimension two, modulo limit cycles. According to what

was explained before, since there are more than 10 cases of codimension two to be analyzed,
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it is impracticable to write a single paper with all the results. So, in [12] the authors have

decided to split this study in several papers and this present article is the second one of this

series. We indicate [2, 6, 12] for more details of the context of this study as well for all related

definitions.

Here we present all the global phase portraits of the vector fields X ∈ P2(R2) belonging to

sets (AB) and (AC) and we study their realization. The set (AB) contains all quadratic systems

possessing a finite saddle-node sn(2) and an infinite saddle-node of type(0
2)SN obtained by the

coalescence of an infinite saddle with an infinite node. The set (AC) describes all quadratic

systems possessing a finite saddle-node sn(2) and an infinite saddle-node of type (1
1)SN, ob-

tained by the coalescence of a finite saddle (respectively, a finite node) with an infinite node

(respectively, an infinite saddle). Notice that the finite singularity that coalesces with an infi-

nite singularity cannot be the finite saddle-node since then what we would obtain at infinity

would not be a saddle-node of type(1
1)SN but a multiplicity three singularity. Even this is also

a codimension two∗ case and somehow can be considered inside the set (AC), we have preferred

to put it into the set (CC), which will be studied in a future paper.

We point out that in each picture representing a phase portrait we only draw the skeleton

of separatrices, according to the next definition.

Definition 1.5. Let p(X) ∈ Pn(S2) (respectively X ∈ Pn(R2)). A separatrix of p(X) (respectively

of X) is an orbit which is either a singular point (respectively a finite singular point), or a

limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector at a singular

point (respectively a finite singular point). In [25] the author proved that the set formed by

all separatrices of p(X), denoted by S(p(X)), is closed. The open connected components

of S2 \ S(p(X)) are called canonical regions of p(X). We define a separatrix configuration as

the union of S(p(X)) plus one representative solution chosen from each canonical region.

Two separatrix configurations S1 and S2 of vector fields of Pn(S2) (respectively Pn(R2)) are

said to be topologically equivalent if there exists an orientation-preserving homeomorphism

of S2 (respectively R2) which maps the trajectories of S1 onto the trajectories of S2. The

skeleton of separatrices is defined as the union of S(p(X)) without the representative solution of

each canonical region. Thus, a skeleton of separatrices can still produce different separatrix

configurations.

Let ∑
2
0 denote the set of all planar structurally stable vector fields and ∑

2
i (S) denote the

set of all structurally unstable vector fields X ∈ P2(R2) of codimension i, modulo limit cycles

belonging to the set S, where S is a set of vector fields with the same type of instability

modulo orientation. For instance, in this paper we consider the sets ∑
2
2(AB) and ∑

2
2(AC),

which denote, respectively, the set of all structurally unstable vector fields X ∈ P2(R2) of

codimension two∗ belonging to the sets (AB) and (AC).
The main goal of this paper is to prove the following two theorems.

Theorem 1.6. If X ∈ ∑
2
2(AB), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 71 phase portraits of Figures 1.1 to 1.3.
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Figure 1.1: Structurally unstable quadratic phase portraits of codimension two∗

of the set (AB).
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Figure 1.2: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AB).
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AB,66 U2
AB,67 U2
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AB,71

Figure 1.3: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AB).

Theorem 1.7. If X ∈ ∑
2
2(AC), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 40 phase portraits of Figures 1.4 and 1.5.
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Figure 1.4: Structurally unstable quadratic phase portraits of codimension two∗

of the set (AC).
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U2
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AC,38 U2
AC,39 U2

AC,40

Figure 1.5: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AC).

This paper is organized as follows. In Section 2 we make a brief description of phase

portraits of codimensions zero and one that are needed in this paper.

In Section 3 we prove Theorem 1.6 and in Section 4 we prove Theorem 1.7. We point out

that in order to verify the realization of the corresponding phase portraits we compute each

one of them with the numerical program P4 [1, 18].

Once again, remember that by modulo limit cycles we mean all eyes with limit cycles are

assimilated with the unique singular point (a focus) within such an eye, i.e. we may say that

the phase portraits are blind to limit cycles. Additionally, the phase portraits are also blind

with respect to distinguishing if a singular point is a focus or a node, because these are not

topological properties. But as the phase portraits are not blind to detecting other important

features like various types of graphics, in Section 5 we discuss about the existence of graphics

and also limit cycles in this study.

2 Quadratic vector fields of codimension zero and one

In this section we summarize all the needed results from the book of Artés, Llibre and Rezende

[6]. The following three results are the restriction of Theorem 1.1 from book [6] to the sets (A),

(B), and (C), respectively (see page 4). We denote by ∑
2
1(A) (respectively, ∑

2
1(B), and ∑

2
1(C))

the set of all structurally unstable vector fields X ∈ P2(R2) of codimension one∗ belonging to
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the set (A) (respectively, (B), and (C)).

Theorem 2.1. If X ∈ ∑
2
1(A), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 69 phase portraits of Figures 2.1 to 2.3, and

all of them are realizable.

U1
A,1 U1

A,2 U1
A,3 U1

A,4

U1
A,5 U1

A,6 U1
A,7 U1

A,8

U1
A,9 U1

A,10 U1
A,11 U1

A,12

U1
A,13 U1

A,14 U1
A,15 U1

A,16

U1
A,17 U1

A,18 U1
A,19 U1

A,20

U1
A,21 U1

A,22 U1
A,23 U1

A,24

Figure 2.1: Unstable quadratic systems of codimension one∗ of the set (A) (cases

with a finite saddle-node sn(2)).
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U1
A,25 U1

A,26 U1
A,27 U1

A,28

U1
A,29 U1

A,30 U1
A,31 U1

A,32

U1
A,33 U1

A,34 U1
A,35 U1

A,36

U1
A,37 U1

A,38 U1
A,39 U1

A,40

U1
A,41 U1

A,42 U1
A,43 U1

A,44

U1
A,45 U1

A,46 U1
A,47 U1

A,48

Figure 2.2: (Cont.) Unstable quadratic systems of codimension one∗ of the set (A)

(cases with a finite saddle-node sn(2)).
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U1
A,50 U1

A,51 U1
A,52 U1

A,53

U1
A,54 U1

A,55 U1
A,56 U1

A,57

U1
A,58 U1

A,59 U1
A,60 U1

A,61

U1
A,62 U1

A,63 U1
A,64 U1

A,65

U1
A,66 U1

A,67 U1
A,68 U1

A,69

U1
A,70

Figure 2.3: (Cont.) Unstable quadratic systems of codimension one∗ of the set (A)

(cases with a finite saddle-node sn(2)).

Remark 2.2. In [12] the authors proved that the phase portrait U1
A,49 from Figure 1.4 of [6] is

actually impossible. Therefore, in our Figures 2.1 to 2.3 we have simply “skipped” this phase

portrait, since all of the remaining ones are proved to be realizable in [6]. We present this

impossible phase portrait in Figure 2.8 and there we denote it by U
1,I
A,49.
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Theorem 2.3. If X ∈ ∑
2
1(B), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 40 phase portraits of Figures 2.4 and 2.5, and

all of them are realizable.

U1
B,1 U1

B,2 U1
B,3 U1

B,4

U1
B,5 U1

B,6 U1
B,7 U1

B,8

U1
B,9 U1

B,10 U1
B,11 U1

B,12

U1
B,13 U1

B,14 U1
B,15 U1

B,16

U1
B,17 U1

B,18 U1
B,19 U1

B,20

U1
B,21 U1

B,22 U1
B,23 U1

B,24

Figure 2.4: Unstable quadratic systems of codimension one∗ of the set (B) (cases

with an infinite saddle-node of type (0
2)SN).
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U1
B,25 U1

B,26 U1
B,27 U1

B,28

U1
B,29 U1

B,30 U1
B,31 U1

B,32

U1
B,33 U1

B,34 U1
B,35 U1

B,36

U1
B,37 U1

B,38 U1
B,39 U1

B,40

Figure 2.5: (Cont.) Unstable quadratic systems of codimension one∗ of the set (B)

(cases with an infinite saddle-node of type (0
2)SN).

Theorem 2.4. If X ∈ ∑
2
1(C), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 32 phase portraits of Figures 2.6 and 2.7, and

all of them are realizable.



Topological classification of the sets (AB) and (AC) 19

U1
C,1 U1

C,2 U1
C,3 U1

C,4

U1
C,5 U1

C,6 U1
C,7 U1

C,8

U1
C,9 U1

C,10 U1
C,11 U1

C,12

U1
C,13 U1

C,14 U1
C,15 U1

C,16

U1
C,17 U1

C,18 U1
C,19 U1

C,20

U1
C,21 U1

C,22 U1
C,23 U1

C,24

Figure 2.6: Unstable quadratic systems of codimension one∗ of the set (C) (cases

with an infinite saddle-node of type (1
1)SN).



20 J. C. Artés, M. C. Mota and A. C. Rezende

U1
C,25 U1

C,26 U1
C,27 U1

C,28

U1
C,29 U1

C,30 U1
C,31 U1

C,32

Figure 2.7: (Cont.) Unstable quadratic systems of codimension one∗ of the set (C)

(cases with an infinite saddle-node of type (1
1)SN).

Before we state our next theorem, consider the following remark.

Remark 2.5. Consider all the impossible phase portraits from the book [6]. In that book these

phase portraits are described with a specific notation. However, in this paper we changed

a little bit their notation in order to associate each impossible phase portrait with the set in

which such a phase portrait is proved to be impossible, but we keep the respective indexes.

For instance, in that book we have the presence of the impossible phase portrait U1
I,105, which

is a non-realizable case from the set (A). Such a phase portrait is denoted in this paper by

U
1,I
A,105. We also use this new notation for phase portraits which are proved to be impossible

in the sets (B) and (C).

The next result describes which phase portraits were discarded in the set (A) in [6] be-

cause they were not realizable, but their role now is important in the process of discarding

impossible phase portraits of codimension two∗.

Theorem 2.6. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (A) it is necessary and sufficient to coalesce a finite saddle and a finite

node from a structurally stable quadratic vector field, which leads to a finite saddle-node, and after some

small perturbation it disappears. For the vector fields in the set (A), the following statements hold.

(a) In Table 2.1 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (A).

(b) Inside this set (A), we have a total of 77 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, 7 of which are proved non-realizable

in [6] and another one is proved non-realizable in [12] (all of these eight non-realizable phase

portraits are given in Table 2.2). These numbers are given in the second and sixth columns of

Table 2.1.

(c) From these potential phase portraits, most of them are realizable. That is, even though there is

the topological possibility of their existence, some of them break some analytical property which

makes them not realizable inside quadratic vector fields. We have a total of 69 realizable phase

portraits. In the third and seventh columns of Table 2.1 we present the number of realizable
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cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then 8 non-realizable cases from the set (A) which we now collect in a single picture

(see Figure 2.8) and denote by U
1,I
A,k, where U

1,I
A stands for Impossible of codimension one∗ from

the set (A) and k ∈ {1, 2, 3, 49, 103, 104, 105, 106}, see Remark 2.5. These phase portraits are all

drawn in [6]. Anyway, we provide Table 2.2 in order to relate easily (giving also the page where

they appear first and the page they are proved to be impossible).

SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
2,1 1 1 U1

A,1 S
2
10,6 2 2 U1

A,34, U1
A,35

S
2
3,1 3 3 U1

A,2, U1
A,3, U1

A,4 S
2
10,7 4 3 U1

A,36, U1
A,37, U1

A,38

S
2
3,2 1 1 U1

A,5 S
2
10,8 1 1 U1

A,39

S
2
3,3 1 1 U1

A,6 S
2
10,9 2 2 U1

A,40, U1
A,41

S
2
3,4 1 1 U1

A,7 S
2
10,10 4 2 U1

A,42, U1
A,43

S
2
3,5 3 3 U1

A,8, U1
A,9, U1

A,10 S
2
10,11 1 1 U1

A,44

S
2
5,1 3 3 U1

A,11, U1
A,12, U1

A,13 S
2
10,12 2 2 U1

A,45, U1
A,46

S
2
7,1 1 1 U1

A,14 S
2
10,13 4 4 U1

A,47, U1
A,48, U1

A,50

S
2
7,2 2 2 U1

A,15, U1
A,16 S

2
10,14 4 3 U1

A,51, U1
A,52, U1

A,53

S
2
7,3 1 1 U1

A,17 S
2
10,15 1 1 U1

A,54

S
2
7,4 1 1 U1

A,18 S
2
10,16 1 1 U1

A,55

S
2
9,1 1 1 U1

A,19 S
2
12,1 2 2 U1

A,56, U1
A,57

S
2
9,2 1 1 U1

A,20 S
2
12,2 3 3 U1

A,58, U1
A,59, U1

A,60

S
2
9,3 1 1 U1

A,21 S
2
12,3 2 2 U1

A,61, U1
A,62

S
2
10,1 3 3 U1

A,22, U1
A,23, U1

A,24 S
2
12,4 3 2 U1

A,63, U1
A,64

S
2
10,2 2 2 U1

A,25, U1
A,26 S

2
12,5 2 2 U1

A,65, U1
A,66

S
2
10,3 3 2 U1

A,27, U1
A,28 S

2
12,6 2 2 U1

A,67, U1
A,68

S
2
10,4 2 2 U1

A,29, U1
A,30 S

2
12,7 3 2 U1

A,69, U1
A,70

S
2
10,5 3 3 U1

A,31, U1
A,32, U1

A,33

Table 2.1: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.
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SSQVF [2] Page [6] Impossible [6] SSQVF [2] Page [6] Impossible [6]

S
2
10,3 70 U

1,I
A,1 S

2
10,14 77 U

1,I
A,3

S
2
10,7 (73) 190 U

1,I
A,103 S

2
12,4 (80) 191 U

1,I
A,105

S
2
10,10 75; 191 U

1,I
A,2; U

1,I
A,104 S

2
12,7 (82) 188 U

1,I
A,106

S
2
10,13 76 U

1,I
A,49 (see [12])

Table 2.2: Non-realizable phase portraits from the set (A) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first and fourth

columns indicate the structurally stable quadratic vector field (SSQVF) which

suffers a bifurcation, the second and fifth columns indicate the pages where

they appear in [6] and the third and sixth columns present the corresponding

impossible phase portraits (remember that phase portrait U1
A,49 from Figure 1.4

of [6] is proved to be impossible in [12]).

U
1,I
A,1 U

1,I
A,2 U

1,I
A,3 U

1,I
A,49

U
1,I
A,103 U

1,I
A,104 U

1,I
A,105 U

1,I
A,106

Figure 2.8: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (A).

In what follows we present an analogous theorem regarding discarded phase portraits

from the set (B) in [6].

Theorem 2.7. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (B) it is necessary and sufficient to coalesce an infinite saddle with an

infinite node from a structurally stable quadratic vector field, which leads to an infinite saddle-node

of type (0
2)SN, and after some small perturbation it disappears. For the vector fields in set (B), the

following statements hold.

(a) In Table 2.3 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (B).

(b) Inside this set (B), we have a total of 55 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, 15 of which are non-realizable (they

are given in Table 2.4). These numbers are given in the second and sixth columns of Table 2.3.

(c) From these potential phase portraits, most of them are realizable. That is, even though there is

the topological possibility of their existence, some of them break some analytical property which
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makes them not realizable inside quadratic vector fields. We have a total of 40 realizable phase

portraits. In the third and seventh columns of Table 2.3 we present the number of realizable

cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then 15 non-realizable cases from the set (B) which we now collect in a single picture (see

Figure 2.9) and denote by U
1,I
B,k, where U

1,I
B stands for Impossible of codimension one∗ from the

set (B) and k ∈ {4, 5, 6, 7, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117}, see Remark 2.5.

These phase portraits are all drawn in [6]. Anyway, we provide Table 2.4 in order to relate easily

(giving also the page where they appear first and the page they are proved to be impossible).

SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
8,1 2 2 U1

B,1, U1
B,2 S

2
10,12 2 1 U1

B,22

S
2
9,1 2 2 U1

B,3, U1
B,4 S

2
10,13 2 2 U1

B,23, U1
B,24

S
2
9,2 2 2 U1

B,5, U1
B,6 S

2
10,14 2 2 U1

B,25, U1
B,26

S
2
9,3 2 2 U1

B,7, U1
B,8 S

2
10,15 2 1 U1

B,27

S
2
10,1 2 2 U1

B,9, U1
B,10 S

2
10,16 1 1 U1

B,28

S
2
10,2 2 1 U1

B,11 S
2
11,1 1 1 U1

B,29

S
2
10,3 2 1 U1

B,12 S
2
11,2 2 2 U1

B,30, U1
B,31

S
2
10,4 2 1 U1

B,13 S
2
11,3 1 1 U1

B,32

S
2
10,5 2 1 U1

B,14 S
2
12,1 2 1 U1

B,33

S
2
10,6 2 1 U1

B,15 S
2
12,2 1 1 U1

B,34

S
2
10,7 2 2 U1

B,16, U1
B,17 S

2
12,3 1 1 U1

B,35

S
2
10,8 2 1 U1

B,18 S
2
12,4 2 1 U1

B,36

S
2
10,9 2 1 U1

B,19 S
2
12,5 2 1 U1

B,37

S
2
10,10 2 1 U1

B,20 S
2
12,6 2 2 U1

B,38, U1
B,39

S
2
10,11 2 1 U1

B,21 S
2
12,7 2 1 U1

B,40

Table 2.3: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.
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SSQVF [2] Page [6] Impossible [6] SSQVF [2] Page [6] Impossible [6]

S
2
10,2 86; 200 U

1,I
B,107 S

2
10,11 90; 200 U

1,I
B,115

S
2
10,3 86; 203 U

1,I
B,108 S

2
10,12 91; 200 U

1,I
B,116

S
2
10,4 87; 200 U

1,I
B,109 S

2
10,15 92; 200 U

1,I
B,117

S
2
10,5 87; 207 U

1,I
B,110 S

2
12,1 94 U

1,I
B,4

S
2
10,6 88; 200 U

1,I
B,111 S

2
12,4 96 U

1,I
B,5

S
2
10,8 89; 200 U

1,I
B,112 S

2
12,5 96 U

1,I
B,6

S
2
10,9 89; 200 U

1,I
B,113 S

2
12,7 97 U

1,I
B,7

S
2
10,10 90; 203 U

1,I
B,114

Table 2.4: Non-realizable phase portraits from the set (B) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first and fourth

columns indicate the structurally stable quadratic vector field (SSQVF) which

suffers a bifurcation, the second and fifth columns indicate the pages where

they appear in [6] and the third and sixth columns present the corresponding

impossible phase portraits.

U
1,I
B,4 U

1,I
B,5 U

1,I
B,6 U

1,I
B,7

U
1,I
B,107 U

1,I
B,108 U

1,I
B,109 U

1,I
B,110

U
1,I
B,111 U

1,I
B,112 U

1,I
B,113 U

1,I
B,114

U
1,I
B,115 U

1,I
B,116 U

1,I
B,117

Figure 2.9: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (B).

Remark 2.8. Regarding the phase portraits of the non-realizable structurally unstable qua-

dratic vector fields of codimension one∗ from the set (B), we point out that in page 91 from [6],
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phase portrait U
1,I
B,116 (which corresponds to B31 from such a book) is wrongly drawn. In fact,

it possesses an extra infinite node and such a phase portrait should be drawn exactly as we

present in our Figure 2.9.

Finally we present an analogous theorem regarding discarded phase portraits from the set

(C) in [6].

Theorem 2.9. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (C) it is necessary and sufficient to coalesce a finite node (respectively, a

finite saddle) with an infinite saddle (respectively, an infinite node) from a structurally stable quadratic

vector field, which leads to an infinite saddle-node of type(1
1)SN, and after some small perturbation, this

saddle-node is split into a finite saddle (respectively, a finite node) and an infinite node (respectively, an

infinite saddle). For the vector fields in the set (C), the following statements hold.

(a) In Table 2.5 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (C).

(b) Inside this set (C), we have a total of 34 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, two of which are non-realizable

(they are given in Table 2.6). These numbers are given in the second and sixth columns of

Table 2.5.

(c) From these potential phase portraits, only two of them are not realizable. That is, even though

there is the topological possibility of their existence, two of them break some analytical property

which makes them not realizable inside quadratic vector fields. We have a total of 32 realizable

phase portraits. In the third and seventh columns of Table 2.5 we present the number of realizable

cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then two non-realizable cases from the set (C) which we present in Figure 2.10 and

denote by U
1,I
C,k, where U

1,I
C stands for Impossible of codimension one∗ from the set (C) and

k ∈ {8, 9}, see Remark 2.5. These phase portraits are drawn in [6]. Anyway, we provide Table

2.6 in order to relate easily (giving also the page where they appear first and the page they are

proved to be impossible).
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SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
4,1 1 1 U1

C,1 S
2
10,16 1 1 U1

C,14

S
2
5,1 2 2 U1

C,2, U1
C,3 S

2
11,1 1 1 U1

C,15

S
2
9,1 1 1 U1

C,4 S
2
11,2 1 1 U1

C,16

S
2
10,2 2 1 U1

C,5 S
2
11,3 1 1 U1

C,17

S
2
10,3 1 1 U1

C,6 S
2
12,1 2 2 U1

C,18, U1
C,19

S
2
10,5 1 1 U1

C,7 S
2
12,2 2 2 U1

C,20, U1
C,21

S
2
10,6 1 1 U1

C,8 S
2
12,3 2 2 U1

C,22, U1
C,23

S
2
10,9 2 1 U1

C,9 S
2
12,4 2 2 U1

C,24, U1
C,25

S
2
10,10 1 1 U1

C,10 S
2
12,5 2 2 U1

C,26, U1
C,27

S
2
10,12 1 1 U1

C,11 S
2
12,6 3 3 U1

C,28, U1
C,29, U1

30

S
2
10,14 1 1 U1

C,12 S
2
12,7 2 2 U1

C,31, U1
C,32

S
2
10,15 1 1 U1

C,13

Table 2.5: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.

SSQVF [2] Page [6] Impossible [6]

S
2
10,2 101 U

1,I
C,8

S
2
10,9 103 U

1,I
C,9

Table 2.6: Non-realizable phase portraits from the set (C) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first column

indicates the structurally stable quadratic vector field (SSQVF) which suffers a

bifurcation, the second column indicates the pages where they appear in [6] and

the third column present the corresponding impossible phase portrait.

U
1,I
C,8 U

1,I
C,9

Figure 2.10: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (C).

An important result to study the impossibility of some phase portraits is Corollary 3.29 of

[6].

Corollary 2.10. If one of the structurally stable vector fields that bifurcates from a potential struc-

turally unstable vector field of codimension one∗ is not realizable, then this unstable system is also not

realizable.
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Our aim is to prove the following result, which is the analogous of the previous corollary

for the sets (AB) and (AC).

Theorem 2.11. If one of the phase portraits of codimension one∗ that bifurcates from a potential codi-

mension two∗ phase portrait from the sets (AB) and (AC) is not realizable, then this latter phase

portrait is also not realizable.

Proof. In what follows we prove the equivalent statement: If a potential codimension two∗ phase

portrait X from the sets (AB) and (AC) is realizable, then the phase portraits of codimension

one∗ that bifurcates from X are also realizable.

We start from the set (AB). We already know that a realizable phase portrait belongs to the

set (AB) if and only if it has a finite saddle-node sn(2) and an infinite saddle-node of type

(0
2)SN obtained by the coalescence of an infinite saddle with an infinite node. In [14] the

authors classified the set of all real quadratic polynomial differential systems with a finite

semi-elemental saddle-node sn(2) located at the origin of the plane and an infinite saddle-

node of type (0
2)SN located in the bisector of first and third quadrants. Such a classification

was done with respect to the normal form

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + lx2 + (2g + 2h − 2l − n)xy + (l − 2g − 2h + 2n)y2,
(2.1)

where g, h, l, and n are real parameters. The parameter space of this normal form is a four-

dimensional space, which can be projectivized, as it was done in [14] and the authors proved

that all generic phenomena occur for g = 1. In the paper under discussion the authors used

the Invariant Theory (developed in Sibirsky School – Moldova, see a very nice summary of this

theory in Sec. 7 of [7]) in order to construct and study their bifurcation diagram. In Lemma

5.5 from the book [9] the authors proved that a necessary and sufficient condition for a generic

quadratic system to possess an infinite saddle-node of type (0
2)SN and another simple infinite

singularity is that the comitants η and M̃ verify the conditions

η = 0, M̃ 6= 0,

for all the possible values of the parameters of the system. Additionally, in Table 5.1 from that

book the authors present the invariant polynomials which are responsible for the number,

kinds (real or/and complex), and multiplicities of finite singularities of a generic quadratic

system. In particular, they show that if the invariant polynomial D verifies the condition

D = 0,

then we have a finite singularity of multiplicity at least two. In fact, for systems (2.1) calcula-

tions show that these systems verify such conditions, since for that normal form (with g = 1)

we obtain

η = 0, M̃ = −8(1 + 2h + l − n)2(x − y)2 6= 0, D = 0.

Now, for g = 1, consider the perturbation of systems (2.1)

ẋ = (1 − ε)x2 + 2hxy + (n − 1 − 2h)y2,

ẏ = y + l(1 − ε)x2 + ((2 + 2h − n)(1 − ε)− 2l)xy + (l − 2 − 2h + 2n)y2,
(2.2)

where |ε| is small enough. For these systems, calculations show that

η = 4ε((1 + 2h + l − n)2 − (−1 − 2h + n)2ε)2 6= 0, D = 0.
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So, according to Lemma 5.5 from the mentioned book, we have three distinct infinite singu-

larities (all of them are real if ε > 0 and, if ε < 0, we have one real infinite singularity and

two complex ones). Additionally, as D = 0, perturbation (2.2) leaves unperturbed the finite

saddle-node.

On the other hand, for g = 1 consider the perturbation of systems (2.1)

ẋ = −ε + x2 + 2hxy + (n − 1 − 2h)y2,

ẏ = −εl + y + lx2 + (2 + 2h − 2l − n)xy + (l − 2 − 2h + 2n)y2,
(2.3)

where |ε| is small enough. For systems (2.3) we have

η = 0, M̃ = −8(1 + 2h + l − n)2(x − y)2 6= 0,

and

D = −768ε(−1 + (2(1 + h)(−1 + l) + n)2ε)2(1 + 2h + h2 − n + n2((−1 + l)(1 + 2h + l) + n)ε).

According to Lemma 5.5 mentioned before, the perturbation (2.3) has not affected the infinite

singular points and, according to Table 5.1 from the mentioned book, we no longer have finite

multiple singularities, i.e. the perturbation splits the origin into two points (which are real or

complex, depending on the sign of ε).

Therefore the result holds for the set (AB).

Now, consider the set (AC). A realizable phase portrait belongs to the set (AC) if and only

if it has a finite saddle-node sn(2) and an infinite saddle-node of type (1
1)SN, obtained by

the coalescence of a finite saddle (respectively, finite node) with an infinite node (respectively,

infinite saddle). Remember that, as we discussed in page 8, the case in which the finite saddle-

node is the finite singularity that coalesces with an infinite singularity will be considered in

the future during the study of the set (CC). With the Invariant Theory as the main tool, in [10]

we classified the set of all real quadratic polynomial differential systems with a finite semi-

elemental saddle-node sn(2) located at the origin of the plane and an infinite saddle-node of

type (1
1)SN. Such a classification was done with respect to the normal form

ẋ = cx + cy − cx2 + 2hxy,

ẏ = ex + ey − ex2 + 2mxy,
(2.4)

where c, h, e, and m are real parameters, with the (nondegeneracity) condition eh 6= cm. The

parameter space of this normal form is a four-dimensional space, which can be projectivized,

as it was done in that paper where we proved that all generic phenomena occur for h = 1.

In Lemma 5.2 from the book [9] the authors proved that a necessary and sufficient condition

for a generic quadratic system to possess an infinite saddle-node of type (1
1)SN is that the

comitants µ0 and µ1 verify the conditions

µ0 = 0, µ1 6= 0,

for all the possible values of the parameters of the system. Additionally, as in the previous

case, from Table 5.1 it is possible to conclude that if the invariant polynomial D verifies the

condition

D = 0,
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then we have a finite singularity of multiplicity at least two. Indeed, for systems (2.4) with

h = 1 calculations show that such conditions are fulfilled, since

µ0 = 0, µ1 = −8(e − cm)2x 6= 0, D = 0.

Now, for h = 1, consider the perturbation of systems (2.4)

ẋ = cx + cy − cx2 + 2xy + εy2,

ẏ = ex + ey − ex2 + 2mxy + εy2,
(2.5)

where |ε| is small enough, calculations show that for systems (2.5) the comitant µ0 is given by

µ0 = ε(−4(1 − m)(e − cm) + (c − e)2ε).

So the perturbation under consideration splits the infinite saddle-node (1
1)SN. Additionally,

we conclude that the perturbation maintains the finite saddle-node, since for systems (2.5)

calculations show that the invariant polynomial D vanishes.

Finally, for h = 1 (as we did for the set (AB)), consider the perturbation of systems (2.4)

ẋ = −ε + cx + cy − cx2 + 2xy,

ẏ = −εe + ex + ey − ex2 + 2mxy,
(2.6)

where |ε| is small enough. For systems (2.6) we have

µ0 = 0, µ1 = −4(e − cm)2x 6= 0,

and
D =768ε(e − cm)3

(
16ε2(e − m)3 − 8(c − 1)e(e − cm)2

)

+ 768ε2(e − cm)4
(
(9c(3c − 2)− 13)e2 + 4(11 − 9c)em − 4m2

)
.

According to the results (from the book [9]) presented before, we conclude that systems (2.6)

have the infinite saddle-node (1
1)SN and do not have the finite saddle-node sn(2), i.e. the

perturbation (2.6) of systems (2.4) keeps the infinite saddle-node and splits the finite saddle-

node.

Then the theorem also holds for the set (AC), as we wanted to prove.

As at the moment we are not interested in giving a proof for a general case of the previous

theorem, in what follows we present a conjecture.

Conjecture 2.12. If one of the phase portraits of codimension k that bifurcates from a potential codi-

mension k + 1 phase portrait is not realizable, then this latter phase portrait is also not realizable.

Remark 2.13. In Qualitative Theory of Ordinary Differential Equations is quite common to

use the term “perturbation” to denote an infinitesimal modification of the parameters of a

system such that a different phase portrait bifurcates from it. In this paper we use the term

“evolution” in order to say that we “move a codimension one∗ phase portrait to its border and

detect which phase portraits are in the other side of this border”, so with an evolution of a

codimension one∗ phase portrait we produce a codimension two∗ phase portrait. In this sense we

mean that we modify (in a continuous way) the first system inside the region of parameters in

which it is defined up to the other side of the border of this region where we obtain a system

having one codimension more. In a certain way, with this modification we are provoking an

“evolution” of the first system. Note that we contrast “perturbation” with “evolution”.
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3 Proof of Theorem 1.6

In this section we present the proof of Theorem 1.6. More precisely, in Subsection 3.1 we obtain

all the topologically potential phase portraits belonging to the set (AB) (we have 110 topolog-

ically distinct phase portraits) and we prove that 39 of them are impossible. In Subsection 3.2

we show the realization of each one of the remaining 71 phase portraits.

3.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase portraits

from the set (AB).

We already know that in the set (AB), the unstable objects of codimension two∗ belong to

the set of saddle-nodes
{

sn(2)+(
0
2)SN

}
. Considering all the different ways of obtaining phase

portraits belonging to the set (AB) of codimension two∗, we have to consider all the possible

ways of coalescing specific singular points in both sets (A) and (B). However, as the sets

(AB) and (BA) are the same (i.e. their elements are obtained independently of the order of

the evolution in the elements of the sets (A) or (B)), it is necessary to consider only all the

possible ways of obtaining an infinite saddle-node of type (0
2)SN in each element from the set

(A) (phase portraits possessing a finite saddle-node sn(2)). Anyway, in order to make things

clear, in page 54 we discuss briefly how should we perform if we start by considering the set

(B).

In order to obtain phase portraits from the set (AB) by starting our study from the set (A),

we have to consider Theorem 2.7 and also Lemma 3.25 from [6] (regarding phase portraits

from the set (B)) which we state as follows.

Lemma 3.1. Suppose that a polynomial vector field X of codimension one∗ has an infinite saddle-node

p of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)p 6= 0 and first eigenvalue equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce a struc-

turally stable system (with one infinite saddle and one infinite node, or with no singular points

in the neighborhood) or a system topologically equivalent to X.

(b) Both possibilities of structurally stable system (with one saddle and one node at infinity, or with

no singular points in the neighborhood) are realizable.

Here we consider all the 69 realizable structurally unstable quadratic vector fields of codi-

mension one∗ from the set (A). In order to obtain a phase portrait of codimension two∗ belonging

to the set (AB) starting from a phase portrait of codimension one∗ of the set (A), we keep the

existing finite saddle-node and using Lemma 3.1 we build an infinite saddle-node of type

(0
2)SN by the coalescence of an infinite saddle with an infinite node. On the other hand, from

the phase portraits of codimension two∗ from the set (AB), one can obtain phase portraits of

codimension one∗ belonging to the set (A) after perturbation of the infinite saddle-node (0
2)SN

into an infinite saddle and an infinite node, or into complex singularities.

In what follows we denote by U2
AB,k, where U2

AB stands for structurally unstable quadratic

vector field of codimension two∗ from the set (AB) and k ∈ {1, . . . , 71} (note that the notation

U2
AB is simpler than U2

(AB)). The impossible phase portraits will be denoted by U
2,I
AB,j, where

U
2,I
AB stands for Impossible of codimension two∗ from the set (AB) and j ∈ N. We need to enu-

merate also the impossible phase portraits, not for the completeness of this paper, but for the
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future papers in which someone will study codimension three∗ families. Just in the same way

as impossible codimension one∗ phase portraits are a crucial tool for the study of our families.

Note that phase portraits U1
A,1 to U1

A,13 cannot have a phase portrait possessing an infinite

saddle-node of type(0
2)SN as an evolution, since each one of them has only one infinite singu-

larity. Analogously, phase portraits U1
A,14 to U1

A,18 cannot have a phase portrait possessing an

infinite saddle-node of type (0
2)SN as an evolution, since each one of them has three infinite

singularities (which are nodes).

Phase portrait U1
A,19 has phase portraits U2

AB,1 and U2
AB,2 as evolution (see Figure 3.1,

where the arrows starting from the phase portrait U1
A,19 and pointing towards the phase

portraits U2
AB,1 and U2

AB,2 indicate that these last two phase portraits are evolution of the

phase portrait U1
A,19). After bifurcation we get phase portrait U1

A,1, in both cases, by making

the infinite saddle-node (0
2)SN disappear (split into two complex singularities). In Figure 3.1

we present the corresponding unfoldings on the right-hand side of the codimension two∗ phase

portraits.

U1
A,19

U2
AB,1

U2
AB,2 U1

A,1

U1
A,1

Figure 3.1: Unstable systems U2
AB,1 and U2

AB,2.

Note that U1
A,19 possesses two pairs of infinite nodes and only one pair of infinite saddles,

so from U1
A,19 there are only two ways of obtaining a phase portrait possessing an infinite

saddle-node of type(0
2)SN, and these cases are represented exactly by the phase portraits U2

AB,1

and U2
AB,2 from Figure 3.1. From now on, we will always omit the proof of the nonexistence of

other cases apart from those ones that we discuss by words or by presenting in figures, since

the argument of nonexistence is in general quite simple.

Before we continue with the study of the remaining codimension one∗ phase portraits, we

highlight that it is very important to have the “structure” of all the figures very well under-

stood, since the proofs of Theorems 1.6 and 1.7 require and are done based on several figures.

So, in this paragraph we discuss about it. In the next cases, when from a codimension one∗

phase portrait we have more than one codimension two∗ phase portraits which are evolution

of the codimension one∗ phase portrait, we will present figures with the same “structure” of

Figure 3.1. More precisely, all the arrows that appear starting from an unstable phase por-

trait of codimension one∗ will have the same meaning as explained for Figure 3.1, i.e., they will

point towards the phase portraits of codimension two∗ which are evolution of the respective

codimension one∗ phase portrait. Moreover, we will present the corresponding unfoldings on

the right-hand side of the codimension two∗ phase portraits. On the other hand, when from
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a codimension one∗ phase portrait we have only one codimension two∗ phase portrait which is

an evolution of the codimension one∗ phase portrait, we will present figures like Figure 3.7, for

instance, where on the left-hand side we have a codimension one∗ phase portrait, on the center

we have the corresponding codimension two∗ phase portrait and on the right-hand side we have

the respective unfolding of the codimension two∗ phase portrait.

Phase portrait U1
A,20 has phase portraits U2

AB,3 and U2
AB,4 as evolution (see Figure 3.2).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,20

U2
AB,3

U2
AB,4 U1

A,1

U1
A,1

Figure 3.2: Unstable systems U2
AB,3 and U2

AB,4.

Phase portrait U1
A,21 has phase portraits U2

AB,5 and U2
AB,6 as evolution (see Figure 3.3).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,21

U2
AB,5

U2
AB,6 U1

A,1

U1
A,1

Figure 3.3: Unstable systems U2
AB,5 and U2

AB,6.

Phase portrait U1
A,22 has phase portraits U2

AB,7 and U2
AB,8 as evolution (see Figure 3.4).

After bifurcation we get phase portrait U1
A,2, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,23 has phase portraits U2

AB,9 and U2
AB,10 as evolution (see Figure 3.5).

After bifurcation we get phase portrait U1
A,3, in both cases, by making the infinite saddle-node

(0
2)SN disappear.
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U1
A,22

U2
AB,7

U2
AB,8 U1

A,2

U1
A,2

Figure 3.4: Unstable systems U2
AB,7 and U2

AB,8.

U1
A,23

U2
AB,9

U2
AB,10 U1

A,3

U1
A,3

Figure 3.5: Unstable systems U2
AB,9 and U2

AB,10.

Phase portrait U1
A,24 has phase portraits U2

AB,11 and U2
AB,12 as evolution (see Figure 3.6).

After bifurcation we get phase portrait U1
A,4, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,24

U2
AB,11

U2
AB,12 U1

A,4

U1
A,4

Figure 3.6: Unstable systems U2
AB,11 and U2

AB,12.

Phase portrait U1
A,25 has phase portrait U2

AB,13 as an evolution (see Figure 3.7). After



34 J. C. Artés, M. C. Mota and A. C. Rezende

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,25 has the impossible phase portrait U

2,I
AB,1 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,107 of codimension one∗, see

Figure 3.8. We observe that, in the set (A), U
2,I
AB,1 unfolds in U1

A,5.

U1
A,25 U2

AB,13 U1
A,5

Figure 3.7: Unstable system U2
AB,13.

U1
A,25 U

2,I
AB,1 U

1,I
B,107

Figure 3.8: Impossible unstable phase portrait U
2,I
AB,1.

Phase portrait U1
A,26 has phase portrait U2

AB,14 as an evolution (see Figure 3.9). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,26 has the impossible phase portrait U

2,I
AB,2 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,107 of codimension one∗, see

Figure 3.10. We observe that, in the set (A), U
2,I
AB,2 unfolds in U1

A,5.

U1
A,26

U2
AB,14 U1

A,5

Figure 3.9: Unstable system U2
AB,14.

Phase portrait U1
A,27 has phase portrait U2

AB,15 as an evolution (see Figure 3.11). After

bifurcation we get phase portrait U1
A,2, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,27 has the impossible phase portrait U

2,I
AB,3 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,108 of codimension one∗, see

Figure 3.12. We observe that, in the set (A), U
2,I
AB,3 unfolds in U1

A,2.

Phase portrait U1
A,28 has phase portrait U2

AB,16 as an evolution (see Figure 3.13). After
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U1
A,26 U

2,I
AB,2 U

1,I
B,107

Figure 3.10: Impossible unstable phase portrait U
2,I
AB,2.

U1
A,27 U2

AB,15 U1
A,2

Figure 3.11: Unstable system U2
AB,15.

U1
A,27 U

2,I
AB,3 U

1,I
B,108

Figure 3.12: Impossible unstable phase portrait U
2,I
AB,3.

bifurcation we get phase portrait U1
A,3, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,28 has the impossible phase portrait U

2,I
AB,4 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,108 of codimension one∗, see

Figure 3.14. We observe that, in the set (A), U
2,I
AB,4 unfolds in U1

A,3.

U1
A,28 U2

AB,16 U1
A,3

Figure 3.13: Unstable system U2
AB,16.

Phase portrait U1
A,29 has phase portrait U2

AB,17 as an evolution (see Figure 3.15). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,29 has the impossible phase portrait U

2,I
AB,5 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,109 of codimension one∗, see

Figure 3.16. We observe that, in the set (A), U
2,I
AB,5 unfolds in U1

A,5.

Phase portrait U1
A,30 has phase portrait U2

AB,18 as an evolution (see Figure 3.17). After
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U1
A,28 U

2,I
AB,4 U

1,I
B,108

Figure 3.14: Impossible unstable phase portrait U
2,I
AB,4.

U1
A,29 U2

AB,17 U1
A,5

Figure 3.15: Unstable system U2
AB,17.

U1
A,29 U

2,I
AB,5 U

1,I
B,109

Figure 3.16: Impossible unstable phase portrait U
2,I
AB,5.

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,30 has the impossible phase portrait U

2,I
AB,6 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,109 of codimension one∗, see

Figure 3.18. We observe that, in the set (A), U
2,I
AB,6 unfolds in U1

A,5.

U1
A,30 U2

AB,18 U1
A,5

Figure 3.17: Unstable system U2
AB,18.

Phase portrait U1
A,31 has phase portrait U2

AB,19 (see Figure 3.19) as an evolution. After

bifurcation we get phase portrait U1
A,2, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,31 has the impossible phase portrait U

2,I
AB,7 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.20. We observe that, in the set (A), U
2,I
AB,7 unfolds in U1

A,2.

Phase portrait U1
A,32 has phase portrait U2

AB,20 as an evolution (see Figure 3.21). After
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U1
A,30 U

2,I
AB,6 U

1,I
B,109

Figure 3.18: Impossible unstable phase portrait U
2,I
AB,6.

U1
A,31 U2

AB,19 U1
A,2

Figure 3.19: Unstable system U2
AB,19.

U1
A,31 U

2,I
AB,7 U

1,I
B,110

Figure 3.20: Impossible unstable phase portrait U
2,I
AB,7.

bifurcation we get phase portrait U1
A,3, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,32 has the impossible phase portrait U

2,I
AB,8 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.22. We observe that, in the set (A), U
2,I
AB,8 unfolds in U1

A,3.

U1
A,32 U2

AB,20 U1
A,3

Figure 3.21: Unstable system U2
AB,20.

Phase portrait U1
A,33 has phase portrait U2

AB,21 as an evolution (see Figure 3.23). After

bifurcation we get phase portrait U1
A,4, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,33 has the impossible phase portrait U

2,I
AB,9 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.24. We observe that, in the set (A), U
2,I
AB,9 unfolds in U1

A,4.

Phase portrait U1
A,34 has phase portrait U2

AB,22 as an evolution (see Figure 3.25). After
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U1
A,32 U

2,I
AB,8 U

1,I
B,110

Figure 3.22: Impossible unstable phase portrait U
2,I
AB,8.

U1
A,33 U2

AB,21 U1
A,4

Figure 3.23: Unstable system U2
AB,21.

U1
A,33 U

2,I
AB,9 U

1,I
B,110

Figure 3.24: Impossible unstable phase portrait U
2,I
AB,9.

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,34 has the impossible phase portrait U

2,I
AB,10 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,111 of codimension one∗, see

Figure 3.26. We observe that, in the set (A), U
2,I
AB,10 unfolds in U1

A,5.

U1
A,34 U2

AB,22 U1
A,5

Figure 3.25: Unstable system U2
AB,22.

Phase portrait U1
A,35 has phase portrait U2

AB,23 as an evolution (see Figure 3.27). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,35 has the impossible phase portrait U

2,I
AB,11 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,111 of codimension one∗, see

Figure 3.28. We observe that, in the set (A), U
2,I
AB,11 unfolds in U1

A,5.

Phase portrait U1
A,36 has phase portraits U2

AB,24 and U2
AB,25 as evolution (see Figure 3.29).
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U1
A,34 U

2,I
AB,10 U

1,I
B,111

Figure 3.26: Impossible unstable phase portrait U
2,I
AB,10.

U1
A,35 U2

AB,23 U1
A,5

Figure 3.27: Unstable system U2
AB,23.

U1
A,35 U

2,I
AB,11 U

1,I
B,111

Figure 3.28: Impossible unstable phase portrait U
2,I
AB,11.

After bifurcation we get phase portrait U1
A,9, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,36

U2
AB,24

U2
AB,25 U1

A,9

U1
A,9

Figure 3.29: Unstable systems U2
AB,24 and U2

AB,25.

Phase portrait U1
A,37 has phase portraits U2

AB,26 and U2
AB,27 as evolution (see Figure 3.30).

After bifurcation we get phase portrait U1
A,10, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,38 has phase portraits U2

AB,28 and U2
AB,29 as evolution (see Figure 3.31).

After bifurcation we get phase portrait U1
A,8, in both cases, by making the infinite saddle-node
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U1
A,37

U2
AB,26

U2
AB,27 U1

A,10

U1
A,10

Figure 3.30: Unstable systems U2
AB,26 and U2

AB,27.

(0
2)SN disappear.

U1
A,38

U2
AB,28

U2
AB,29 U1

A,8

U1
A,8

Figure 3.31: Unstable systems U2
AB,28 and U2

AB,29.

Phase portrait U1
A,39 has phase portrait U2

AB,30 as an evolution (see Figure 3.32). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,39 has the impossible phase portrait U

2,I
AB,12 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,112 of codimension one∗, see

Figure 3.33. We observe that, in the set (A), U
2,I
AB,12 unfolds in U1

A,6.

U1
A,39 U2

AB,30 U1
A,6

Figure 3.32: Unstable system U2
AB,30.

Phase portrait U1
A,40 has phase portrait U2

AB,31 as an evolution (see Figure 3.34). After
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U1
A,39 U

2,I
AB,12 U

1,I
B,112

Figure 3.33: Impossible unstable phase portrait U
2,I
AB,12.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,40 has the impossible phase portrait U

2,I
AB,13 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,113 of codimension one∗, see

Figure 3.35. We observe that, in the set (A), U
2,I
AB,13 unfolds in U1

A,6.

U1
A,40 U2

AB,31 U1
A,6

Figure 3.34: Unstable system U2
AB,31.

U1
A,40 U

2,I
AB,13 U

1,I
B,113

Figure 3.35: Impossible unstable phase portrait U
2,I
AB,13.

Phase portrait U1
A,41 has phase portrait U2

AB,32 as an evolution (see Figure 3.36). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,41 has the impossible phase portrait U

2,I
AB,14 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,113 of codimension one∗, see

Figure 3.37. We observe that, in the set (A), U
2,I
AB,14 unfolds in U1

A,6.

U1
A,41 U2

AB,32 U1
A,6

Figure 3.36: Unstable system U2
AB,32.
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U1
A,41

U
2,I
AB,14 U

1,I
B,113

Figure 3.37: Impossible unstable phase portrait U
2,I
AB,14.

Phase portrait U1
A,42 has phase portrait U2

AB,33 as an evolution (see Figure 3.38). After

bifurcation we get phase portrait U1
A,9, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,42 has the impossible phase portrait U

2,I
AB,15 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,114 of codimension one∗, see

Figure 3.39. We observe that, in the set (A), U
2,I
AB,15 unfolds in U1

A,9.

U1
A,42 U2

AB,33 U1
A,9

Figure 3.38: Unstable system U2
AB,33.

U1
A,42 U

2,I
AB,15 U

1,I
B,114

Figure 3.39: Impossible unstable phase portrait U
2,I
AB,15.

Phase portrait U1
A,43 has phase portrait U2

AB,34 as an evolution (see Figure 3.40). After

bifurcation we get phase portrait U1
A,10, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,43 has the impossible phase portrait U

2,I
AB,16 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,114 of codimension one∗, see

Figure 3.41. We observe that, in the set (A), U
2,I
AB,16 unfolds in U1

A,10.

Phase portrait U1
A,44 has phase portrait U2

AB,35 as an evolution (see Figure 3.42). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,44 has the impossible phase portrait U

2,I
AB,17 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,115 of codimension one∗, see

Figure 3.43. We observe that, in the set (A), U
2,I
AB,17 unfolds in U1

A,6.

Phase portrait U1
A,45 has phase portrait U2

AB,36 as an evolution (see Figure 3.44). After
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U1
A,43 U2

AB,34 U1
A,10

Figure 3.40: Unstable system U2
AB,34.

U1
A,43 U

2,I
AB,16 U

1,I
B,114

Figure 3.41: Impossible unstable phase portrait U
2,I
AB,16.

U1
A,44 U2

AB,35 U1
A,6

Figure 3.42: Unstable system U2
AB,35.

U1
A,44 U

2,I
AB,17 U

1,I
B,115

Figure 3.43: Impossible unstable phase portrait U
2,I
AB,17.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,45 has the impossible phase portrait U

2,I
AB,18 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,116 of codimension one∗, see

Figure 3.45. We observe that, in the set (A), U
2,I
AB,18 unfolds in U1

A,6.

U1
A,45 U2

AB,36 U1
A,6

Figure 3.44: Unstable system U2
AB,36.
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U1
A,45 U

2,I
AB,18 U

1,I
B,116

Figure 3.45: Impossible unstable phase portrait U
2,I
AB,18.

Phase portrait U1
A,46 has phase portrait U2

AB,37 as an evolution (see Figure 3.46). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,46 has the impossible phase portrait U

2,I
AB,19 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,116 of codimension one∗, see

Figure 3.47. We observe that, in the set (A), U
2,I
AB,19 unfolds in U1

A,6.

U1
A,46 U2

AB,37 U1
A,6

Figure 3.46: Unstable system U2
AB,37.

U1
A,46 U

2,I
AB,19 U

1,I
B,116

Figure 3.47: Impossible unstable phase portrait U
2,I
AB,19.

Phase portrait U1
A,47 has phase portraits U2

AB,38 and U2
AB,39 as evolution (see Figure 3.48).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,48 has phase portraits U2

AB,40 and U2
AB,41 as evolution (see Figure 3.49).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,50 has phase portraits U2

AB,42 and U2
AB,43 as evolution (see Figure 3.50).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,51 has phase portraits U2

AB,44 and U2
AB,45 as evolution (see Figure 3.51).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,52 has phase portraits U2

AB,46 and U2
AB,47 as evolution (see Figure 3.52).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node
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U1
A,47

U2
AB,38

U2
AB,39 U1

A,7

U1
A,7

Figure 3.48: Unstable systems U2
AB,38 and U2

AB,39.

U1
A,48

U2
AB,40

U2
AB,41 U1

A,7

U1
A,7

Figure 3.49: Unstable systems U2
AB,40 and U2

AB,41.

U1
A,50

U2
AB,42

U2
AB,43 U1

A,7

U1
A,7

Figure 3.50: Unstable systems U2
AB,42 and U2

AB,43.

(0
2)SN disappear.

Phase portrait U1
A,53 has phase portraits U2

AB,48 and U2
AB,49 as evolution (see Figure 3.53).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,54 has phase portrait U2

AB,50 as an evolution (see Figure 3.54). After
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U1
A,51

U2
AB,44

U2
AB,45 U1

A,7

U1
A,7

Figure 3.51: Unstable systems U2
AB,44 and U2

AB,45.

U1
A,52

U2
AB,46

U2
AB,47 U1

A,7

U1
A,7

Figure 3.52: Unstable systems U2
AB,46 and U2

AB,47.

U1
A,53

U2
AB,48

U2
AB,49 U1

A,7

U1
A,7

Figure 3.53: Unstable systems U2
AB,48 and U2

AB,49.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,54 has the impossible phase portrait U

2,I
AB,20 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,117 of codimension one∗, see
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Figure 3.55. We observe that, in the set (A), U
2,I
AB,20 unfolds in U1

A,6.

U1
A,54 U2

AB,50 U1
A,6

Figure 3.54: Unstable system U2
AB,50.

U1
A,54 U

2,I
AB,20 U

1,I
B,117

Figure 3.55: Impossible unstable phase portrait U
2,I
AB,20.

Phase portrait U1
A,55 has phase portraits U2

AB,51 and U2
AB,52 as evolution (see Figure 3.56).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,55

U2
AB,51

U2
AB,52 U1

A,7

U1
A,7

Figure 3.56: Unstable systems U2
AB,51 and U2

AB,52.

Phase portrait U1
A,56 has phase portrait U2

AB,53 as an evolution (see Figure 3.57). After

bifurcation we get phase portrait U1
A,11, modulo limit cycle, by making the infinite saddle-node

(0
2)SN disappear. Moreover, U1

A,56 has the impossible phase portrait U
2,I
AB,21 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,4 of codimension one∗,

see Figure 3.58. We observe that, in the set (A), U
2,I
AB,21 also unfolds in an impossible phase

portrait because after bifurcation we would get a limit cycle surrounding more than one finite

singular points, and this is not possible in quadratic systems (see Lemma 3.14 from [6]).

Phase portrait U1
A,57 has phase portrait U2

AB,54 as an evolution (see Figure 3.59). After

bifurcation we get phase portrait U1
A,12, modulo limit cycle, by making the infinite saddle-node
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U1
A,56 U2

AB,53 U1
A,11

Figure 3.57: Unstable system U2
AB,53.

U1
A,56 U

2,I
AB,21 U

1,I
B,4

Figure 3.58: Impossible unstable phase portrait U
2,I
AB,21.

(0
2)SN disappear. Moreover, U1

A,57 has the impossible phase portrait U
2,I
AB,22 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,4 of codimension one∗,

see Figure 3.60. We observe that, in the set (A), U
2,I
AB,22 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,57 U2

AB,54 U1
A,12

Figure 3.59: Unstable system U2
AB,54.

U1
A,57 U

2,I
AB,22 U

1,I
B,4

Figure 3.60: Impossible unstable phase portrait U
2,I
AB,22.

Phase portrait U1
A,58 has phase portrait U2

AB,55 as an evolution (see Figure 3.61). After

bifurcation we get phase portrait U1
A,12, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,58 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,55.

Phase portrait U1
A,59 has phase portraits U2

AB,56 and U2
AB,57 as evolution (see Figure 3.62).

After bifurcation we get phase portrait U1
A,13, in both cases, by making the infinite saddle-node

(0
2)SN disappear.
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U1
A,58 U2

AB,55 U1
A,12

Figure 3.61: Unstable system U2
AB,55.

U1
A,59

U2
AB,56

U2
AB,57 U1

A,13

U1
A,13

Figure 3.62: Unstable systems U2
AB,56 and U2

AB,57.

Phase portrait U1
A,60 has phase portrait U2

AB,58 as an evolution (see Figure 3.63). After

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,60 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,58.

U1
A,60 U2

AB,58 U1
A,11

Figure 3.63: Unstable system U2
AB,58.

Phase portrait U1
A,61 has phase portraits U2

AB,59 and U2
AB,60 as evolution (see Figure 3.64).

After bifurcation we get phase portraits U1
A,11 and U1

A,12, respectively, by making the infinite

saddle-node(0
2)SN disappear.

Phase portrait U1
A,62 has phase portrait U2

AB,61 as an evolution (see Figure 3.65). After

bifurcation we get phase portrait U1
A,13, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,62 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,61.

Phase portrait U1
A,63 has phase portrait U2

AB,62 as an evolution (see Figure 3.66). After

bifurcation we get phase portrait U1
A,11, modulo limit cycle, by making the infinite saddle-node

(0
2)SN disappear. Moreover, U1

A,63 has the impossible phase portrait U
2,I
AB,23 as an evolution. By
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U1
A,61

U2
AB,59 U1

A,11

U2
AB,60 U1

A,12

Figure 3.64: Unstable systems U2
AB,59 and U2

AB,60.

U1
A,62 U2

AB,61 U1
A,13

Figure 3.65: Unstable system U2
AB,61.

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,5 of codimension one∗,

see Figure 3.67. We observe that, in the set (A), U
2,I
AB,23 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,63 U2

AB,62 U1
A,11

Figure 3.66: Unstable system U2
AB,62.

U1
A,63 U

2,I
AB,23 U

1,I
B,5

Figure 3.67: Impossible unstable phase portrait U
2,I
AB,23.

Phase portrait U1
A,64 has phase portrait U2

AB,63 as an evolution (see Figure 3.68). After

bifurcation we get phase portrait U1
A,13, modulo limit cycle, by making the infinite saddle-node
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(0
2)SN disappear. Moreover, U1

A,64 has the impossible phase portrait U
2,I
AB,24 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,5 of codimension one∗,

see Figure 3.69. We observe that, in the set (A), U
2,I
AB,24 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,64 U2

AB,63 U1
A,13

Figure 3.68: Unstable system U2
AB,63.

U1
A,64 U

2,I
AB,24 U

1,I
B,5

Figure 3.69: Impossible unstable phase portrait U
2,I
AB,24.

Phase portrait U1
A,65 has phase portrait U2

AB,64 as an evolution (see Figure 3.70). After

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,65 has the impossible phase portrait U

2,I
AB,25 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,6 of codimension one∗, see Figure

3.71. We observe that, in the set (A), U
2,I
AB,25 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

U1
A,65 U2

AB,64 U1
A,11

Figure 3.70: Unstable system U2
AB,64.

Phase portrait U1
A,66 has phase portrait U2

AB,65 as an evolution (see Figure 3.72). After

bifurcation we get phase portrait U1
A,12, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,66 has the impossible phase portrait U

2,I
AB,26 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,6 of codimension one∗, see Figure

3.73. We observe that, in the set (A), U
2,I
AB,26 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.
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U1
A,65 U

2,I
AB,25 U

1,I
B,6

Figure 3.71: Impossible unstable phase portrait U
2,I
AB,25.

U1
A,66 U2

AB,65 U1
A,12

Figure 3.72: Unstable system U2
AB,65.

U1
A,66 U

2,I
AB,26 U

1,I
B,6

Figure 3.73: Impossible unstable phase portrait U
2,I
AB,26.

Phase portrait U1
A,67 has phase portraits U2

AB,66 and U2
AB,67 as evolution (see Figure 3.74).

After bifurcation we get phase portraits U1
A,11 and U1

A,13 (being this last one modulo limit

cycles), respectively, by making the infinite saddle-node (0
2)SN disappear.

U1
A,67

U2
AB,66 U1

A,11

U2
AB,67 U1

A,13

Figure 3.74: Unstable systems U2
AB,66 and U2

AB,67.

Phase portrait U1
A,68 has phase portraits U2

AB,68 and U2
AB,69 as evolution (see Figure 3.75).

After bifurcation we get phase portraits U1
A,11 (modulo limit cycles) and U1

A,13, respectively,

by making the infinite saddle-node (0
2)SN disappear.

Phase portrait U1
A,69 has phase portrait U2

AB,70 as an evolution (see Figure 3.76). After
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U1
A,68

U2
AB,68 U1

A,11

U2
AB,69 U1

A,13

Figure 3.75: Unstable systems U2
AB,68 and U2

AB,69.

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,69 has the impossible phase portrait U

2,I
AB,27 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,7 of codimension one∗, see Figure

3.77. We observe that, in the set (A), U
2,I
AB,27 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

U1
A,69 U2

AB,70 U1
A,11

Figure 3.76: Unstable system U2
AB,70.

U1
A,69 U

2,I
AB,27 U

1,I
B,7

Figure 3.77: Impossible unstable phase portrait U
2,I
AB,27.

Phase portrait U1
A,70 has phase portrait U2

AB,71 as an evolution (see Figure 3.78). After

bifurcation we get phase portrait U1
A,13, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,70 has the impossible phase portrait U

2,I
AB,28 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,7 of codimension one∗, see Figure

3.79. We observe that, in the set (A), U
2,I
AB,28 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

Therefore, we have just finished obtaining all the 71 topologically potential phase portraits
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U1
A,70 U2

AB,71 U1
A,13

Figure 3.78: Unstable system U2
AB,71.

U1
A,70 U

2,I
AB,28 U

1,I
B,7

Figure 3.79: Impossible unstable phase portrait U
2,I
AB,28.

of codimension two∗ from the set (AB) presented in Figures 1.1 to 1.3.

Now we explain how one can obtain these 71 phase portraits by starting the study from

the set (B). Let us consider all the 40 realizable structurally unstable quadratic vector fields

of codimension one∗ from the set (B). In order to obtain a phase portrait of codimension two∗

belonging to the set (AB) starting from a phase portrait of codimension one∗ of the set (B), we

keep the existing infinite saddle-node(0
2)SN and by using Theorem 2.6 we build a finite saddle-

node sn(2) by the coalescence of a finite saddle with a finite node. On the other hand, from

the phase portraits of codimension two∗ from the set (AB), there exist two ways of obtaining

phase portraits of codimension one∗ also belonging to the set (B) after perturbation: splitting

sn(2) into a saddle and a node, or moving it to complex singularities (see Remark 3.2).

Remark 3.2. We recall that, in quadratic differential systems, the finite singular points are

zeroes of a polynomial of degree four. Supposing that we have a singular point of multiplicity

two, then the remaining singular points are zeroes of a quadratic polynomial. Therefore,

these other two points can be two simple singular points, a double point (a saddle-node) or

two complex conjugate singular points.

According to these facts, if a phase portrait does not possess finite singularities (for in-

stance, U1
B,1 and U1

B,2) or if it possesses only two finite antisaddles (as for instance U1
B,29 to

U1
B,32), it is not possible to obtain a phase portrait from it which belongs to the set (AB).

The main goal of this section is to obtain all the topologically potential phase portraits

from the set (AB) and then prove their realization or show that they are not possible. So we

have to be sure that no other phase portrait can be found if one does some evolution in all

elements of the set (B) in order to obtain a phase portrait belonging to the set (AB). We point

out that we have done this verification, i.e. we have also considered each element from the set

(B) and produced a coalescence (when it was possible) of a finite saddle with a finite node and

we also have obtained the 71 topologically potential phase portraits of codimension two∗ from

the set (AB) presented in Figures 1.1 to 1.3. In what follows we show the result (modulo limit

cycles) of this study. We point out that we will not give all the details of this study. We will

not even mention anything about why there are no more potential cases to be considered an

evolution of a codimension one∗ phase portrait, since we believe that this can be easily verified



Topological classification of the sets (AB) and (AC) 55

by the reader. Additionally, we will present pictures only of the impossible phase portraits

obtained in order to explain their impossibility and we will not mention anything about phase

portraits which are topologically equivalent to phase portraits already obtained.

It is important to remark that the realizable phase portraits that we will obtain from the

set (B) to the set (AB) will coincide exactly with those ones previously found. However, the

non-realizable ones that we will find from (B) will be different from those ones coming from

(A). The reason is that the arguments used to prove the impossibility of those coming from

(A) were precisely that they would bifurcate in some impossible from (B) and now, they will

be those ones that bifurcate in some impossible from (A).

In Table 3.1 we present the study of phase portraits U1
B,3 to U1

B,11. In the first column we

present the corresponding phase portrait from the set (B), in the second column we indicate

its corresponding phase portrait belonging to the set (AB) i.e. after producing a finite saddle-

node sn(2), and in the third column we show the corresponding phase portrait after we make

this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,3 U2

AB,1 U1
B,1

U1
B,4 U2

AB,2 U1
B,2

U1
B,5 U2

AB,3 U1
B,1

U1
B,6 U2

AB,4 U1
B,2

U1
B,7 U2

AB,6 U1
B,2

U1
B,8 U2

AB,5 U1
B,1

U1
B,9

U2
AB,7

U1
B,8U2

AB,9

U2
AB,11

U1
B,10

U2
AB,8

U1
B,7U2

AB,10

U2
AB,12

U1
B,11

U2
AB,13 U1

B,4

U2
AB,14 U1

B,7

Table 3.1: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,12 has phase portraits U2

AB,15 and U2
AB,16 as evolution. After bifurcation

we get phase portrait U1
B,3 (for both cases) by making the finite saddle-node sn(2) disappear.

Moreover, U1
B,12 has the impossible phase portrait U

2,I
AB,29 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original infinite saddle-node(0
2)SN

into an infinite saddle and an infinite node we obtain the impossible phase portrait U
1,I
A,1 of

codimension one∗, see Figure 3.80. We point out that, in the set (B), the corresponding unfolding

of U
2,I
AB,29 does not exist, since if such a phase portrait does exist, it would be an evolution of

the impossible phase portrait I9,1 (see Figure 4.4 from [6]), which contradicts Theorem 2.11.

In Table 3.2 we present the study of phase portraits U1
B,13 to U1

B,15. In the first column we

present the corresponding phase portrait from the set (B), in the second column we indicate

its corresponding phase portrait belonging to the set (AB) i.e. after producing a finite saddle-
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U1
B,12 U

2,I
AB,29 U

1,I
A,1

Figure 3.80: Impossible unstable phase portrait U
2,I
AB,29.

node sn(2), and in the third column we show the corresponding phase portrait after we make

this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,13

U2
AB,17 U1

B,6

U2
AB,18 U1

B,7

U1
B,14

U2
AB,19

U1
B,3U2

AB,20

U2
AB,21

U1
B,15

U2
AB,23 U1

B,3

U2
AB,22 U1

B,5

Table 3.2: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,16 has phase portraits U2

AB,29, U2
AB,25, and U2

AB,26 as evolution. After

bifurcation we get phase portraits U1
B,5, U1

B,8 and U1
B,8 (being this last one modulo limit cy-

cle), respectively, by making the finite saddle-node sn(2) disappear. Moreover, U1
B,16 has the

impossible phase portrait U
2,I
AB,30 as an evolution. By Theorem 2.11 such a phase portrait is

impossible because by splitting the original infinite saddle-node (0
2)SN into an infinite saddle

and an infinite node we obtain the impossible phase portrait U
1,I
A,103 of codimension one∗, see

Figure 3.81. We observe that, in the set (B), U
2,I
AB,30 unfolds in U1

B,8 (modulo limit cycles).

U1
B,16 U

2,I
AB,30 U

1,I
A,103

Figure 3.81: Impossible unstable phase portrait U
2,I
AB,30.

Phase portrait U1
B,17 has phase portraits U2

AB,28, U2
AB,24, and U2

AB,27 as evolution. After

bifurcation we get phase portraits U1
B,6, U1

B,7 and U1
B,7 (being this last one modulo limit cy-

cle), respectively, by making the finite saddle-node sn(2) disappear. Moreover, U1
B,17 has the

impossible phase portrait U
2,I
AB,31 as an evolution. By Theorem 2.11 such a phase portrait is

impossible because by splitting the original infinite saddle-node (0
2)SN into an infinite saddle
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and an infinite node we obtain the impossible phase portrait U
1,I
A,103 of codimension one∗, see

Figure 3.82. We observe that, in the set (B), U
2,I
AB,31 unfolds in U1

B,7 (modulo limit cycles).

U1
B,17 U

2,I
AB,31 U

1,I
A,103

Figure 3.82: Impossible unstable phase portrait U
2,I
AB,31.

Phase portrait U1
B,18 has phase portrait U2

AB,30 as an evolution and after bifurcation we get

phase portrait U1
B,7, by making the finite saddle-node sn(2) disappear. Moreover, U1

B,18 has a

second phase portrait as an evolution which is topologically equivalent to U2
AB,30.

Phase portrait U1
B,19 has phase portraits U2

AB,32 and U2
AB,31 as evolution. After bifurca-

tion we get phase portraits U1
B,4 and U1

B,6, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,20 has phase portraits U2

AB,33 and U2
AB,34 as evolution. After bifurcation

we get phase portrait U1
B,3, in both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,20 has the impossible phase portraits

U
2,I
AB,32 and U

2,I
AB,33 as evolution. By Theorem 2.11 such phase portraits are impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portraits U
1,I
A,2 and U

1,I
A,104, respectively, of codimension one∗,

see Figure 3.83. We point out that, in the set (B), the corresponding unfolding of U
2,I
AB,32 does

not exist (by the exactly same reason that we have discussed in U
2,I
AB,29) and the corresponding

unfolding of U
2,I
AB,33 is U1

B,3 (modulo limit cycles).

U1
B,20

U
2,I
AB,32 U

1,I
A,2

U
2,I
AB,33 U

1,I
A,104

Figure 3.83: Impossible unstable phase portraits U
2,I
AB,32 and U

2,I
AB,33.

Phase portrait U1
B,21 has phase portrait U2

AB,35 as an evolution and after bifurcation we get

phase portrait U1
B,6, by making the finite saddle-node sn(2) disappear. Moreover, U1

B,21 has a

second phase portrait as an evolution which is topologically equivalent to U2
AB,35.

Phase portrait U1
B,22 has phase portraits U2

AB,36 and U2
AB,37 as evolution. After bifurca-

tion we get phase portraits U1
B,3 and U1

B,8, respective, by making the finite saddle-node sn(2)

disappear.
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Phase portrait U1
B,23 has phase portraits U2

AB,39, U2
AB,40, and U2

AB,43 as evolution. After

bifurcation we get phase portraits U1
B,5 (for the two first cases) and U1

B,8 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,23 has the impossible phase

portrait U
2,I
AB,34 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,49 of codimension one∗, see Figure 3.84. We observe

that, in the set (B), U
2,I
AB,34 unfolds in U1

B,8.

U1
B,23 U

2,I
AB,34 U

1,I
A,49

Figure 3.84: Impossible unstable phase portrait U
2,I
AB,34.

Phase portrait U1
B,24 has phase portraits U2

AB,38, U2
AB,41, and U2

AB,42 as evolution. After

bifurcation we get phase portraits U1
B,6 (for the two first cases) and U1

B,7 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,24 has the impossible phase

portrait U
2,I
AB,35 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,49 of codimension one∗, see Figure 3.85. We observe

that, in the set (B), U
2,I
AB,35 unfolds in U1

B,7.

U1
B,24 U

2,I
AB,35 U

1,I
A,49

Figure 3.85: Impossible unstable phase portrait U
2,I
AB,35.

Phase portrait U1
B,25 has phase portraits U2

AB,46, U2
AB,49, and U2

AB,44 as evolution. After

bifurcation we get phase portraits U1
B,3 (for the two first cases) and U1

B,8 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,25 has the impossible phase

portrait U
2,I
AB,36 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,3 of codimension one∗, see Figure 3.86. We point

out that, in the set (B), the corresponding unfolding of U
2,I
AB,36 does not exist (by the exactly

same reason that we have discussed in U
2,I
AB,29).

Phase portrait U1
B,26 has phase portraits U2

AB,47, U2
AB,48, and U2

AB,45 as evolution. After

bifurcation we get phase portraits U1
B,4 (for the two first cases) and U1

B,7 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,26 has the impossible phase

portrait U
2,I
AB,37 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node
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U1
B,25 U

2,I
AB,36

U
1,I
A,3

Figure 3.86: Impossible unstable phase portrait U
2,I
AB,36.

we obtain the impossible phase portrait U
1,I
A,3 of codimension one∗, see Figure 3.87. We point

out that, in the set (B), the corresponding unfolding of U
2,I
AB,37 does not exist (by the exactly

same reason that we have discussed in U
2,I
AB,29).

U1
B,26 U

2,I
AB,37 U

1,I
A,3

Figure 3.87: Impossible unstable phase portrait U
2,I
AB,37.

In Table 3.3 we present the study (modulo limit cycles) of phase portraits U1
B,27 to U1

B,35.

In the first column we present the corresponding phase portrait from the set (B), in the second

column we indicate its corresponding phase portrait belonging to the set (AB) i.e. after pro-

ducing a finite saddle-node sn(2), and in the third column we show the corresponding phase

portrait after we make this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,27 U2

AB,50 U1
B,4

U1
B,28

U2
AB,51 U1

B,3

U2
AB,52 U1

B,4

U1
B,33

U2
AB,53 U1

B,29
U2

AB,54

U1
B,34

U2
AB,55

U1
B,32

U2
AB,56

U2
AB,57

U2
AB,58

U1
B,35

U2
AB,61 U1

B,29

U2
AB,59 U1

B,32
U2

AB,60

Table 3.3: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,36 has phase portraits U2

AB,62 and U2
AB,63 as evolution. After bifurcation
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we get phase portrait U1
B,29, for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,36 has the impossible phase portrait

U
2,I
AB,38 as an evolution. By Theorem 2.11 such a phase portrait is impossible because by

splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node we

obtain the impossible phase portrait U
1,I
A,105 of codimension one∗, see Figure 3.88. We observe

that, in the set (B), U
2,I
AB,38 unfolds in U1

B,29 (modulo limit cycles).

U1
B,36 U

2,I
AB,38 U

1,I
A,105

Figure 3.88: Impossible unstable phase portrait U
2,I
AB,38.

Phase portrait U1
B,37 has phase portraits U2

AB,64 and U2
AB,65 as evolution. After bifurcation

we get phase portrait U1
B,31, for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
B,38 has phase portraits U2

AB,68 and U2
AB,67 as evolution. After bifurcation

we get phase portraits U1
B,29 and U1

B,30, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,39 has phase portraits U2

AB,69 and U2
AB,66 as evolution. After bifurcation

we get phase portraits U1
B,29 and U1

B,31, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,40 has phase portraits U2

AB,70 and U2
AB,71 as evolution. After bifurcation

we get phase portrait U1
B,31, for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,40 has the impossible phase portrait

U
2,I
AB,39 as an evolution. By Theorem 2.11 such a phase portrait is impossible because by

splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node we

obtain the impossible phase portrait U
1,I
A,106 of codimension one∗, see Figure 3.89. We observe

that, in the set (B), U
2,I
AB,39 unfolds in U1

B,31 (modulo limit cycles).

U1
B,40 U

2,I
AB,39 U

1,I
A,106

Figure 3.89: Impossible unstable phase portrait U
2,I
AB,39.

3.2 The realization of the potential phase portraits

In the previous subsection we have produced all the topologically potential phase portraits for

structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AB). And

from them, we have discarded 33 which are not realizable due to their respective unfoldings

of codimension one∗ being impossible.
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In this subsection we aim to give specific examples for the remaining 71 different topolog-

ical classes of structurally unstable quadratic systems of codimension two∗ belonging to the set

∑
2
2(AB) and presented in Figures 1.1 to 1.3.

In [2] the authors showed that for each structurally stable phase portrait with limit cycles

there exists a realizable structurally stable phase portrait without limit cycles so that modulo

limit cycles they are equivalent. On the contrary, due to the large number of cases, in [6]

the authors did not follow the same procedure for the realizable structurally unstable phase

portraits of codimension one∗. Since this present paper is directly derived from this second

study, here we have found examples of codimension two∗ phase portraits with no evidence of

limit cycles, but we have not proved the absence of the infinitesimal ones (i.e. the ones born

by Hopf-bifurcation).

In [14] the authors classified, with respect to a specific normal form, the set of all real

quadratic polynomial differential systems with a finite semi-elemental saddle-node sn(2) lo-

cated at the origin of the plane and an infinite saddle-node of type (0
2)SN (obtained by the

coalescence of an infinite saddle with an infinite node) located in the bisector of first and third

quadrants. In [10] the authors show that phase portrait V171 from [14] is not topologically

equivalent to V170 (i.e. the equivalence presented in Table 65 from the mentioned paper is not

correct) and in [10] the authors present the correct picture of phase portrait V171.

Remark 3.3. The study of a bifurcation diagram of a certain family of quadratic systems

produces not only the class of phase portraits that we look for, but also all of those of their

closure according to the normal form that we consider. Even though the study is mainly

algebraic, analytic and numerical tools are also required. This implies that these studies may

be not complete and subject to the existence of possible “islands” which could contain an

undetected phase portrait. The border of that “island” could mean the connection of two

separatrices, and its interior could contain a different phase portrait from the ones stated

in the main theorem. In [14] the authors studied a bifurcation diagram in which the most

generic phase portraits correspond to elements of the set (AB). In Section 7 of that paper

the authors said that the bifurcation diagram they obtained is completely coherent, i.e. by

taking any two points in the parameter space and joining them by a continuous curve, along

this curve the changes in phase portraits that occur when crossing the different bifurcation

surfaces could be completely explained. Nevertheless, at that moment, the authors could not

be sure that the bifurcation diagram was the complete bifurcation diagram for the family they

consider in their paper, due to the possibility of “islands” inside the bifurcation diagram. The

topological study that we do in this paper solves partially this problem, since we prove that all

the realizable phase portraits of class (AB) do really exist, and no other topological possibility

does. However, the possible existence of “islands” in the bifurcation diagram still persists

since they can be related to double limit cycles, as discussed in Section 7 of [14].

By using the phase portraits of generic regions of the bifurcation diagram from [14] plus

the correct V171 presented in [10] we realize all the 71 unstable systems of codimension two∗ of

the set (AB), i.e. we can give concrete examples of all structurally unstable phase portraits

from the set (AB).

Consider systems (2.1), which were studied in [14] and describe quadratic systems having

a finite semi-elemental saddle-node sn(2) and an infinite saddle-node of type (0
2)SN located in

the endpoints of the bisector of the first and third quadrants.

In Tables 3.4 and 3.6 we present one representative from each generic region of the bifurca-

tion diagram of [14] (as described before) corresponding to each phase portrait of codimension
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two∗ from the set (AB) and, therefore, we conclude the proof of Theorem 1.6.

Cod 2∗ [14] g h ł n

U2
AB,1 V23 1 0 1/2 10

U2
AB,2 V84 1 91/100 1 2304/625

U2
AB,3 V22 1 0 9/10 10

U2
AB,4 V85 1 22/25 1 2304/625

U2
AB,5 V20 1 0 18 10

U2
AB,6 V21 1 −2 1 10

U2
AB,7 V1 1 −21/5 18 10

U2
AB,8 V2 1 −5 10 10

U2
AB,9 V190 1 3/5 −33/10 −1

U2
AB,10 V191 1 3/5 −3 −1

U2
AB,11 V25 1 173/80 6 10

U2
AB,12 V31 1 112/25 6 30

U2
AB,13 V9 1 −5 11/10 10

U2
AB,14 V121 1 −9999/100000 4/25 81/100

U2
AB,15 V147 1 −6/5 5 −1

U2
AB,16 V66 1 5 −15 10

U2
AB,17 V7 1 −9/2 13/5 10

U2
AB,18 V136 1 −59999/100000 7/10 4/25

U2
AB,19 V64 1 11/5 −4 10

U2
AB,20 V145 1 −4/5 5 −1

U2
AB,21 V13 1 −5 1/2 10

U2
AB,22 V83 1 9201/10000 −15 2304/625

U2
AB,23 V10 1 −5 7/10 10

U2
AB,24 V141 1 −69/100 601/1000 9/100

U2
AB,25 V144 1 −7999/10000 6397/10000 1/25

U2
AB,26 V172 1 −1/10 −3 −1

U2
AB,27 V173 1 −7/100 −31/20 −1

U2
AB,28 V41 1 44773/10000 11/5 30

U2
AB,29 V69 1 11/5 6 10

Table 3.4: Correspondence between codimension two∗ phase portraits of the set

(AB) and phase portraits from generic regions of the bifurcation diagram pre-

sented in [14]. In the first column we present the codimension two∗ phase por-

traits from the set (AB) in the present paper, in the second column we show

the corresponding phase portraits from [14] given by normal form (2.1), and in

the other columns we present the values of the parameters g, h, ł, and n of (2.1)

which realizes such phase portrait (remember that the correct phase portrait

V171 is presented in [10]).
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Cod 2∗ [14] g h ł n

U2
AB,30 V15 1 −21/5 3 10

U2
AB,31 V114 1 −211/2000 9549/50000 4/5

U2
AB,32 V109 1 −41/400 99999/100000 4/5

U2
AB,33 V154 1 −7/5 8/25 −1

U2
AB,34 V102 1 481/2000 −10 1

U2
AB,35 V129 1 −5499/10000 3/4 81/400

U2
AB,36 V108 1 −41/400 11/10 4/5

U2
AB,37 V78 1 9201/10000 −50 2304/625

U2
AB,38 V42 1 44777/10000 203/100 30

U2
AB,39 V71 1 223/100 6 10

U2
AB,40 V170 1 −9/50 −3 −1

U2
AB,41 V171 1 −3/40 −3/2 −1

U2
AB,42 V142 1 −69/100 6007/10000 9/100

U2
AB,43 V143 1 −7999/10000 27/50 1/25

U2
AB,44 V104 1 573/1250 −8 19/10

U2
AB,45 V123 1 −39/400 1/100 81/100

U2
AB,46 V155 1 −7/5 3/10 −1

U2
AB,47 V165 1 −1/5 −13/10 −1

U2
AB,48 V37 1 3 11/10 10

U2
AB,49 V44 1 22/5 2 10

U2
AB,50 V110 1 −41/400 9/10 4/5

U2
AB,51 V46 1 11/5 9/10 10

U2
AB,52 V49 1 23/5 9/10 10

U2
AB,53 V6 1 −5 3 10

U2
AB,54 V189 1 37/50 −147/100 −1

U2
AB,55 V61 1 4501/1000 −1 10

U2
AB,56 V53 1 6 −1/10000 10

U2
AB,57 V107 1 9/25 −1/2 41/25

U2
AB,58 V149 1 −11/10 3/2 −1

U2
AB,59 V62 1 3 −1 10

U2
AB,60 V198 1 −2/5 11/10 −1

U2
AB,61 V51 1 6 1/5 10

U2
AB,62 V138 1 −3/5 7/10 9/100

U2
AB,63 V177 1 3/100 −9/10 −1

U2
AB,64 V3 1 −5 6 10

U2
AB,65 V192 1 3/5 −123/50 −1

U2
AB,66 V122 1 −39/400 31/1000 81/100

U2
AB,67 V169 1 −1/5 −7/10 −1

U2
AB,68 V113 1 −39/400 1/10 81/100

Table 3.5: Continuation of Table 3.4.



64 J. C. Artés, M. C. Mota and A. C. Rezende

Cod 2∗ [14] g h ł n

U2
AB,69 V166 1 −1/5 −53/50 −1

U2
AB,70 V140 1 −69/100 63/100 9/100

U2
AB,71 V174 1 −41/1000 −133/100 −1

Table 3.6: Continuation of Table 3.5.

4 Proof of Theorem 1.7

In this section we present the proof of Theorem 1.7. The procedure is the same as used in the

previous section. In Subsection 4.1 we obtain all the topologically potential phase portraits

possessing the saddle-nodes sn(2) and (1
1)SN (we have 45 phase portraits) and we prove that

five of them are impossible. In Subsection 4.2 we show the realization of each one of the

remaining 40 phase portraits.

4.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase portraits

from the set (AC).

As we said before, inside the set (AC), the unstable objects of codimension two∗ that we are

considering in this paper belong to the set of saddle-nodes
{

sn(2)+(
1
1)SN

}
. Considering all

the different ways of obtaining phase portraits belonging to the set (AC) of codimension two∗,

we have to consider all the possible ways of coalescing specific singular points in both sets (A)

and (C). However, as the sets (AC) and (CA) are the same (i.e. their elements are obtained

independently of the order of evolution in elements of the sets (A) or (C)), it is necessary to

consider only all the possible ways of obtaining an infinite saddle-node of type (1
1)SN in each

element from the set (A) (phase portraits possessing a finite saddle-node sn(2)). Anyway, in

order to make things clear, in page 77 we discuss briefly how should we perform if we start

by considering the set (C).

In order to obtain phase portraits from the set (AC) by starting our study from the set (A),

we have to consider Theorem 2.9 and also Lemma 3.26 from [6] (regarding phase portraits

from the set (C)) which we state as follows.

Lemma 4.1. Assume that a codimension one∗ polynomial vector field X has an infinite singular point

p being a saddle-node of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)p 6= 0 and second eigenvalue

equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce a struc-

turally stable system (with one infinite saddle and one finite node, or vice versa) or a system

topologically equivalent to X.

(b) Both possibilities of structurally stable systems are realizable.

(c) If the saddle-node is the only unstable object in the region of definition and we consider the

perturbation which leaves a saddle and a node in a small neighborhood, then the node is ω-limit

or α-limit (depending on its stability) of at least one of the separatrices of the saddle.

(d) In the case that after bifurcation the node remains at infinity and the saddle moves to the finite

plane, then the separatrices of this new saddle have their α- and ω-limits fixed according to next

rule:
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(1) The separatrix γ that corresponds to the one of the saddle-node different from the infinity

line must maintain the same α- or ω-limit set.

(2) The separatrix (belonging to the same eigenspace of γ) which appears after bifurcation must

go to the node that remains at infinity, and this will be the only separatrix which can arrive

to this node in this side of the infinity.

(3) The two separatrices which were the infinite line in the unstable phase portrait, and that now

are two separatrices of the saddle drawn on the finite plane, must end at the same infinite

node where they ended before the bifurcation (if a node was adjacent to the saddle-node) or

in the same α- or ω-limit point of the finite separatrix of the adjacent infinite saddle. In

case that the saddle-node is the only infinite singular point, then both separatrices go to the

symmetric point which will remain as a node.

Here we consider all 69 realizable structurally unstable quadratic vector fields of codimen-

sion one∗ from the set (A). In order to obtain a phase portrait of codimension two∗ belonging

to the set (AC) starting from a phase portrait of codimension one∗ of the set (A), we keep the

existing finite saddle-node and using Lemma 4.1 we build an infinite saddle-node of type

(1
1)SN by the coalescence of a finite node (respectively, finite saddle) with an infinite saddle

(respectively, infinite node). As we said before, we point out that the finite singularity that

coalesces with an infinite singularity cannot be the finite saddle-node since then what we

would obtain at infinity would not be a saddle-node of type (1
1)SN but a multiplicity three

singularity. Even though this is also a codimension two∗ case and somehow can be considered

inside the set (AC), we have preferred to put it into the set (CC) where two possibilities will

be needed to be studied: either two finite singularities coalescing with different infinite singu-

larities, or two finite singularities coalescing with the same infinite singularity. On the other

hand, from the phase portraits of codimension two∗ from the set (AC), one can obtain phase

portraits of codimension one∗ also belonging to the set (A) after perturbation by splitting the

infinite saddle-node (1
1)SN into a finite saddle (respectively, finite node) and an infinite node

(respectively, infinite saddle). More precisely, after bifurcation the point that has arrived to

infinity remains there with the same local behavior, and the one which was at infinity moves

into the real plane at the other side of the infinity line.

As in the previous section, in what follows we denote by U2
AC,k, where U2

AC stands for

structurally unstable quadratic vector field of codimension two∗ from the set (AC) and k ∈

{1, . . . , 40}. The impossible phase portraits will be denoted by U
2,I
AC,j, where U

2,I
AC stands for

Impossible of codimension two∗ from the set (AC) and j ∈ N.

We point out that in this study we do not present phase portraits which are topologically

equivalent to phase portraits already obtained. Additionally, as we explained clearly about

how we obtain an infinite saddle-node of type (1
1)SN from a phase portrait from the set (A),

we will not mention anything about why we do not have no more possibilities (of obtaining

an infinite saddle-node of type(1
1)SN) beyond those ones that we will present.

Phase portrait U1
A,1 cannot have a phase portrait possessing an infinite saddle-node of type

(1
1)SN as an evolution, since U1

A,1 has only the finite saddle-node sn(2) and only the infinite

node.

Phase portrait U1
A,2 has phase portrait U2

AC,1 as an evolution (see Figure 4.1). After bifur-

cation we get phase portrait U1
A,11 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,3 has phase portrait U2

AC,2 as an evolution (see Figure 4.2). After bifur-
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U1
A,2 U2

AC,1 U1
A,11

Figure 4.1: Unstable system U2
AC,1.

cation we get phase portrait U1
A,12 by splitting the infinite saddle-node (1

1)SN.

U1
A,3 U2

AC,2 U1
A,12

Figure 4.2: Unstable system U2
AC,2.

Phase portrait U1
A,4 cannot have a phase portrait possessing an infinite saddle-node of type

(1
1)SN as an evolution. In fact, such a phase portrait possesses only an infinite node which

receives four separatrices from finite singularities. Then by item (d)−(2) of Lemma 4.1 the

finite saddle cannot reach the infinite node. We point out that this same situation happens in

many other phase portraits, such as in U1
A,5 to U1

A,8. Because it is quite simple to detect this

phenomena, when we deal again with this situation we will skip all the details.

Phase portrait U1
A,9 has phase portrait U2

AC,3 as an evolution (see Figure 4.3). After bifur-

cation we get phase portrait U1
A,11 by splitting the infinite saddle-node (1

1)SN.

U1
A,9 U2

AC,3 U1
A,11

Figure 4.3: Unstable system U2
AC,3.

Phase portrait U1
A,10 has phase portrait U2

AC,4 as an evolution (see Figure 4.4). After bifur-

cation we get phase portrait U1
A,13 by splitting the infinite saddle-node (1

1)SN.

U1
A,10 U2

AC,4 U1
A,13

Figure 4.4: Unstable system U2
AC,4.
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It is quite common that a given phase portrait of a certain codimension K be an unfolding

of topologically distinct phase portraits of codimension K + 1 (modulo limit cycles). This situ-

ation appears in this study. In the first column of Table 4.1 we present the phase portrait of the

set (A), in the second column we indicate the corresponding phase portrait belonging to the

set (AC), and in the third column we show the respective phase portrait after bifurcation. We

point out that it is not necessary to present any explanation for the phase portraits present in

the first column, since their corresponding elements from the third column already appeared

and were explained before.

phase portrait from phase portrait from phase portrait from

the set (A) the set (AC) the set (A)

U1
A,11

U2
AC,1 U1

A,2

U2
AC,3 U1

A,9

U1
A,12 U2

AC,2 U1
A,3

U1
A,13 U2

AC,4 U1
A,10

Table 4.1: Phase portraits from the set (AC) obtained from evolution of some

elements of the set (A).

Phase portrait U1
A,14 has phase portrait U2

AC,5 as an evolution (see Figure 4.5). After bifur-

cation we get phase portrait U1
A,55 by splitting the infinite saddle-node(1

1)SN.

U1
A,14 U2

AC,5 U1
A,55

Figure 4.5: Unstable system U2
AC,5.

Phase portrait U1
A,15 has phase portraits U2

AC,6 and U2
AC,7 as evolution (see Figure 4.6).

After bifurcation we get phase portraits U1
A,32 and U1

A,53, respectively, by splitting the infinite

saddle-node(1
1)SN.

Phase portrait U1
A,16 has phase portraits U2

AC,8, U2
AC,9, and U2

AC,10 as evolution (see Figure

4.7). After bifurcation we get phase portraits U1
A,33, U1

A,52, and U1
A,54, respectively, by splitting

the infinite saddle-node (1
1)SN.

Phase portrait U1
A,17 has phase portraits U2

AC,11, U2
AC,12, and U2

AC,13 as evolution (see Fig-

ure 4.8). After bifurcation we get phase portraits U1
A,35, U1

A,41, and U1
A,42, respectively, by

splitting the infinite saddle-node (1
1)SN.

Phase portrait U1
A,18 has phase portraits U2

AC,14, U2
AC,15, and U2

AC,16 as evolution (see Fig-

ure 4.9). After bifurcation we get phase portraits U1
A,25, U1

A,27, and U1
A,45, respectively, by

splitting the infinite saddle-node (1
1)SN.

Phase portraits U1
A,19, U1

A,20, and U1
A,21 cannot have a phase portrait possessing an infinite

saddle-node of type (1
1)SN as an evolution since each one of them has only the finite saddle-

node sn(2).
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U1
A,15

U2
AC,6 U1

A,32

U2
AC,7 U1

A,53

Figure 4.6: Unstable systems U2
AC,6 and U2

AC,7.

U1
A,16

U2
AC,8 U1

A,33

U2
AC,9 U1

A,52

U2
AC,10 U1

A,54

Figure 4.7: Unstable systems U2
AC,8, U2

AC,9, and U2
AC,10.

Phase portrait U1
A,22 has phase portrait U2

AC,17 as an evolution (see Figure 4.10). After

bifurcation we get phase portrait U1
A,65 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,23 has phase portrait U2

AC,18 as an evolution (see Figure 4.11). After

bifurcation we get phase portrait U1
A,66 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,24 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution since the finite saddle cannot reach the infinite node (by item

(d)−(2) of Lemma 4.1) and the finite node cannot reach the infinite saddle (because this

elemental antisaddle is surrounded by the separatrices of the finite saddle).

Phase portrait U1
A,25 has three phase portraits as evolution.

1. U2
AC,19, see Figure 4.12, and after bifurcation we get phase portrait U1

A,56;

2. U2
AC,14, and its study was done when we spoke about U1

A,18;
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U1
A,17

U2
AC,11 U1

A,35

U2
AC,12 U1

A,41

U2
AC,13 U1

A,42

Figure 4.8: Unstable systems U2
AC,11, U2

AC,12, and U2
AC,13.

U1
A,18

U2
AC,14 U1

A,25

U2
AC,15 U1

A,27

U2
AC,16 U1

A,45

Figure 4.9: Unstable systems U2
AC,14, U2

AC,15, and U2
AC,16.

3. impossible phase portrait U
2,I
AC,1. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original finite saddle-node into a saddle and a node we obtain

the impossible phase portrait U
1,I
C,8 of codimension one∗, see Figure 4.13. We point out

that, in the set (A), the corresponding unfolding of U
2,I
AC,1 does not exist, since if such a

phase portrait does exist, it would be an evolution of the impossible phase portrait I12,3

(see Figure 4.4 from [6]), which contradicts Theorem 2.11.
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U1
A,22 U2

AC,17 U1
A,65

Figure 4.10: Unstable system U2
AC,17.

U1
A,23 U2

AC,18 U1
A,66

Figure 4.11: Unstable system U2
AC,18.

U1
A,25

U2
AC,19 U1

A,56

Figure 4.12: Unstable system U2
AC,19.

U1
A,25 U

2,I
AC,1 U

1,I
C,8

Figure 4.13: Impossible unstable phase portrait U
2,I
AC,1.

Phase portrait U1
A,26 has phase portrait U2

AC,20 as an evolution (see Figure 4.14). After

bifurcation we get phase portrait U1
A,67 by splitting the infinite saddle-node(1

1)SN.

U1
A,26 U2

AC,20 U1
A,67

Figure 4.14: Unstable system U2
AC,20.

Phase portrait U1
A,27 has phase portraits U2

AC,21 and U2
AC,22 as evolution (see Figure 4.15).

After bifurcation we get phase portraits U1
A,56 and U1

A,60, respectively, by splitting the infinite
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saddle-node (1
1)SN. Moreover, U1

A,27 also has U2
AC,15 as an evolution, and this last one was

mentioned before during the study of U1
A,18.

U1
A,27

U2
AC,21 U1

A,56

U2
AC,22 U1

A,60

Figure 4.15: Unstable systems U2
AC,21 and U2

AC,22.

Phase portrait U1
A,28 has phase portraits U2

AC,23 and U2
AC,24 as evolution (see Figure 4.16).

After bifurcation we get phase portraits U1
A,57 and U1

A,58, respectively, by splitting the infinite

saddle-node(1
1)SN.

U1
A,28

U2
AC,23 U1

A,57

U2
AC,24 U1

A,58

Figure 4.16: Unstable systems U2
AC,23 and U2

AC,24.

Phase portrait U1
A,29 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution since the finite saddle cannot reach the infinite node (by item

(d)−(2) of Lemma 4.1), the finite node cannot reach the infinite saddle (because this elemental

antisaddle is surrounded by the separatrices of the finite saddle) and the finite saddle-node

cannot go to infinity (as we have discussed during the analysis of U1
A,1).

Phase portrait U1
A,30 has phase portrait U2

AC,25 as an evolution (see Figure 4.17). After

bifurcation we get phase portrait U1
A,69 by splitting the infinite saddle-node (1

1)SN.

Phase portrait U1
A,31 has phase portrait U2

AC,26 as an evolution (see Figure 4.18). After

bifurcation we get phase portrait U1
A,61 by splitting the infinite saddle-node (1

1)SN.

Phase portrait U1
A,32 has phase portrait U2

AC,27 as an evolution (see Figure 4.19). After

bifurcation we get phase portrait U1
A,61 by splitting the infinite saddle-node (1

1)SN. Moreover,



72 J. C. Artés, M. C. Mota and A. C. Rezende

U1
A,30 U2

AC,25 U1
A,69

Figure 4.17: Unstable system U2
AC,25.

U1
A,31 U2

AC,26 U1
A,61

Figure 4.18: Unstable system U2
AC,26.

U1
A,32 also has U2

AC,6 as an evolution, and this last one was mentioned before during the study

of U1
A,15.

U1
A,32 U2

AC,27 U1
A,61

Figure 4.19: Unstable system U2
AC,27.

Phase portrait U1
A,33 has phase portrait U2

AC,8 as an evolution and this last one was men-

tioned before during the study of U1
A,16.

Phase portrait U1
A,34 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution, we can conclude this fact by using the same arguments as used

for U1
A,29.

Phase portrait U1
A,35 has phase portrait U2

AC,11 as an evolution and this last one was men-

tioned before during the study of U1
A,17.

Phase portrait U1
A,36 has phase portrait U2

AC,28 as an evolution (see Figure 4.20). After

bifurcation we get phase portrait U1
A,69 by splitting the infinite saddle-node(1

1)SN.

U1
A,36 U2

AC,28 U1
A,69

Figure 4.20: Unstable system U2
AC,28.

Phase portrait U1
A,37 has phase portrait U2

AC,29 as an evolution (see Figure 4.21). After
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bifurcation we get phase portrait U1
A,70 by splitting the infinite saddle-node (1

1)SN.

U1
A,37 U2

AC,29 U1
A,70

Figure 4.21: Unstable system U2
AC,29.

Phase portrait U1
A,38 cannot have a phase portrait possessing an infinite saddle-node of

type(1
1)SN as an evolution.

Phase portrait U1
A,39 has phase portrait U2

AC,30 as an evolution (see Figure 4.22). After

bifurcation we get phase portrait U1
A,65 by splitting the infinite saddle-node (1

1)SN.

U1
A,39 U2

AC,30 U1
A,65

Figure 4.22: Unstable system U2
AC,30.

Phase portrait U1
A,40 cannot have a phase portrait possessing an infinite saddle-node of

type(1
1)SN as an evolution.

Phase portrait U1
A,41 has three phase portraits as evolution.

1. U2
AC,31, see Figure 4.23, and after bifurcation we get phase portrait U1

A,63;

U1
A,41 U2

AC,31 U1
A,63

Figure 4.23: Unstable system U2
AC,31.

2. U2
AC,12, and its study was done when we spoke about U1

A,17;

3. impossible phase portrait U
2,I
AC,2. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original finite saddle-node into a saddle and a node we obtain

the impossible phase portrait U
1,I
C,9 of codimension one∗, see Figure 4.24. We point out

that, in the set (A), the corresponding unfolding of U
2,I
AC,2 does not exist, since if such a

phase portrait does exist, it would be an evolution of the impossible phase portrait I12,2

(see Figure 4.4 from [6]), which contradicts Theorem 2.11.
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U1
A,41 U

2,I
AC,2 U

1,I
C,9

Figure 4.24: Impossible unstable phase portrait U
2,I
AC,2.

Phase portrait U1
A,42 has phase portraits U2

AC,32 and U2
AC,33 as evolution (see Figure 4.25).

After bifurcation we get phase portraits U1
A,60 and U1

A,63, respectively, by splitting the infinite

saddle-node (1
1)SN. Moreover, U1

A,42 also has U2
AC,13 as an evolution, and this last one was

mentioned before during the study of U1
A,17.

U1
A,42

U2
AC,32 U1

A,60

U2
AC,33 U1

A,63

Figure 4.25: Unstable systems U2
AC,32 and U2

AC,33.

Phase portrait U1
A,43 has phase portraits U2

AC,34 and U2
AC,35 as evolution (see Figure 4.26).

After bifurcation we get phase portraits U1
A,59 and U1

A,64, respectively, by splitting the infinite

saddle-node (1
1)SN.

U1
A,43

U2
AC,34 U1

A,59

U2
AC,35 U1

A,64

Figure 4.26: Unstable systems U2
AC,34 and U2

AC,35.

Phase portrait U1
A,44 cannot have a phase portrait possessing an infinite saddle-node of
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type(1
1)SN as an evolution.

Phase portrait U1
A,45 has phase portrait U2

AC,16 as an evolution, and this last one was

mentioned before during the study of U1
A,18.

Phase portraits U1
A,46 to U1

A,48 and also U1
A,50 cannot have a phase portrait possessing an

infinite saddle-node of type (1
1)SN as an evolution.

Phase portrait U1
A,51 has phase portrait U2

AC,36 as an evolution (see Figure 4.27). After

bifurcation we get phase portrait U1
A,67 by splitting the infinite saddle-node (1

1)SN.

U1
A,51 U2

AC,36 U1
A,67

Figure 4.27: Unstable system U2
AC,36.

Phase portrait U1
A,52 has phase portrait U2

AC,37 as an evolution (see Figure 4.28). After

bifurcation we get phase portrait U1
A,68, by splitting the infinite saddle-node(1

1)SN. Moreover,

U1
A,52 also has U2

AC,9 as an evolution, and this last one was mentioned before during the study

of U1
A,16.

U1
A,52 U2

AC,37 U1
A,68

Figure 4.28: Unstable system U2
AC,37.

Phase portrait U1
A,53 has phase portrait U2

AC,7 as an evolution, and this last one was men-

tioned before during the study of U1
A,15.

Phase portrait U1
A,54 has phase portrait U2

AC,38 as an evolution (see Figure 4.29). After

bifurcation we get phase portrait U1
A,68, by splitting the infinite saddle-node(1

1)SN. Moreover,

U1
A,54 also has U2

AC,10 as an evolution, and this last one was mentioned before during the

study of U1
A,16.

U1
A,54 U2

AC,38 U1
A,68

Figure 4.29: Unstable system U2
AC,38.

Phase portrait U1
A,55 has phase portraits U2

AC,39 and U2
AC,40 as evolution (see Figure 4.30).

After bifurcation we get phase portraits U1
A,61 and U1

A,62, respectively, by splitting the infinite
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saddle-node (1
1)SN. Moreover, U1

A,55 also has U2
AC,5 as an evolution, and this last one was

mentioned before during the study of U1
A,14.

U1
A,55

U2
AC,39 U1

A,61

U2
AC,40 U1

A,62

Figure 4.30: Unstable systems U2
AC,39 and U2

AC,40.

Phase portrait U1
A,56 has phase portraits U2

AC,19 and U2
AC,21 as evolution. These two phase

portraits were obtained during the study of U1
A,25 and U1

A,27, respectively.

Phase portrait U1
A,57 has phase portrait U2

AC,23 as an evolution and this last one was ob-

tained during the study of U1
A,28.

Phase portrait U1
A,58 has phase portrait U2

AC,24 as an evolution and this last one was ob-

tained during the study of U1
A,28. Moreover, U1

A,58 has a second phase portrait which is

topologically equivalent to U2
AC,24.

Phase portrait U1
A,59 has phase portrait U2

AC,34 as an evolution and this last one was ob-

tained during the study of U1
A,43. Moreover, U1

A,59 has the impossible phase portrait U
2,I
AC,3

as an evolution. By Theorem 2.11 such a phase portrait is impossible because by splitting the

obtained infinite saddle-node (1
1)SN into a finite saddle and an infinite node we obtain the

impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.31. We observe that, in the

set (C), U
2,I
AC,3 unfolds in U1

C,17 (modulo limit cycles).

U1
A,59 U

2,I
AC,3 U

1,I
A,104

Figure 4.31: Impossible unstable phase portrait U
2,I
AC,3.

In the first column of Table 4.2 we present the remaining phase portraits of the set (A),

in the second column we indicate its corresponding phase portrait belonging to the set (AC),

and in the third column we show the corresponding phase portrait after bifurcation. We point

out that it is not necessary to present any explanation for the phase portraits present in the

first column, since their corresponding elements from the third column already appeared and

were explained before.

Therefore, we have just finished obtaining all the 40 topologically potential phase portraits

of codimension two∗ from the set (AC) presented in Figures 1.4 and 1.5.
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phase portrait from phase portrait from phase portrait from

the set (A) the set (AC) the set (A)

U1
A,60

U2
AC,22 U1

A,27

U2
AC,32 U1

A,42

U1
A,61

U2
AC,26 U1

A,31

U2
AC,27 U1

A,32

U2
AC,39 U1

A,55

U1
A,62 U2

AC,40 U1
A,55

U1
A,63

U2
AC,31 U1

A,41

U2
AC,33 U1

A,42

U1
A,64 U2

AC,35 U1
A,43

U1
A,65

U2
AC,17 U1

A,22

U2
AC,30 U1

A,39

U1
A,66 U2

AC,18 U1
A,23

U1
A,67

U2
AC,20 U1

A,26

U2
AC,36 U1

A,51

U1
A,68

U2
AC,37 U1

A,52

U2
AC,38 U1

A,54

U1
A,69

U2
AC,25 U1

A,30

U2
AC,28 U1

A,36

U1
A,70 U2

AC,29 U1
A,37

Table 4.2: Phase portraits from the set (AC) obtained from evolution of some

elements of the set (A).

Now we explain how one can obtain these 40 phase portraits by starting the study from

the set (C). Let us consider all the 32 realizable structurally unstable quadratic vector fields

of codimension one∗ from the set (C). In order to obtain a phase portrait of codimension two∗

belonging to the set (AC) starting from a phase portrait of codimension one∗ of the set (C), we

keep the existing infinite saddle-node(1
1)SN and by using Theorem 2.6 we build a finite saddle-

node sn(2) by the coalescence of a finite node with a finite saddle. On the other hand, from

the phase portraits of codimension two∗ from the set (AC), there exist two ways of obtaining

phase portraits of codimension one∗ also belonging to the set (C) after perturbation: splitting

sn(2) into a saddle and a node, or moving it to complex singularities (remember Remark 3.2).

According to these facts, if a phase portrait possesses only a finite saddle-node, as U1
C,1

for instance, it is not possible to obtain a phase portrait from it which belongs to the set (AC).

Moreover, in some cases when one makes the finite saddle-node disappear, it is possible to

find a phase portrait possessing a limit cycle, as happens for instance with phase portrait U1
C,3

(see Figure 4.32). In such a figure we present the two potential phase portraits which can

be obtained by forming a finite saddle-node and then by making it disappear. Indeed, phase

portrait U1
C,3 has phase portraits U2

AC,3 and U2
AC,4 as evolution, respectively, by the coalescence

of the finite saddle with each one of the two finite nodes. After bifurcation, by making the

finite saddle-node disappear, from U2
AC,3 we get U1

C,1 and from U2
AC,4 we obtain U1

C,1, being

this last one with a limit cycle. However, as our classification of phase portraits is always done

modulo limit cycles we simply say that in this case from U2
AC,4 we have U1

C,1. This situation
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also happens when we perform analogous studies of phase portraits U1
C,20, U1

C,24, and U1
C,31,

as we will see in the sequence.

U1
C,3

U2
AC,3

U2
AC,4 U1

C,1

U1
C,1

Figure 4.32: Unstable systems U2
AC,3 and U2

AC,4 from phase portrait U1
C,3.

The main goal of this section is to obtain all the topologically potential phase portraits from

the set (AC) and then prove their realization or show that they are not possible. So we have to

be sure that no other phase portrait can be found if one does some evolution in all elements

of the set (C) in order to obtain a phase portrait belonging to the set (AC). We point out that

we have done this verification, i.e. we have also considered each element from the set (C) and

produced a coalescence (when it was possible) of a finite node with a finite saddle and we

also have obtained the 40 topologically potential phase portraits of codimension two∗ from the

set (AC) presented in Figures 1.4 and 1.5. Moreover, doing this verification we have not found

the impossible phase portraits U
2,I
AC,1 and U

2,I
AC,2 (this was expected since the corresponding

unfoldings of codimension one∗ are impossible in the set (C)). In Table 4.3 we present the

study of phase portraits U1
C,2 to U1

C,19. In the first column of the mentioned table we present

the phase portrait of the set (C), in the second column we indicate its corresponding phase

portrait belonging to the set (AC) i.e. after producing a finite saddle-node sn(2), and in the

third column we show the corresponding phase portrait after we make this finite saddle-node

sn(2) disappear. Note that the sequence of indexes in the first column is not consecutive since

in some phase portraits from the set (C) it is not possible to produce a finite saddle-node sn(2)

and then it is not possible to obtain a phase portrait belonging to the set (AC).

Phase portrait U1
C,20 has phase portraits U2

AC,32 and U2
AC,34 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,20 also has a phase portrait

which is topologically equivalent to impossible phase portrait U
2,I
AC,3, obtained before during

the study of phase portrait U
1,I
A,59. Again, by Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into a finite saddle and an infinite

node we obtain the impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.33. Also,

in the set (C), U
2,I
AC,3 unfolds in U1

C,17 (modulo limit cycles).

Phase portrait U1
C,21 has phase portraits U2

AC,22 and U2
AC,24 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
C,22 has phase portraits U2

AC,40 and U2
AC,39 as evolution. After bifurcation

we get phase portraits U1
C,15 and U1

C,17, respectively, by making the finite saddle-node sn(2)
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phase portrait from phase portrait from phase portrait from

the set (C) the set (AC) the set (C)

U1
C,2

U2
AC,1 U1

C,1
U2

AC,2

U1
C,3

U2
AC,3 U1

C,1
U2

AC,4

U1
C,5 U2

AC,14 U1
C,4

U1
C,6 U2

AC,15 U1
C,4

U1
C,7

U2
AC,6 U1

C,4
U2

AC,8

U1
C,8 U2

AC,11 U1
C,4

U1
C,9 U2

AC,12 U1
C,4

U1
C,10 U2

AC,13 U1
C,4

U1
C,11 U2

AC,16 U1
C,4

U1
C,12

U2
AC,7 U1

C,4
U2

AC,9

U1
C,13 U2

AC,10 U1
C,4

U1
C,14 U2

AC,5 U1
C,4

U1
C,18

U2
AC,21 U1

C,15
U2

AC,23

U1
C,19 U2

AC,19 U1
C,15

Table 4.3: Phase portraits from the set (AC) obtained from evolution of elements

of the set (C).

U1
C,20 U

2,I
AC,3 U

1,I
A,104

Figure 4.33: Impossible unstable phase portrait U
2,I
AC,3 (see again Figure 4.31).

disappear.

Phase portrait U1
C,23 has phase portraits U2

AC,26 and U2
AC,27 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
C,24 has phase portraits U2

AC,33 and U2
AC,35 as evolution. After bifurcation

we get phase portrait U1
C,15 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,24 also has the impossible

phase portrait U
2,I
AC,4 as an evolution. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into a finite saddle and an infinite

node we obtain the impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.34. We

observe that, in the set (C), U
2,I
AC,4 unfolds in U1

C,15 (modulo limit cycles).

In Table 4.4 we present the study of phase portraits U1
C,25 to U1

C,30 and we follow the same
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U1
C,24 U

2,I
AC,4 U

1,I
A,104

Figure 4.34: Impossible unstable phase portrait U
2,I
AC,4.

pattern used in Table 4.3.

phase portrait from phase portrait from phase portrait from

the set (C) the set (AC) the set (C)

U1
C,25 U2

AC,31 U1
C,15

U1
C,26

U2
AC,17 U1

C,16
U2

AC,18

U1
C,27 U2

AC,30 U1
C,16

U1
C,28 U2

AC,38 U1
C,15

U1
C,29 U2

AC,20 U1
C,16

U1
C,30

U2
AC,37 U1

C,15

U2
AC,36 U1

C,16

Table 4.4: Phase portraits from the set (AC) obtained from evolution of elements

of the set (C).

Phase portrait U1
C,31 has phase portraits U2

AC,28 and U2
AC,29 as evolution. After bifurcation

we get phase portrait U1
C,16 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,31 also has the impossible

phase portrait U
2,I
AC,5 as an evolution. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into an infinite saddle and a finite

node we obtain the impossible phase portrait U
1,I
A,106 of codimension one∗, see Figure 4.35. We

observe that, in the set (C), U
2,I
AC,5 unfolds in U1

C,16 (modulo limit cycles).

U1
C,31 U

2,I
AC,5 U

1,I
A,106

Figure 4.35: Impossible unstable phase portrait U
2,I
AC,5.

4.2 The realization of the potential phase portraits

In the previous subsection we have produced all the 42 topologically potential phase portraits

for structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AC).
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And from them, we have already discarded two which are not realizable due to their respective

unfoldings of codimension one∗ being impossible.

In this subsection we aim to give specific examples for the 40 different topological classes

of structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AC)

and presented in Figures 1.4 and 1.5. As in the previous section (see page 61), we point out

that we have found examples with no evidence of limit cycles, but we have not proved the

absence of infinitesimal ones.

In [10] the authors classified, with respect to a specific normal form, the set of all real

quadratic polynomial differential systems with a finite semi-elemental saddle-node sn(2) lo-

cated at the origin of the plane and an infinite saddle-node of type (1
1)SN obtained by the

coalescence of a finite antisaddle (respectively, finite saddle) with an infinite saddle (respec-

tively, infinite node).

As we have discussed in the previous section, the study of a bifurcation diagram of a

certain family of quadratic systems, produces not only the class of phase portraits looked

for, but also all those of their closure according to the normal form used. Even though the

study is mainly algebraic, often, also analytic and numerical tools are required. This makes

that these studies may be not complete and subject to the existence of possible “islands”

which contain an undetected phase portrait. The border of that “island” could mean the

connection of two separatrices, and the interior contain a different phase portrait from the

ones stated in the theorem. The topological study that we do in this paper solves partially

this problem, since we prove that all the realizable phase portraits of class (AC) do really

exist, and no other topological possibility does. However, the possible existence of “islands”

in the bifurcation diagram still persists since they can be related with double limit cycles, as

discussed in Section 6 of [10].

By using the phase portraits of generic regions of the bifurcation diagram of the mentioned

paper we realize all the 40 unstable systems of codimension two∗ of the set (AC), i.e. we can

give concrete examples of all structurally unstable phase portraits from the set (AC).

Consider systems (2.4). Such a normal form was studied in [10] and it describes quadratic

polynomial differential systems which have a finite semi-elemental saddle-node sn(2), a finite

elemental singularity and an infinite saddle-node of type (1
1)SN.

In Tables 4.5 and 4.6 we present one representative from each generic region of the bifur-

cation diagram of [10] corresponding to each phase portrait of codimension two∗ from the set

(AC) and, therefore, we conclude the proof of Theorem 1.7.
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Cod 2∗ [10] c e h m

U2
AC,1 V38 −10 30 1 4

U2
AC,2 V1 6 81/2 1 4

U2
AC,3 V33 −7 5/2 1 4

U2
AC,4 V53 2 47/50 1 37/100

U2
AC,5 V13 −1 −10 1 4

U2
AC,6 V4 7 15 1 4

U2
AC,7 V21 −9/4 −10 1 4

U2
AC,8 V92 −3 7/2 1 −6/5

U2
AC,9 V10 1/2 −11/2 1 4

U2
AC,10 V63 −2/5 1/50 1 −1/4

U2
AC,11 V95 −3 31/10 1 −6/5

U2
AC,12 V73 −19/10 17/20 1 −3/4

U2
AC,13 V8 3/2 −9/2 1 4

U2
AC,14 V93 −1 11/10 1 −6/5

U2
AC,15 V6 24/5 −4/5 1 4

U2
AC,16 V68 −3 2/5 1 −1/4

U2
AC,17 V39 −25 30 1 4

U2
AC,18 V3 45/2 98 1 4

U2
AC,19 V62 −1/40 1/50 1 −1/4

U2
AC,20 V80 −6/5 1207/1000 1 −1

U2
AC,21 V81 29/50 −3/5 1 −6/5

U2
AC,22 V36 −1 4 1 4

U2
AC,23 V23 −9/2 −17 1 4

U2
AC,24 V112 1/2 42 1 −10

U2
AC,25 V77 −5/4 629/500 1 −49/50

U2
AC,26 V90 −9/5 881/400 1 −6/5

U2
AC,27 V2 1 7 1 4

U2
AC,28 V35 −1747/50 30 1 4

U2
AC,29 V49 10 5156/625 1 51/100

U2
AC,30 V65 −23/50 1151/10000 1 −1/4

U2
AC,31 V59 −1/50 1/40 1 −1/4

U2
AC,32 V29 −3/2 1/2 1 4

U2
AC,33 V82 1341/2000 −3/5 1 −6/5

U2
AC,34 V102 1/100 31/10 1 −5/2

Table 4.5: Correspondence between codimension two∗ phase portraits of the set

(AC) and phase portraits from Figures 1 and 2 in [10]. In the first column we

present the codimension two∗ phase portraits from the set (AC) in the present

paper, in the second column we show the corresponding phase portraits from

Figures 1 and 2 in [10] given by normal form (2.4), and in the other columns we

present the values of the parameters c, e, h, and m of (2.4) which realizes such

phase portrait.
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Cod 2∗ [10] c e h m

U2
AC,35 V26 −687/50 −17 1 4

U2
AC,36 V20 −21/10 −41/5 1 4

U2
AC,37 V51 10 151/20 1 3/4

U2
AC,38 V71 −1/10000 3/125 1 −1/4

U2
AC,39 V14 −3/2 −4 1 4

U2
AC,40 V55 1/100 1/100 1 −1/4

Table 4.6: Continuation of Table 4.5.

5 Graphics and limit cycles

Even though the goal of this paper deals little with graphics and limit cycles, there is no doubt

that these are two of the most important elements in qualitative theory of ordinary differential

equations.

Limit cycles are the most elusive phenomena in phase portraits. They may appear either

by a bifurcation of a weak focus (Hopf bifurcation), by a bifurcation of a graphic, or by a

bifurcation of a multiple limit cycle, and only the first case can be fully algebraically controlled.

The other cases are generically nonalgebraic. In fact, weak foci can be considered among

graphics, since they can be seen as graphics reduced to a single point.

Our goal to find all the topologically different phase portraits modulo limit cycles bypasses

this big problem, but it is not an irrelevant goal. Whenever the mathematical community

finally gets the complete set of phase portraits of quadratic systems (or whatever other family),

the subset of the phase portraits modulo limit cycles will be the base for such a classification.

It is expected to obtain more than one thousand (maybe even up to 2000) different phase

portraits of quadratic systems modulo limit cycles. For quite many of them it will be trivial to

determine that they will not have limit cycles (in the case they do not have a finite antisaddle).

But for all the others, it will be necessary to determine exactly how many different phase

portraits can be obtained from that skeleton by adding limit cycles. Up to now and up to our

knowledge, there are very few nontrivial skeletons of phase portraits which could theoretically

have limit cycles, and for which the absence of limit cycles has been proved. To be more

precise, we are only completely sure of one of them, namely the structurally stable phase

portrait S
2
7,1. This phase portrait was obtained in [2] and was conjectured by statistical tools

to be incompatible with limit cycles in [4] and this conjecture was proved in [5]. Also in [4]

some other phase portraits are conjectured (by statistical data) to be incompatible with limit

cycles, but no proof is available yet. Apart from these last ones, other candidates can be found

in Class I of [37]. In that paper the authors produce three normal forms (denoted by I, II and

III) and they prove that any system with limit cycle can be transformed in an element of them.

The three classes have no intersection since they deal with the number of finite singularities

that have gone to infinity (≥ 2, 1 and 0, respectively). And in [37] it is also proved that

systems from Class I have at most one limit cycle. There is still no conclusive study of phase

portraits from Class I, but some phase portraits of this class have already been found having

one limit cycle and some others with no limit cycle (see [15, 23, 34]). For the cases with limit

cycle, it is closed the fact that such phase portraits can have at most one limit cycle, and if a

conclusive study is done and results are confirmed, the cases with no limit cycle would add

to the phase portrait S
2
7,1 as skeletons of phase portraits without limit cycles. For all other

skeletons of phase portraits found up to now, there is not a single proof determining which is



84 J. C. Artés, M. C. Mota and A. C. Rezende

the maximum number of limit cycles that each one may have. There are many other papers

related to the maximum number of limit cycles, but they are mostly linked to a certain normal

form. Most of them simply prove that a specific normal form may have just one limit cycle.

But this does not imply that the skeletons of phase portraits obtained in that normal form may

have more limit cycles in the entire classification.

Up to now, it is known that there are examples of phase portraits of quadratic systems with

four limit cycles distributed into two nests around two foci, more precisely, three limit cycles

in one nest and the fourth limit cycle in the other nest. And even though it is conjectured that

the effective maximum is four with the distribution just mentioned, there is still no conclusive

proof. The phase portraits for which there are examples with four limit cycles belong to three

skeletons of phase portraits, namely, the structurally stables S
2
4,1 and S

2
11,2 from [2], and the

codimension one∗ U1
B,31 from [6]. The proof that they may have at least four limit cycles appears

in several papers since they appear in classifications with a weak focus of order three, already

having a limit cycle around a strong focus.

But not even if the maximum bound was four, we would not be close to obtain all the phase

portraits of quadratic systems. Any of the three skeletons mentioned before may have the

topologically different configurations (0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 1), and (3, 1). That is,

seven different configurations. But even that is not a criterion (that is, multiply the number of

skeletons by 7) to obtain a simple upper bound for the total number of phase portraits. There

are phase portraits like S
2
5,1 from [2] which has three finite antisaddles. One of them receives

(or emits) a single separatrix, the second one receives (or emits) exactly two separatrices, and

the third one receives (or emits) exactly three separatrices. So, the fact that a limit cycle could

be surrounding any of the three antisaddles would generate a topologically different phase

portrait. And in case there were two nests of limit cycles, and assuming that they could have

up to four limit cycles, the number of cases would increase up to 25 possibilities. But from

these 25 possibilities, up to now only six have been confirmed to exist. We are collecting a

large database and recording the maximum number of limit cycles found in each one of the

skeletons classified up to now.

With all these facts we want to remark that the topological classification of phase portraits

modulo limit cycles is important since it produces a complete set of skeletons from which all

the complete set of phase portraits must be located. For each particular skeleton, it must be

studied if it contains none, one, two or up to three antisaddles around which the limit cycles

may be located. If there is a complete collection of phase portraits modulo limit cycles, and

if an upper bound of limit cycles is found, it will give a quite rough upper bound for the

number of different phase portraits. But the real number will need a deeper study case by

case. Nowadays, the moment that we could have a complete topological classification is quite

far away. However, the topological classification modulo limit cycles is within reach, although

they are not easily reachable yet.

Let us now talk about graphics. Graphics are also very important because they can become

the bifurcation edge which leads to the birth of limit cycles. There has been a lot of literature

related to graphics, and one of the most relevant papers is [19] where the authors list a set of

121 different graphics whose finite cyclicity needs to be proved in order to prove the finiteness

part of Hilbert 16th problem for quadratic systems. The graphics in this list can be of different

types. Many of them imply the connection of one (or more) couple of separatrices, finite

or infinite. Other graphics are formed simply because a separatrix arrives to the nodal part

of a saddle-node (finite or infinite) or an even more degenerate singularity in coexistence

with other properties of the phase portrait. Unfortunately, most of these graphics cannot be
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detected by means of algebraic tools. In many studies of families of systems where a complete

bifurcation is given in the parameter space, after all the algebraic bifurcations are given, the

use of continuity and coherence arguments allows the detection of some other nonalgebraic

bifurcations where these graphics appear.

Our methodical study of phase portraits of quadratic systems modulo limit cycles started

with codimension zero (structurally stable) [2] and of course these phase portraits cannot have

any graphic at all. The second step was the classification of codimension-one phase portraits

(modulo limit cycles), and in that study we could start finding some graphics, but not too

many. Precisely, we found graphic (F1
2 ) from [19] in U1

A,37, U1
A,43, U1

A,64, and U1
A,70. This

graphic is formed simply by one finite saddle-node which sends its center manifold (separa-

trix of zero eigenvalue) to its own nodal part. We also have graphic (I2
19) from [19] in U1

B,29,

U1
B,30 (twice), U1

B,33, U1
B,36, and U1

B,38. This graphic is formed by one elemental infinite sad-

dle which sends one of its separatrices to the nodal part of an infinite adjacent saddle-node

formed by the coalescence of two infinite singularities. There are no graphics in the set (C) of

codimension-one phase portraits (modulo limit cycles, see page 4). Finally, in the set (D) (see

again page 4) we found the graphics (F1
1 ), (H1

1), and (I2
1) from [19]. The first one is just a loop

of a finite elemental saddle, the second one is a separatrix connection between opposite infi-

nite elemental saddles, and the third one is a separatrix connection between adjacent infinite

elemental saddles. The loop is present in U1
D,1, U1

D,6, U1
D,7, U1

D,8, U1
D,9, U1

D,12, U1
D,19, U1

D,20,

U1
D,22, U1

D,23, U1
D,30, U1

D,31, U1
D,32, U1

D,46, U1
D,47, U1

D,48, U1
D,49, U1

D,50, U1
D,51, U1

D,52, U1
D,53, and

U1
D,54. The second graphic appears in U1

D,10 and U1
D,11. And the third one can be seen in

U1
D,28, U1

D,29, U1
D,37, U1

D,38, and U1
D,39. No other graphic from these last five may appear, since

all the remaining 116 imply higher codimension.

Thus, in our current study of phase portraits of codimension two∗ with a finite saddle-node

and an infinite saddle-node, the only graphics that we can see will be those ones which are

inherited from the respective phase portraits of codimension one∗ already having a graphic.

No new graphic may appear from the consolidation of the two different instabilities we mix

here. In the studies of the sets (AD), (BD), and (CD) we will start incorporating more graphics

from [19], since we will find, for example, saddle-nodes forming a loop instead of an elemental

saddle. Also the set (DD) will provide graphics with two separatrix connections. Anyway, the

graphics will appear in larger numbers when codimension three∗ is studied.

There is another important fact, related to stability and graphics, to comment about the

classification that we are working with. As mentioned in Section 1, in [6] it is claimed that

there are at least 204 structurally unstable phase portraits of codimension one∗ and at most 211.

Two papers have found two mistakes in that book and the newly proved numbers are 202

and 209, respectively. The seven cases that have not been found correspond to cases which

are conjectured as impossible and some arguments are given to support that conjecture. We

point out that all the seven cases conjectured impossible contain a graphic, more precisely the

polycycles (F1
2 ) or (H1

1). These phase portraits consist in an skeleton of separatrices which

depending on the stability of the focus inside the polycycle (compared to other stabilities

outside it) may lead or not to a realizable phase portrait. That is, they lead to a phase portrait

which is already known to exist, or lead to a phase portrait which (up to our knowledge)

never appeared before in any paper. The normal techniques which have allowed us to prove

the impossibility of hundreds of phase portraits are useless in these seven cases. All we can

say about these seven phase portraits is that in case they exist, some perturbations from them

would produce phase portraits with a limit cycle that we have not found anywhere. Using the

tools of perturbations related to stability that we use in this paper, we may claim that if one of
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those phase portraits with a limit cycle could be proven impossible, then the related unstable

phase portrait with a polycycle would be also impossible. However, the opposite is not true.

If the phase portrait with a limit cycle does exist, it is not sure that the related unstable phase

portrait with a polycycle may exist. There is the possibility that by means of a rotated vector

field one could pass from one to the other, but it is not guaranteed.

So, we see once more the importance of graphics and limit cycles in the classification of

phase portraits. The fact that we talk so little about limit cycles is simply because we want

to do the classification modulo limit cycles in order to have a good base upon which we or

others may add the limit cycles. And the fact that we talk so little about graphics is because at

the level of codimension that we are in this stage, there appear very few of the 121 graphics

described in [19].
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[38] H. Żołądek, Quadratic systems with center and their perturbations, J. Differential Equa-

tions 109(1994), No. 2, 223–273. https://doi.org/10.1006/jdeq.1994.1049; MR1273302;

Zbl 0797.34044

https://doi.org/10.1016/0362-546X(95)00177-W
https://www.ams.org/mathscinet-getitem?mr=1420390
https://zbmath.org/?q=an:0878.34019
https://doi.org/10.1007/978-0-387-35215-2
https://doi.org/10.1007/978-0-387-35215-2
https://www.ams.org/mathscinet-getitem?mr=2300603
https://zbmath.org/?q=an:1123.34002
https://www.ams.org/mathscinet-getitem?mr=1660222
https://zbmath.org/?q=an:0898.34027
https://doi.org/10.1090/S0002-9947-1993-1106193-6
https://doi.org/10.1090/S0002-9947-1993-1106193-6
https://www.ams.org/mathscinet-getitem?mr=1106193
https://zbmath.org/?q=an:0777.58028
https://www.ams.org/mathscinet-getitem?mr=0696089
https://www.ams.org/mathscinet-getitem?mr=0854278
https://zbmath.org/?q=an:0588.34022
https://doi.org/10.1006/jdeq.1994.1049
https://www.ams.org/mathscinet-getitem?mr=1273302
https://zbmath.org/?q=an:0797.34044

	Introduction and statement of the main results
	Quadratic vector fields of codimension zero and one
	Proof of Theorem 1.6
	The topologically potential phase portraits
	The realization of the potential phase portraits

	Proof of Theorem 1.7
	The topologically potential phase portraits
	The realization of the potential phase portraits

	Graphics and limit cycles

