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1 Introduction

It is a well-known fact that many models of chemical, biological and ecological problems
involve reaction-diffusion systems. For example, Fisher’s equation:

wt − D
∂2w
∂x2 = aw(1− w).

A general reaction-diffusion system has the form

ut −D∆u = f(u) (RD)

where u is a vector representing chemical concentrations and D is a matrix of diffusion co-
efficients, assumed constant, and the second term represents chemical reactions. The form
of f depends on the system being studied (it is typically nonlinear). Large diffusion phe-
nomena many times appears in these systems. A shadow system, as a limiting system of
reaction-diffusion model for algal bloom in which the diffusion rate tends to infinity, has
been proposed in [27] to study whether or not stable nonconstant equilibrium solutions of the
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system exist. Large diffusion phenomena also appear in applications of chemical fluid flows
[30].

When the diffusion does not follow a linear or a uniform structure the problem (RD)
becomes

ut −D div(|∇u|p(x)−2∇u) = f(u).

Partial differential problems with variable exponents have application in electrorheological
fluids (see [19, 31, 32]) and image processing (see [13, 22]). Another important application is
modelling of flow in porous media [1, 2]. Some other applications of equations with variable
exponent growth conditions are magnetostatics [12] and capillarity phenomena [5].

Sometimes it is necessary to consider a multivalued right-hand side when uncertainties
or discontinuities appear in the reaction term, while coupled systems occur when different
phenomena interact. In these cases we have to work with differential inclusions instead of
differential equations (see, for example, [3,9,14,15,20,23,28,29,42] and the references therein).
Such inclusions have been used for modelling processes of combustion in porous media [20]
and the surface temperature on Earth [9, 15]. Moreover, differential inclusions appear in nu-
merous applications such as the control of forest fires [7], conduction of electrical impulses
in nerve axons [40, 41]. In climatology, the energy balance models may lead to evolution dif-
ferential inclusions which involve the p-Laplacian [16, 17]. A degenerate parabolic-hyperbolic
problem with a differential inclusion appears in a glaciology model [18].

We will consider the following nonautonomous coupled inclusion system
∂u
∂t
− D div(|∇u|p(x)−2∇u) + C1(t)|u|p(x)−2u ∈ F(u, v), t > τ,

∂v
∂t
− D div(|∇v|q(x)−2∇v) + C2(t)|v|q(x)−2v ∈ G(u, v), t > τ,

(u(τ), v(τ)) in L2(Ω)× L2(Ω),

(S)

on a bounded smooth domain Ω ⊂ Rn, n ≥ 1, with homogeneous Neumann boundary
conditions. Here D ∈ [1, ∞), F and G are bounded upper semicontinuous and positively
sublinear multivalued maps, and the exponents p(·), q(·) ∈ C(Ω) satisfy

p+ := max
x∈Ω

p(x) > p− := min
x∈Ω

p(x) > 2, q+ > q− > 2.

In addition, the absorption coefficients C1, C2 : [τ, T]×Ω→ R are functions in L∞([τ, T]×Ω)

satisfying

(C1) there is a positive constant, γ such that 0 < γ ≤ Ci(t, x) for almost all (t, x) ∈ [τ, T]×
Ω, i = 1, 2.

(C2) Ci(t, x) ≥ Ci(s, x) for a.a. x ∈ Ω and t ≤ s in [τ, T], i = 1, 2.

The authors of [21] considered this problem for only one equation with the external func-
tion globally Lipschitz, while those of [35] considered the autonomous version of this problem
with Ci(t, x) ≡ 1. Nonautonomous equations of p-Laplacian type were previously considered
in [24, 38].

We will prove existence of strong global solutions for problem (S) and that these multival-
ued problems define exact generalized processes. The main tool used is a compactness result
established in [36], which is a generalization of Baras’ Theorem for the case that the main
operator is time-dependent. In addition, we prove the existence of a pullback attractor and,
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when considering large diffusion and letting the exponents go to constants, we explore the
robustness of the family of pullback attractors with respect to its limit problem which governs
the whole asymptotic dynamics of the system.

The paper is organized as follows. In Section 2 we present some preliminaries. Section 3
is devoted to prove existence of global solutions for the system and in Section 4 we prove that
problem (S) defines an exact generalized process which possess a pullback attractor. Finally,
in Section 5 we consider the case when D → +∞ and the exponents converge to constants and
investigate the dynamics of the limiting two dimensional ordinary nonautonomous coupled
inclusion.

2 Preliminaries

Definition 2.1 ([43]). A subset K in L1 (a, b; X) is uniformly integrable if, given ε > 0, there
exists δ = δ(ε) > 0 such that

∫
E ‖ f (t)‖Xdt ≤ ε uniformly for f ∈ K for each measurable subset

E in [a, b] with Lebesgue measure less than δ(ε).

Remark 2.2 ([8]). Since [a, b] is compact, each uniformly integrable subset in L1 (a, b; X) is
bounded with respect to the norm of L1 (a, b; X).

Consider the following IVP:
dun

dt
(t) + A(t)un(t) 3 fn(t), t > τ,

un(τ) = u0n ,
(Pt,n)

where for each t > τ, A(t) is maximal monotone in a Hilbert space H, fn ∈ K ⊂ L1 (τ, T; H)
and u0n ∈ H. In addition, suppose D(A(t)) = D(A(τ)), ∀ t, τ ∈ R, and D(A(t)) = H, for all
t ∈ R.

Definition 2.3. A function un : [τ, T] → H is called a strong solution of (Pt,n) on [τ, T] if

(i) un ∈ C([τ, T]; H);

(ii) un is absolutely continuous on any compact subset of (τ, T);

(iii) un(t) is in D(A(t)) for a.e. t ∈ [τ, T], un(τ) = u0n , and satisfies the inclusion in (Pt,n) for
a.e. t ∈ [τ, T].

We now present abstract conditions on the family of the operators {A(t)}t>0 and fn such
that problem (Pt,n) has, for each n ∈N, a unique strong solution un on [τ, T]. We are interested
in the case where A(t) = ∂φt, i.e., the evolution problem of the form

du
dt

(t) + ∂φt(u(t)) 3 f (t), τ ≤ t ≤ T, (E)

in a real Hilbert space H, where, for almost every t ∈ [0, T], A(t) := ∂φt is the subdifferential
of a lower semicontinuous, proper and convex function φt from H into (−∞, ∞]. In this case,
A(t) is a maximal monotone operator.

Condition A: Let T > τ be fixed.

(I) There is a set Z ⊂ ]τ, T] of zero measure such that φt is a lower semicontinuous proper
convex function from H into (−∞, ∞] with a non-empty effective domain for each t ∈
[τ, T]− Z.
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(II) For any positive integer r there exist a constant Kr > 0, an absolutely continuous function
gr : [τ, T] → R with g′r ∈ Lβ(τ, T) and a function of bounded variation hr : [τ, T] → R

such that if t ∈ [τ, T]− Z, w ∈ D(φt) with |w| ≤ r and s ∈ [t, T]− Z, then there exists an
element w̃ ∈ D(φs) satisfying

|w̃− w| ≤ |gr(s)− gr(t)|(φt(w) + Kr)
α,

φs(w̃) ≤ φt(w) + |hr(s)− hr(t)|(φt(w) + Kr),

where α is some fixed constant with 0 ≤ α ≤ 1 and

β :=

2 if 0 ≤ α ≤ 1
2 ,

1
1− α

if 1
2 ≤ α ≤ 1.

Proposition 2.4 ([44]). Suppose that Condition A is satisfied. Then for each f ∈ L2(τ, T; H) and u0

∈ D(φτ), the equation (E) has a unique strong solution u on [τ, T] with u(τ) = u0.
Moreover, u has the following properties:

(i) For all t ∈ (τ, T] − Z u(t) is in D(φt) and satisfies tφt(u(t)) ∈ L∞(τ, T) and φt(u(t)) ∈
L1(τ, T). Furthermore, for any τ < δ < T, φt(u(t)) is of bounded variation on [δ, T]− Z.

(ii) For any τ < δ < T, u is strongly absolutely continuous on [δ, T], and t1/2 du
dt ∈ L2(τ, T; H).

In particular, if u0 ∈ D(φτ), then u satisfies

(i)’ For all t ∈ [τ, T]− Z, u(t) is in D(φt) and φt(u(t)) is of bounded variation on [τ, T]− Z.

(ii)’ u is strongly absolutely continuous on [τ, T] and satisfies du
dt ∈ L2(τ, T; H).

For our specific problem, we consider H := L2(Ω) with a bounded smooth domain Ω ⊂
Rn, n ≥ 1, p(·) ∈ C(Ω̄, R), p+ := maxx∈Ω̄ p(x) ≥ p− := minx∈Ω̄ p(x) > 2, where C : [τ, T]×Ω
→ R is a function in L∞([τ, T]×Ω) satisfying conditions (C1) and (C2).

Consider the Lebesgue space with variable exponents

Lp(·)(Ω) :=
{

u : Ω→ R : u is measurable,
∫

Ω
|u(x)|p(x)dx < ∞

}
.

Define ρ(u) :=
∫

Ω |u(x)|p(x)dx and

‖u‖p(·) := inf
{

λ > 0 : ρ
(u

λ

)
≤ 1

}
for u ∈ Lp(·)(Ω). The generalized Sobolev space is defined as

W1,p(·)(Ω) =

{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
.

It is well-known that Yp := W1,p(·)(Ω) is a Banach space with the norm

‖u‖Yp := ‖u‖p(·) + ‖∇u‖p(·).

Consider the operator A(t) defined in Yp such that for each u ∈ Yp associate the following
element of its dual space Yp

∗, A(t)u : Yp → R given by

〈A(t)u, v〉Yp
∗,Yp := D

∫
Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x) dx +

∫
Ω

C(t, x)|u(x)|p(x)−2u(x)v(x) dx.

It was shown in [21] that the operator A(t) : Yp → Yp
∗ is monotone, hemicontinuous and

coercive. Moreover, we have the following estimates on the operator.
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Lemma 2.5 ([21]). Let u ∈ Yp := W1,p(·)(Ω). For each t ≥ 0 we have

〈A(t)u, u〉Yp
∗,Yp ≥

min{1, γ}
2p+

‖u‖
p+

Yp
, if ‖u‖Yp < 1,

‖u‖p−

Yp
, if ‖u‖Yp ≥ 1.

(2.1)

It is easy to see that the operator A(t) : H → H defined by

A(t)u := −Ddiv(|∇u|p(x)−2∇u) + C(t)|u|p(x)−2u,

satisfies Condition A and, consequently, by applying Proposition 2.4 we have that problem
(E) has a unique strong solution.

We will also consider the following IVP:
du
dt

+ A(t)u 3 0, t > τ,

u(τ) = u0,
(Pt)

where for each t > τ, A(t) is maximal monotone in a Hilbert space H.

Definition 2.6. Define {V(t, τ); V(t, τ) : H −→ H, t ≥ τ} by V(t, τ)(u0) = u(t, u(τ)) =

u(t, u0), where u(t, u0) is the unique strong solution of problem (Pt), and call {V(t, τ); V(t, τ) :
H −→ H, t ≥ τ} the evolution process generated by A := {A(t)}t>τ in H. We say that the
evolution process is compact if V(t, τ) is a compact operator for each t > τ.

Let us review the concept of an evolution process in the next

Definition 2.7. An evolution process in a metric space X is a family {U(t, τ) : X→ X, t≥ τ ∈R}
satisfying:

i) U(τ, τ) = I;

ii) U(t, τ) = U(t, s)U(s, τ), τ ≤ s ≤ t.

Varying fn and u0n in (Pt,n) we obtain a family of problems and consequently a family of
solutions. Consider the following solution sets

M(K) := {un; un is the unique strong solution of (Pt,n), with fn ∈ K and u0n ∈ H} .

Theorems in [36] establish conditions which ensure that the set M(K) possesses some property
of compactness.

We now review some concepts and results from the literature which will be useful in the
sequel to understand the conditions on the multivalued functions F and G. We refer the reader
to [3, 4, 43] for more details about multivalued analysis theory. Let X be a real Banach space
and M a Lebesgue measurable subset in Rq, q ≥ 1.

Definition 2.8. The map G : M → P(X) is called measurable if for each closed subset C in X
the set G−1(C) = {y ∈ M; G(y) ∩ C 6= ∅} is Lebesgue measurable.

If G is a univalued map, the above definition is equivalent to the usual definition of a
measurable function.
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Definition 2.9. By a selection of E : M → P(X) we mean a function f : M → X such that
f (y) ∈ E(y) a.e. y ∈ M, and we denote by Sel E the set Sel E := { f , f : M→ X is a measurable
selection of E}.

In what follows U denotes a topological space.

Definition 2.10. A mapping G : U → P(X) is called upper semicontinuous [weakly upper
semicontinuous] at u ∈ U, if

(i) G(u) is nonempty, bounded, closed and convex.

(ii) For each open subset [open set in the weak topology] D in X satisfying G(u) ⊂ D, there
exists a neighborhood V of u such that G(v) ⊂ D, for each v ∈ V.

If G is upper semicontinuous [weakly upper semicontinuous] at each u ∈ U, then it is called
upper semicontinuous [weakly upper semicontinuous] on U.

Definition 2.11. F, G : H × H → P(H) are said to be bounded if, whenever B1, B2 are
bounded, then F(B1, B2) =

⋃
(u,v)∈B1×B2

F(u, v) and G(B1, B2) =
⋃

(u,v)∈B1×B2
G(u, v) are bound-

ed in H.

In order to obtain global solutions we impose suitable conditions on the external forces F
and G.

Definition 2.12. The pair (F, G) of mappings F, G : H × H → P(H), which maps bounded
subsets of H× H into bounded subsets of H, is called positively sublinear if there exist a > 0,
b > 0, c > 0 and m0 > 0 such that for each (u, v) ∈ H × H with ‖u‖ > m0 or ‖v‖ > m0 for
which either there exists f0 ∈ F(u, v) satisfying 〈u, f0〉 > 0 or there exists g0 ∈ G(u, v) with
〈v, g0〉 > 0, we have both

‖ f ‖ ≤ a‖u‖+ b‖v‖+ c and ‖g‖ ≤ a‖u‖+ b‖v‖+ c

for each f ∈ F(u, v) and each g ∈ G(u, v).

3 Existence of solution

Now we will establish the existence of a global solution for the system (S). The idea is to show
that an appropriately defined multivalued map has at least one fix point whose existence is
equivalent to the existence of at least one solution of (S).

We can rewrite the system in an abstract form as
ut + A(t)u ∈ F(u, v), t > τ,

vt + B(t)v ∈ G(u, v), t > τ,

(u(τ), v(τ)) = (uτ, vτ) ∈ H × H,

(S̃)

where, for each t > τ, A(t) and B(t) are univalued maximal monotone operators in a real
separable Hilbert space H of subdifferential type, i.e., A(t) = ∂ϕt, B(t) = ∂ψt with ϕt, ψt

non-negative maps satisfying Condition A with ∂ϕt(0) = ∂ψt(0) = 0, ∀ t ∈ R and F and G
are bounded, upper semicontinuous and positively sublinear multivalued maps.
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Definition 3.1. A strong solution of (S̃) is a pair (u, v) satisfying: u, v ∈ C([τ, T]; H) for which
there exist f , g ∈ L1(τ, T; H), f (t) ∈ F(u(t), v(t)), g(t) ∈ G(u(t), v(t)) a.e. in (τ, T), and such
that (u, v) is a strong solution (see Definition 2.3) over (τ, T) to the system (P1) below:

ut + A(t)u = f ,

vt + B(t)v = g,

u(τ) = u0, v(τ) = v0.

(P1)

We obtain the global existence for our system (S̃) by applying the following

Theorem 3.2 ([36]). Let A = {A(t)}t>τ and B = {B(t)}t>τ be families of univalued operators
A(t) = ∂ϕt, B(t) = ∂ψt with ϕt, ψt non negative maps satisfying Condition A with ∂ϕt(0) =

∂ψt(0) = 0. Also suppose each one A and B generates a compact evolution process, and let F, G :
H × H → P(H) be upper semicontinuous and bounded multivalued maps. Then given a bounded
subset B0 ⊂ H × H, there exists T0 > τ such that for each (u0, v0) ∈ B0 there exists at least one
strong solution (u, v) of (S̃) defined on [τ, T0]. If, in addition, the pair (F, G) is positively sublinear,
given T > τ, the same conclusion is true with T0 = T.

4 Exact generalized process and pullback attractor

We will prove that the system (S̃) generates an exact generalized process. Let us review this
concept in the following

Definition 4.1 ([37]). Let (X, ρ) be a complete metric space. A generalized process G={G(τ)}τ∈R

on X is a family of function sets G(τ) consisting of maps ϕ : [τ, ∞) → X, satisfying the
properties:

[P1] For each τ ∈ R and z ∈ X there exists at least one ϕ ∈ G(τ) with ϕ(τ) = z;

[P2] If ϕ ∈ G(τ) and s ≥ 0, then ϕ+s ∈ G(τ + s), where ϕ+s := ϕ|[τ+s,∞);

[P3] If
{

ϕj
}
⊂ G(τ) and ϕj(τ) → z, then there exists a subsequence

{
ϕµ

}
of
{

ϕj
}

and
ϕ ∈ G(τ) with ϕ(τ) = z such that ϕµ(t)→ ϕ(t) for each t ≥ τ.

Definition 4.2 ([37]). A generalized process G = {G(τ)}τ∈R which satisfies the concatenation
property:

[P4] If ϕ, ψ ∈ G with ϕ ∈ G(τ), ψ ∈ G(r) and ϕ(s) = ψ(s) for some s ≥ r ≥ τ, then θ ∈ G(τ),
where

θ(t) :=

{
ϕ(t), t ∈ [τ, s],

ψ(t), t ∈ (s, ∞),
(4.1)

is called an exact (or strict) generalized process.

Property [P1] follows from the existence of a solution for the system (S̃), which was guar-
anteed in the previous section.

Let D(u(τ), v(τ)) be the set of solutions of (S̃) with initial data (uτ, vτ). Moreover, let us
consider G(τ) :=

⋃
(uτ ,vτ)∈H×H D(u(τ), v(τ)) and G := {G(τ)}τ∈R.

Theorem 4.3 ([36]). Under the conditions of Theorem 3.2, G is an exact generalized process.



8 P. E. Kloeden and J. Simsen

The authors of [36] provided a result that gives sufficient conditions on A = {A(t)}t>τ to
ensure that the evolution process {V(t, τ)}t≥τ generated by A (see Definition 2.6) is compact.
Suppose that the following conditions are true for A:

(i) D(A(t)) = V for all t ∈ [τ, T] with V compactly embedded into H and V = H, where V
is a reflexive Banach space and H a Hilbert space;

(ii) for each t ∈ [τ, T], A(t) = ∂ϕt, with ϕt(·) := ϕ(t, ·) : H → R∪ {∞} a convex, proper and
lower semicontinuous map;

(iii) there exist constants α, α1, α2 > 0 such that for each t ∈ [τ, T], α‖w‖α1
V ≤ ϕt(w) if ‖w‖V <

1 and α‖w‖α2
V ≤ ϕt(w) if ‖w‖V ≥ 1;

(iv) for each t ∈ [τ, T], ϕt(x) ≥ 0 for all x ∈ H and ϕt(0) = 0;

(v) for each x ∈ V, there exists ∂ϕ
∂s (s, x) and ∂ϕ

∂s (s, x) ≤ 0 for a.a. s ∈ [τ, T].

We will use the following result.

Theorem 4.4 ([36]). If A satisfies hypotheses (i)–(v), then the generated process {V(t, τ)}t≥τ by
A = {A(t)}t>τ is compact.

Returning to our specific problem, i.e., if we consider A(t) : H → H given by A(t)u =

−D div(|∇u|p(x)−2∇u) + C(t)|u|p(x)−2u, where H = L2(Ω) with Ω ⊂ Rn (n ≥ 1) a bounded
smooth domain, p(·) ∈ C(Ω̄, R), p+ := maxx∈Ω̄ p(x) ≥ p− := minx∈Ω̄ p(x) > 2 . and C :
[τ, T]×Ω → R is a function in L∞([τ, T]×Ω) such that 0 < γ ≤ C(t, x) for almost all (t, x)
∈ [τ, T]×Ω, for some positive constant γ, and C(t, x) ≥ C(s, x) for a.a. x ∈ Ω and t ≤ s in
[τ, T]. In particular, we have D(A(t)) = V := W1,p(·)(Ω) ⊂⊂ H for all t ∈ [τ, T], V̄ = H and
A(t) = ∂ϕt where ϕt : L2(Ω) → R∪ {+∞} is given by

ϕt(u) :=


[∫

Ω

D
p(x)
|∇u|p(x)dx +

∫
Ω

C(t, x)
p(x)

|u|p(x)dx
]

, if u ∈W1,p(x)(Ω)

+∞, otherwise
(4.2)

is a convex, proper and lower semicontinuous map. It is easy to see that A = {A(t)}t>τ satis-
fies all the abstract hypotheses (i)–(v) above. Moreover, we had already seen that Condition A
is also satisfied.

Hence, considering D(u(τ), v(τ)) the set of the solutions of (S) with initial data (uτ, vτ)

and defining G(τ) :=
⋃

(uτ ,vτ)∈H×H D(u(τ), v(τ)) and G := {G(τ)}τ∈R, we have

Theorem 4.5. G is an exact generalized process.

A multivalued process {UG(t, τ)}t≥τ defined by a generalized process G is a family of
multivalued operators UG(t, τ) : P(X) → P(X) with −∞ < τ ≤ t < +∞, such that for each τ

∈ R

UG(t, τ)E = {ϕ(t); ϕ ∈ G(τ), with ϕ(τ) ∈ E} , t ≥ τ.

Theorem 4.6 ([37]). Let G be an exact generalized process. Suppose that {UG(t, τ)}t≥τ is a multival-
ued process defined by G, then we have that {UG(t, τ)}t≥τ is an exact multivalued process on P(X),
i.e.,

1. UG(t, t) = IdP(X),

2. UG(t, τ) = UG(t, s)UG(s, τ) for all −∞ < τ ≤ s ≤ t < +∞.
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A family of sets K = {K(t) ⊂ X : t ∈ R} will be called a nonautonomous set. The family
K is closed (compact, bounded) if K(t) is closed (compact, bounded) for all t ∈ R. The ω-limit
set ω(t, E) consists of the pullback limits of all converging sequences {ξn}n∈N where ξn ∈
UG(t, sn)E, sn→ −∞. Let A = {A(t)}t∈R be a family of subsets of X. We have the following
concepts of invariance:

• A is positively invariant if UG(t, τ)A(τ) ⊂ A(t) for all −∞ < τ ≤ t < ∞;

• A is negatively invariant if A(t) ⊂ UG(t, τ)A(τ) for all −∞ < τ ≤ t < ∞;

• A is invariant if UG(t, τ)A(τ) = A(t) for all −∞ < τ ≤ t < ∞.

Definition 4.7. Let t ∈ R.

1. A set A(t) ⊂ X pullback attracts a set B ∈ X at time t if

dist(UG(t, s)B,A(t))→ 0 as s→ −∞.

2. A family A = {A(t)}t∈R pullback attracts bounded sets of X if A(τ) ⊂ X pullback
attracts all bounded subsets at τ, for each τ ∈ R. In this case, we say that the nonau-
tonomous set A is pullback attracting.

3. A set A(t) ⊂ X pullback absorbs bounded subsets of X at time t if, for each bounded
set B in X, there exists T = T(t, B) ≤ t such that UG(t, τ)B ⊂ A(t) for all τ ≤ T.

4. A family {A(t)}t∈R pullback absorbs bounded subsets of X if for each t ∈ R A(t)
pullback absorbs bounded sets at time t.

Following the ideas of [25] we obtain

Lemma 4.8. Let (u1, u2) be a solution of problem (S). Then there exist a positive number r0 and a
constant T0, which do not depend on the initial data, such that

‖(u1(t), u2(t))‖H×H ≤ r0, ∀ t ≥ T0 + τ.

Considering Yq := W1,q(·)(Ω), we have

Lemma 4.9. Let (u1, u2) be a solution of problem (S). Then there exist positive constants r1 and T1 >

T0, which do not depend on the initial data, such that

‖(u1(t), u2(t))‖Yp×Yq ≤ r1, ∀ t ≥ T1 + τ.

Let UG be the multivalued process defined by the generalized process G. We know from
[33] that for all t ≥ s in R the map x 7→ UG(t, s)x ∈ P(H × H) is closed, so we obtain from
Theorem 18 in [10] the following result

Theorem 4.10. If for any t ∈ R there exists a nonempty compact set D(t) which pullback attracts all
bounded sets of H × H at time t, then the set A = {A(t)}t∈R with A(t) = ⋃

B∈B(H×H) ωpb(t, B), is
the unique compact, negatively invariant pullback attracting set which is minimal in the class of closed
pullback attracting nonautonomous sets. Moreover, the sets A(t) are compact.

Here ωpb(t, B) is the pullback omega limit set starting in the set B and ending at time t.

Theorem 4.11. The multivalued evolution process UG associated with system (S) has a compact,
negatively invariant pullback attracting set A = {A(t)}t∈R which is minimal in the class of closed
pullback attracting nonautonomous sets. Moreover, the sets A(t) are compact.

Proof. By Lemma 4.9 we have that the family D(t) := BYp×Yq(0, r1)
H×H

of compact sets of
H × H is attracting. The result thus follows from Theorem 4.10.
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5 Limit problems and convergence properties

In the remainder of the paper we restrict attention to the case that the coefficient functions
C1(t) and C2(t) depend only on the time variable t and not on the spatial variable x ∈ Ω.

Our main objective is to consider what happens when Ds increases to infinity and ps(·)→
p > 2, qs(·)→ q > 2 in L∞(Ω) as s→ ∞ in the system

∂us
∂t − div(Ds|∇us|ps(x)−2∇us) + C1(t)|us|ps(x)−2us ∈ F(us, vs), t > τ,

∂vs
∂t − div(Ds|∇vs|qs(x)−2∇vs) + C2(t)|vs|qs(x)−2vs ∈ G(us, vs), t > τ,
∂us

∂n
(t, x) =

∂vs

∂n
(t, x) = 0, t ≥ τ, x ∈ ∂Ω,

us(τ, x) = uτs(x), vs(τ, x) = vτs(x), x ∈ Ω,

(5.1)

where uτs, vτs ∈ H := L2(Ω), and to prove that the limit problem is described by an ordinary
differential system.

Firstly, we observe that the gradients of the solutions of problem (5.1) converge in norm to
zero as s→ ∞, which allows us to guess the limit problem

u̇ + φt
p(u) ∈ F̃(u, v),

v̇ + φt
q(v) ∈ G̃(u, v),

u(τ) = uτ, v(τ) = vτ,

(5.2)

where φt
p(w) := C1(t)|w|p−2w, φt

q(w) := C2(t)|w|q−2w, F̃ := F|R×R, G̃ := G|R×R : R×R →
P(R) if we identify R with the constant functions which are in H, since Ω is a bounded set.

The next theorem confirms that the system (5.2) is a good candidate for the limit problem.
The proof of the next result follows the ideas of [35] and will not present the proof here since
the nonautonomous terms C1,2(t) do not present difficulties for the proof (see also [21] for the
problem with only one equation).

Theorem 5.1. If (us, vs) is a solution of (5.1), then for each t > T1 + τ, the sequences of real numbers
{‖∇us(t)‖H}s∈N and {‖∇vs(t)‖H}s∈N both possess subsequences {‖∇usj(t)‖H} and {‖∇vsj(t)‖H}
that converge to zero as j→ +∞, where T1 is the positive constant in Lemma 4.9.

In order to prove the existence of a global solution for the limit problem we consider the
following abstract result of Barbu’s book [6] for a Banach space X : Let τ ∈ R and T > τ and
consider a family of nonlinear operators H(t) : X → X∗, t ∈ [τ, T] satisfying:

(i) H(t) is monotone and hemicontinuous from X to X∗ for almost every t ∈ ]τ, T).

(ii) Function H(·)u(·) : [τ, T]→ X∗ is measurable for every u ∈ Lp(τ, T; X).

(iii) There is a constant C such that

‖H(t)u‖X∗ ≤ C(‖u‖p−1
X + 1) for u ∈ X and t ∈ ]τ, T).

(iv) There are constants α, ω (ω > 0) such that

〈H(t)u, u〉 ≥ ω‖u‖p
X + α for u ∈ X and t ∈ ]τ, T).
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Proposition 5.2 ([6, Theorem 4.2]). Consider a Gelfand triple given by (X, H, X∗) and suppose that
(i)–(iv) hold. If uτ ∈ H and f ∈ Lq(τ, T; X∗) ( 1

p +
1
q = 1), then there exists a unique function u(t)

which is X∗-valued absolutely continuous on [τ, T] and satisfies

u ∈ Lp(τ, T; X) ∩ C([τ, T]; H),
du
dt
∈ Lq(τ, T, X∗),

du
dt

(t) +H(t)u(t) = f (t), a.e. on (τ, T), u(τ) = uτ.

Lemma 5.3. The problem (5.2) has a global solution.

Proof. Considering H(t) : R → R, defined by H(t)u := C(t)|u|p−2u, it is trivial to check (i)–
(iv) above for H(t) with X = H = X∗ = R. Thus, for a given f ∈ L2(τ, T; R), we have from
Proposition 5.2 that there exists a unique function u ∈ C([τ, T]; R) which is a strong solution
to the problem

du
dt

(t) +H(t)u(t) = f (t), u(τ) = uτ ∈ R.

Hence, with the same argument as in the proof of Theorem 41 in [36] we conclude that the
limit problem (5.2) has a global strong solution.

Remark 5.4. In the proof of the previous theorem we only need that C(·) is measurable and
γ ≤ C(t). The constant γ is taken uniform in τ and T in order to yield global solutions.

The next result guarantees that (5.2) is in fact the limit problem for (5.1), as s → ∞. The
proof is analogous to what was done in [35] for the autonomous case, so will not be give here
since the nonautonomous terms C1,2(t) do not present any difficulties.

Theorem 5.5. Let (us, vs) be a solution of the problem (5.1). Suppose that (us(τ), vs(τ)) = (uτs, vτs)

→ (uτ, vτ) ∈ R×R in the topology of H × H as s → +∞. Then there exists a solution (u, v) of
the problem (5.2) satisfying (u(τ), v(τ)) = (uτ, vτ) and a subsequence {(usj , vsj)}j of {(us, vs)}s such
that, for each T > τ, usj → u, vsj → v in C([τ, T]; H) as j→ +∞.

Remark 5.6. Theorem 5.5 remains valid without the hypothesis (uτ, vτ) ∈ R×R, whenever
(uτs, vτs) ∈ As(τ), ∀ s ∈ N, because in this case we prove, analogously to Lemma 6.2 in [21],
that uτ and vτ are independent of x.

5.1 Upper semicontinuity of the family of pullback attractors

We start this section proving the existence of the pullback attractor for the limit problem.

Theorem 5.7. The limit problem (5.2) defines a generalized process G∞ which has a pullback attractor
U∞ = {A∞(t); t ∈ R×R}.

Proof. That limit problem (5.2) defines a generalized process G∞ follows in the same way as
before for the system (S).

Let us focus on the existence of the pullback attractor. Multiplying the equation u̇ +

C1(t)|u|p−2u = f (t) by u and using the assumption that (F, G) is positively sublinear and
Young’s Inequality to estimate f (t).u(t), we obtain

1
2

d
dt
|u(t)|2 ≤ −γ

2
|u(t)|p + c, t ≥ τ
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where c > 0 is a constant. Therefore, the map y(t) := |u(t)|2 satisfies the inequality

d
dt

y(t) ≤ −γ(y(t))p/2 + 2c, t ≥ τ.

So, by Lemma 5.1 in [39],

|u(t)|2 ≤
(

2c
γ

)2/p

+
(

γ
( p

2
− 1
)
(t− τ)

)− 2
p−2

, ∀ t ≥ τ. (5.3)

Let ξ1 > 0 such that
(
γ
( p

2 − 1
)
ξ1
)− 2

p−2 ≤ 1, then

|u(t)| ≤
[(

2c
γ

)2/p

+ 1

]1/2

=: κ1, ∀ t ≥ ξ1 + τ.

Analogously, we can prove that

|v(t)| ≤
[(

2c
γ

)2/q

+ 1

]1/2

=: κ2, ∀ t ≥ ξ2 + τ.

Thus, considering κ := max{κ1, κ2}, we have that the family K(t) := BR×R[0, κ] of compact
sets of R×R pullback attracts bounded sets of R×R at time t. Consequently, we have by
Theorem 4.10 that the evolution process {S∞(t, s)}t≥s defined by G∞ has a pullback attractor
U∞ = {A∞(t); t ∈ R}.

Theorem 5.8. The family of pullback attractors {Us; s ∈ N} associated with system (5.1) is upper
semicontinuous on s at infinity, in the topology of H, i.e., for each τ ∈ R,

lim
s→+∞

dist(As(τ),A∞(τ)) = 0.

Proof. The proof follows the same ideas used in the autonomous version considered in [35],
but instead of constructing a bounded complete orbit for a generalized process here we have
to construct a complete bounded trajectory for a generalized process using Theorem 5.5 and
working in an analogous way as in the proof of Theorem 6.1 in [34].

Remark 5.9. Note that if ps(·) ≡ p and qs(·) ≡ q the family of attractors is also lower semicon-
tinuous since each solution of (5.2) is also a solution of (5.1) when we consider the constants
C1 and C2 depend only on time in (5.1). For the general case of a variable exponent, lower
semicontinuity is an open problem.

Remark 5.10. The assumption on the nonincreasing nature of Ci(t) implies that the point-
wise limit C∗i as t → ∞ exists and satisfies 0 < γ ≤ C∗i . Then the limit problem with C∗i is
autonomous and has an autonomous attractor A∞ as a particular case of the results in this pa-
per. This means that the original problem is asymptotic autonomous. It would be interesting
to compare the asymptotic behaviour as t→ ∞ of its pullback attractor with this autonomous
attractor. Applying Theorem 5.3 in [25] we obtain limt→+∞ dist(A∞(t),A∞) = 0.
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5.2 Forward attraction and omega limit sets

Pullback attractors describe the behaviour of a system from the past and, in general, have
little to say about the future behaviour of the system. There is a corresponding concept of
forward attractor involving the usual forward attraction instead of pullback attraction, but
such forward attractors rarely exist and, when they do, need not be unique. See Kloeden
& Yang [26], where an alternative characterization of forward attraction is developed using
omega limit sets.

By (5.3) the closed and bounded (hence compact) absorbing set BR×R[0, κ] is forward ab-
sorbing for the generalized process G∞ on R2 generated by the limit problem (5.2). Moreover,
the set B := ∪0≤t≤Tκ G∞(t, BR×R[0, κ]), where Tκ is the time for the set BR×R[0, κ] to absorb
itself under G∞, is also positive invariant under G∞. In addition, its absorbing property here
is uniform in the sense that for any bounded subset D of R2 and every τ there exists a TD ≥
0 such that

G∞(t, τ, x0) ⊂ B ∀t ≥ τ + TD, x0 ∈ D,

since the estimate (5.3) depends just on the elapsed time and not the actual times.
ω-limit sets were defined and investigated in [26, Chapter 12] for single valued processes,

but analogous definitions hold for a generalized process G∞. Specifically, the ω-limit set is
defined by

ωB,τ :=
⋂
t≥τ

⋃
s≥t

G∞ (s, τ, B).

It is a nonempty compact set of B for each τ. Note that

lim
t→∞

distR2 (G∞ (t, τ, B) , ωB,τ) = 0 (5.4)

for each τ and that ωB,τ ⊂ ωB,τ′ ⊂ B for τ ≤ τ′. Hence, the set

ωB :=
⋃

τ∈R

ωB,τ ⊂ B

is nonempty and compact. It contains all of the future limit points of the generalized process
G∞ starting in the set B at some time τ ≥ T∗. In particular, it contains the omega limit points
of the pullback attractor, i.e.,

⋂
t≥τ

⋃
s≥t
A∞(s) =

⋂
t≥τ

⋃
s≥t

G∞ (s, τ,A∞(τ)) ⊂ ωB,τ ⊂ ωB

for each τ ∈ R.
The set ωB characterises the forward asymptotic behaviour of the nonautonomous system

G∞. It was called the forward attracting set of the nonautonomous system in [26] and is closely
related to the Haraux–Vishik uniform attractor, but it may be smaller and does not require the
generating system to be defined for all time or the attraction to be uniform in the initial time.

The forward attracting set ωB need not be invariant for the generalized process G∞, but in
view of the above uniform absorbing property it is asymptotically positive invariant [26, Chapter
12], i.e., if for every ε > 0 here exists a T(ε) such that

G∞ (t, τ, ωB) ⊂ Bε (ωB) , t ≥ τ,

for each τ ≥ T(ε).
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