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Abstract. In this paper we continue the study of the linear equation with Stieltjes
derivatives in [M. Frigon, R. López Pouso, Adv. Nonlinear Anal. 6(2017), 13–36]. Specif-
ically, we revisit some of the results there presented, removing some of the required
conditions as well as amending some mistakes. Furthermore, following the classical
setting, we use the connection between the linear equation and the Gronwall inequality
to obtain a new version of this type of inequalities in the context of Lebesgue–Stieltjes
integrals. From there, we obtain a uniqueness criterion for initial value problems.
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1 Introduction

In this paper we explore the linear equation with Stieltjes derivatives in its homogeneous and
nonhomogeneous formulation. Specifically, we will be looking at the initial value problem

x′g(t) + d(t)x(t) = h(t), t ∈ [t0, t0 + T), x(t0) = x0, (1.1)

where t0, T, x0 ∈ R, T > 0, are fixed, d, h : [t0, t0 + T) → R are given functions and x′g stands
for the Stieltjes derivative of x with respect to a nondecreasing and left-continuous function
g : R → R, usually called derivator, see [3, 10]. Note that [3] provides some information
regarding (1.1) in its homogeneous form (i.e. h = 0) as well as for the nonhomogeneous case.
Nevertheless, the results obtained there present some limitations, as the authors make use of
the product rule for Stieltjes derivatives in [10] which, unfortunately, is wrongly stated. Here,
we amend the mistakes in [10] as well as we simplify the required hypotheses for the existence
and uniqueness of solution of (1.1).

Furthermore, given the close relation existing between the Gronwall inequality and the
linear equation in the setting of ordinary differential equations, we will prove a new version
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of the inequality in the context of Stieltjes integrals, generalizing the classical result in [5], as
well as other existing formulations in the context of Stieltjes integrals, see [6, 8, 11, 12, 17].

The paper is structure as follows. In Section 2 we gather and revisit some of the informa-
tion available in [3, 10] regarding the definition of Stieltjes derivatives and its properties, as
well as some other basic definitions necessary for this paper. In particular, it is at this point
that we correct the formula for the product and the quotient rule in [10]. Next, in Section 3
we study the linear equation (1.1), providing explicit expressions for its solutions as well as
some of their properties. Finally, in Section 4 we establish a Gronwall-type inequality for
the Lebesgue–Stieltjes integral using the solution of the homogeneous linear equation. Then,
we discuss the relations with other existing inequalities available in the literature and we
complete the revision of the results in [3] for (1.1) through a uniqueness result based on our
version of Gronwall’s inequality.

2 Preliminaries

Let g : R → R be a nondecreasing and left-continuous function. Let us introduce some
notation before including the definition of Stieltjes derivative in [10]. In what follows, we will
consider µg to be the Lebesgue–Stieltjes measure associated to g, given by

µg([a, b)) = g(b)− g(a), a, b ∈ R, a < b,

see [1, 13, 15]; we will use the term “g-measurable” for a set or function to refer to µg-
measurability in the corresponding sense; and we will denote the integration with respect
to µg as ∫

X
f (s)d g(s).

Similarly, we will talk about properties holding g-almost everywhere in a set X, shortened
to g-a.e. in X, as a simplified way to express that they hold µg-almost everywhere in X.
In an analogous way, we will write that a property holds for g-almost all (or simply, g-a.a.)
x ∈ X meaning that it holds for µg-almost all x ∈ X. Along those lines, we find the following
interesting set:

Cg := {t ∈ R : g is constant on (t− ε, t + ε) for some ε > 0}.

The set Cg is the set of points around which g is constant and, as pointed out in [10, Propo-
sition 2.5], we have that µg(Cg) = 0. Hence, this set can be disregarded when it comes to
properties holding g-almost everywhere in a set. Observe that, as pointed out in [10], the set
Cg is open in the usual topology, so it can be uniquely expressed as the countable union of
open disjoint intervals, say

Cg =
⋃

n∈N

(an, bn). (2.1)

Another fundamental set for the work that lies ahead is the set Dg of all discontinuity
points of g. Observe that, given that g is nondecreasing, we can write

Dg = {t ∈ R : ∆+g(t) > 0},

where ∆+g(t) = g(t+) − g(t), t ∈ R, and g(t+) denotes the right-hand side limit of g at t.
Recall that Froda’s Theorem, [4], ensures that the set Dg is at most countable. Finally, given
the previous definitions, we can define the sets N−g and N+

g introduced in [9] as

N−g = {an : n ∈N} \ Dg, N+
g = {bn : n ∈ R} \ Dg,
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where an, bn ∈ R are as in (2.1). We denote Ng = N−g ∪ N+
g .

We have now all the information required to properly introduce the definition of Stieltjes
derivative in [10]. In order to clarify its definition, we have included a brief remark explaining
the limits involved.

Definition 2.1. Let g : R → R be a nondecreasing and left-continuous function and consider
a map f : R→ R. We define the Stieltjes derivative, or g-derivative, of f at a point t ∈ R \ Cg as

f ′g(t) =


lim
s→t

f (s)− f (t)
g(s)− g(t)

, t 6∈ Dg,

lim
s→t+

f (s)− f (t)
g(s)− g(t)

, t ∈ Dg,

provided the corresponding limits exist. In that case, we say that f is g-differentiable at t.

Remark 2.2. Given a function f : R→ R and a point t ∈ R, we define the function

Ft(·) =
f (·)− f (t)
g(·)− g(t)

,

which we will assume to be defined in a neighbourhood of t in which the expression makes
sense, namely, at the points s such that g(s)− g(t) 6= 0. The limits in Definition 2.1 are well-
defined when t is an accumulation point of the domain of the function Ft. This explains why
the points of Cg are excluded in the definition as if t ∈ Cg, then there exists εt > 0 such
that the expression of Ft does not make sense for any neighbourhood (t− ε, t + ε), ε ∈ (0, εt).
Moreover, the limits in Definition 2.1 should be properly understood at some other conflicting
points. For example, imagine there exists δ > 0 such that g(s) = g(t) for s ∈ (t− δ, t), and
g(s) > g(t) for s > t. Then

lim
s→t

Ft(s) = lim
s→t+

Ft(s),

since Ft is not defined at the left of t. Similarly, if there exists δ > 0 such that g(s) = g(t) for
s ∈ (t, t + δ), the function Ft is not defined at the right of t, so if g(s) < g(t) for s < t, then

lim
s→t

Ft(s) = lim
s→t−

Ft(s).

Therefore, the g-derivative of a function f : R→ R at a point t ∈ R \ Cg is computed as

f ′g(t) =



lim
s→t

f (s)− f (t)
g(s)− g(t)

, t 6∈ Dg ∪ Ng,

lim
s→t−

f (s)− f (t)
g(s)− g(t)

, t ∈ N−g ,

lim
s→t+

f (s)− f (t)
g(s)− g(t)

, t ∈ Dg ∪ N+
g ,

provided the corresponding limits exist.

Remark 2.3. Since g is a regulated function, it follows that the g-derivative of a function
f : R→ R at a point t ∈ Dg exists if and only if the limit of f from the right of t, f (t+), exists.
In that case, we have that

f ′g(t) =
f (t+)− f (t)

∆+g(t)
.
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First, we include some information available in [10] regarding the Stieltjes derivatives of
functions. Specifically, we include a result about the continuity of differentiable functions,
[10, Proposition 2.1], that we will use to revisit the product and quotient rule in [10], as the
formulas there included are not correct.

Proposition 2.4. Let g : R → R be a nondecreasing and left-continuous function and f be a real-
valued function defined on a neighborhood of t such that f ′g(t) exists. Then t 6∈ Cg and, if g is
continuous at t:

• f is continuous from the left at t provided that

g(s) < g(t) for all s < t; (2.2)

• f is continuous from the right at t provided that

g(s) > g(t) for all s > t. (2.3)

Proposition 2.4 is a fundamental tool for the proof of [10, Proposition 2.2], where the
authors included some basic properties of the Stieltjes derivatives, such as the linearity of the
derivative or the product and the quotient rule. However, the authors did not include the
proof of the result, which led to an incorrect formulation of the product and the quotient
rule. Here, we amend these mistakes and, later, we show the limitations of the formulas in
[10, Proposition 2.2].

Proposition 2.5. Let g : R → R be a nondecreasing and left-continuous function, t ∈ R, and f1, f2

be two real-valued functions defined on a neighborhood of t, Ut. If f1 and f2 are g-differentiable at t,
then:

(i) The product f1 f2 is g-differentiable at t and

( f1 f2)
′
g(t) = ( f1)

′
g(t) f2(t) + ( f2)

′
g(t) f1(t) + ( f1)

′
g(t)( f2)

′
g(t)∆

+g(t). (2.4)

(ii) If ( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t) 6= 0, the quotient f1/ f2 is g-differentiable at t and(
f1

f2

)′
g
(t) =

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t))
. (2.5)

Proof. First, observe that t 6∈ Cg since ( f1)
′
g(t) and ( f2)′g(t) exist. Hence, we have that (2.2)

and/or (2.3) hold.
Let us show that (2.4) holds. First, observe that we can rewrite f1 f2(s)− f1 f2(t), s ∈ Ut, as

( f1(s)− f1(t))( f2(t) + f2(s)) + ( f2(s)− f2(t))( f1(t) + f1(s))
2

, s ∈ Ut. (2.6)

Assume that (2.3) holds. Then, it follows from (2.6) that the following limit exists and

lim
s→t+

f1 f2(s)− f1 f2(t)
g(s)− g(t)

=
( f1)

′
g(t)( f2(t) + f2(t+)) + ( f2)′g(t)( f1(t) + f1(t+))

2
. (2.7)

Now, if t ∈ Dg, it follows from Remark 2.3 that

fi(t+) = ( fi)
′
g(t)∆

+g(t) + fi(t), i = 1, 2. (2.8)
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Thus, (2.7) yields that

lim
s→t+

f1 f2(s)− f1 f2(t)
g(s)− g(t)

= ( f1)
′
g(t) f2(t) + ( f2)

′
g(t) f1(t) + ( f1)

′
g(t)( f2)

′
g(t)∆

+g(t). (2.9)

On the other hand, if t 6∈ Dg, it follows from Proposition 2.4 and (2.7) that

lim
s→t+

f1 f2(s)− f1 f2(t)
g(s)− g(t)

= ( f1)
′
g(t) f2(t) + ( f2)

′
g(t) f1(t),

which matches (2.9) since ∆+g(t) = 0. In other words, (2.9) holds in both cases. Hence, if
t ∈ Dg or g(s) > g(t), s ∈ [t − δ, t] for some δ > 0, then the limit in (2.9) coincides with
( f1 f2)′g(t) and the proof is complete. Otherwise, t 6∈ Dg and (2.2) holds. In that case, we
obtain from (2.6) that the following limit exists and

lim
s→t−

f1 f2(s)− f1 f2(t)
g(s)− g(t)

=
( f1)

′
g(t)( f2(t) + f2(t−)) + ( f2)′g(t)( f1(t) + f1(t−))

2
.

However, in that case, Proposition 2.4 ensures that the previous limit equals ( f1)
′
g(t) f2(t) +

( f2)′g(t) f1(t), and so f1 f2 is g-differentiable at t and (2.4) holds.
Now, we show that (2.5) holds. First, observe that the extra hypothesis in (ii) guarantees

that f2(t) 6= 0. Furthermore, we also have that f2(t) + ( f2)′g(t)∆+g(t) 6= 0 which, provided
that t ∈ Dg, ensures that f2(t+) 6= 0, see (2.8).

Assume that (2.3) holds. Since f2(t) 6= 0, it follows from Proposition 2.4 (if t 6∈ Dg) and the
definition of limit from the right (if t ∈ Dg) that there exists ε > 0 such that f2 does not vanish
in [t, t + ε) ∩Ut. Hence, the following expression is well-defined for any s ∈ [t, t + ε) ∩Ut,

f1(s)
f2(s)

− f1(t)
f2(t)

=
f1(s) f2(t)− f1(t) f2(s)

f2(t) f2(s)
=

( f1(s)− f1(t)) f2(t) + f1(t)( f2(t)− f2(s))
f2(t) f2(s)

. (2.10)

Taking the corresponding limit from the right, we have that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)
g(s)− g(t)

=
( f1)

′
g(t) f2(t)− f1(t)( f2)′g(t)

f2(t) f2(t+)
. (2.11)

Now, if t ∈ Dg, it follows from (2.8) that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)
g(s)− g(t)

=
( f1)

′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t))
. (2.12)

On the other hand, if t 6∈ Dg, it follows from Proposition 2.4 and (2.11) that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)
g(s)− g(t)

=
( f1)

′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 ,

which matches (2.12). That is, (2.12) holds in both cases. Hence, if t ∈ Dg or g(s) > g(t),
s ∈ [t− δ, t] for some δ > 0, then the limit in (2.12) coincides with ( f1/ f2)′g(t) and the proof is
complete. Otherwise, t 6∈ Dg and (2.2) holds. In that case, given that f2(t) 6= 0, it follows from
Proposition 2.4 that there exists ε′ > 0 such that f2 does not vanish in (t− ε′, t] ∩Ut. Hence,
(2.10) is valid for all s ∈ (t− ε′, t] ∩Ut. As a consequence, we obtain that the following limit
exists and

lim
s→t−

( f1/ f2)(s)− ( f1/ f2)(t)
g(s)− g(t)

=
( f1)

′
g(t) f2(t)− f1(t)( f2)′g(t)

f2(t) f2(t−)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 ,

where the last equality follows, once again, from Proposition 2.4. This guarantees that f1/ f2

is g-differentiable at t and (2.5) holds.
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Remark 2.6. Observe that the formulas here presented reduce to the usual formulation when
g = Id. Furthermore, note that the expressions in Proposition 2.5 do not match those in [10].
Let us illustrate that the formulas there presented are not correct with some examples.

Consider g, f1, f2 : R→ R defined as

g(t) =


t if t ≤ 0,

0 if 0 < t ≤ 1,

t if t > 1,

f1(t) = t + 2, f2(t) =

{
1 if t ≤ 0,

t + 2 if t > 0.

For this choice of functions, we have that f1 · f2, f1/ f2 : R→ R are defined as

f1 · f2(t) =

{
t + 2 if t ≤ 0,

(t + 2)2 if t > 0,
f1

f2
(t) =

{
t + 2 if t ≤ 0,

1 if t > 0.

Observe that, given that g(t) = g(0) for t ∈ (0, 1), the derivatives at 0 are computed as the
limit from the left, as pointed out by Remark 2.2. In particular, we have that

( f1)
′
g (0) = lim

s→0−

f1(s)− f1(0)
g(s)− g(0)

= lim
s→0−

s + 2− 2
s− 0

= 1,

( f2)
′
g (0) = lim

s→0−

f2(s)− f2(0)
g(s)− g(0)

= lim
s→0−

1− 1
s− 0

= 0,

and, since f1 · f2 = f1/ f2 = f1 on (−∞, 0], we have that ( f1 · f2)′g(0) = ( f1/ f2)′g(0) = 1.
Observe that (2.4) and (2.5) hold at t = 0.

First, let us show that the formula for the product of two functions in [10],

( f1 f2)
′
g(t) = ( f1)

′
g(t) f2(t+) + ( f2)

′
g(t) f1(t+),

is not correct. Indeed, at t = 0 we have that

( f1)
′
g(0) f2(0+) + ( f2)

′
g(0) f1(0+) = 1 · 2 + 0 · 2 = 2 6= 1 = ( f1 · f2)

′
g(0).

Furthemore, this example also shows that the formula in [14, Lemma 13],

( f1 · f2)
′
g(t) = ( f1)

′
g(t) f2(t+) + ( f2)

′
g(t) f1(t), t ∈ Dg, (2.13)

cannot be valid for a generic point in R \Cg, as the only difference with respect to the previous
formula is that f1(0+) is replaced by f1(0), which has no effect as both terms are multiplied
by zero. Nevertheless, observe that (2.4) yields (2.13) for t ∈ Dg as a consequence of (2.8).

Now, for the quotient formula in [10],(
f1

f2

)′
g
(t) =

( f1)
′
g(t) f2(t)− ( f2)′g(t) f1(t)

f2(t) f2(t+)
.

Once again, this formula fails to be true as

( f1)
′
g(0) f2(0)− ( f2)′g(0) f1(0)

f2(0) f2(0+)
=

1 · 1− 0 · 2
1 · 2 =

1
2
6= 1 =

(
f1

f2

)′
g
(0).

Finally, we include the last pieces of information required for this paper, the two for-
mulations of the Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral. The
next result is a reformulation of [10, Theorem 5.4], where we have added the definition of
g-absolute continuity, [10, Definition 5.1], to its statement.
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Theorem 2.7. Let a, b ∈ R, a < b, and F : [a, b]→ R. The following conditions are equivalent:

1. The function F is g-absolutely continuous on [a, b] according to the following definition: for
every ε > 0, there exists δ > 0 such that for every open pairwise disjoint family of subintervals
{(an, bn)}m

n=1 verifying
m

∑
n=1

(g(bn)− g(an)) < δ,

we have that
m

∑
n=1
|F(bn)− F(an)| < ε.

2. The function F satisfies the following conditions:

(i) there exists F′g(t) for g-a.a. t ∈ [a, b);

(ii) F′g ∈ L1
g([a, b), R), the set of Lebesgue–Stieltjes integrable functions with respect to µg;

(iii) for each t ∈ [a, b],

F(t) = F(a) +
∫
[a,t)

F′g(s)d g(s).

Remark 2.8. Observe that in statement 2 (iii) of Theorem 2.7, for t = a, we are considering the
integral over [a, a) = {x ∈ R : a ≤ x < a} = ∅, which makes the integral null, thus giving the
equality.

The other formulation of the Fundamental Theorem of Calculus that we include here is a
combination of Theorem 2.4 and Proposition 5.2 in [10] and it reads as follows.

Theorem 2.9. Let f ∈ L1
g([a, b), R). Then, the function F : [a, b]→ R, defined as

F(t) =
∫
[a,t)

f (s)d g(s),

is well-defined, g-absolutely continuous on [a, b] and

F′g(t) = f (t), for g-a.a. t ∈ [a, b).

In the work that follows, we shall use some known properties for g-absolutely continuous
functions, most of which are analogous to those of absolutely continuous functions in the
usual sense. For convenience, we refer the reader to [3, 10] for more information on the topic.

3 Linear equation

In this section we focus on the study of the linear equation with Stieltjes derivatives on the
real line in its homogeneous and nonhomogeneous formulation. Specifically, given a nonde-
creasing and left-continuous map, g : R→ R, we consider the initial value problem

x′g(t) + d(t)x(t) = h(t), t ∈ [t0, t0 + T), x(t0) = x0, (3.1)

with x0 ∈ R and d, h : [t0, t0 + T)→ R. Naturally, (3.1) yields the homogeneous formulation of
the problem when h = 0. In that case, for simplicity and in order to simplify the connections
with [3], we shall write c(t) = −d(t), t ∈ [t0, t0 + T), so that (3.1) reads as

x′g(t) = c(t)x(t), t ∈ [t0, t0 + T), x(t0) = x0. (3.2)
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It is important to note, nevertheless, that [3] is not the only paper available in the study of
linear equations in a Stieltjes sense. For example, in [7,16,17] we find linear integral equations
in more general settings, for which the different authors were able to obtain the existence and
uniqueness of solution. In some cases, an explicit solution is given provided one can find a
fundamental matrix for the corresponding problem, which might be hard to obtain. Here, we
limit ourselves to a scalar version of the linear differential equation for which we obtain an
explicit solution in terms of elemental functions. Interestingly enough, the relations between
the different linear problems in the Stieltjes sense arises naturally. For example, condition
(6.13) in [17] is a necessary condition for the existence of solution, which yields the condition
required in Theorem 3.5 for our solution when both contexts are compatible.

Following [3], we start our study of the linear equation studying the homogeneous for-
mulation. A first reasonable guess for a solution for (3.2) would be to consider, under the
assumption that c ∈ L1

g([t0, t0 + T), R), the map

x(t) = x0 exp
(∫

[t0,t)
c(s)d g(s)

)
, t ∈ [t0, t0 + T], (3.3)

as this is the solution for g = Id. Nevertheless, note that this cannot be a solution of (3.2) as
for any t ∈ [t0, t0 + T) ∩ Dg,

x′g(t) = lim
s→t+

x(s)− x(t)
g(s)− g(t)

= lim
s→t+

x(t)
(

exp
(∫

[t,s)
c(r)d g(r)

)
− 1
)

g(s)− g(t)
= x(t)

exp
(∫
{t}

c(r)d g(r)
)
− 1

∆+g(t)
.

Therefore, we have that

x′g(t) = x(t)
exp(c(t)∆+g(t))− 1

∆+g(t)
, t ∈ [t0, t0 + T) ∩ Dg,

which is not, in general, equal to x(t)c(t). Therefore, the map x in (3.3) cannot be a solution
of (3.2). Nevertheless, it is easy to see using the chain rule for the Stieltjes derivative, [10,
Theorem 2.3] that x solves the problem in [t0, t0 + T) \ Dg. All this ideas resulted in the
modification of the map in (3.3) presented in [3, Definition 6.1]. It is at this point that we
encounter the first improvement on the results of [3]. The mentioned modification is subject
to a condition regarding the convergence of a series, namely, condition (3.5) in this paper. In
the following result we show that such condition is redundant in the considered context.

Lemma 3.1. Let c ∈ L1
g([t0, t0 + T), R) be such that 1+ c(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 + T)∩Dg.

Then
∑

t∈[t0,t0+T)∩Dg

∣∣ log |1 + c(t)∆+g(t)|
∣∣ < +∞. (3.4)

In particular, if 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg, then

∑
t∈[t0,t0+T)∩Dg

∣∣ log(1 + c(t)∆+g(t))
∣∣ < +∞. (3.5)

Proof. First, observe that the hypotheses ensure that the logarithms in the corresponding ex-
pressions are well-defined and finite for each t ∈ [t0, t0 + T) ∩ Dg.



Notes on the linear equation with Stieltjes derivatives 9

Now, elementary calculations show that lims→0 | log |1 + s|/s| = 1. Hence, the definition
of limit guarantees the existence of some r > 0 such that∣∣∣∣∣∣∣∣ log |1 + s|

s

∣∣∣∣− 1
∣∣∣∣ < 1, s ∈ (−r, r).

In particular, this implies that | log |1 + s|| < 2|s| for all s ∈ (−r, r).
On the other hand, since c is g-integrable on [t0, t0 + T), we have that

∑
t∈[t0,t0+T)∩Dg

|c(t)∆+g(t)| ≤
∫
[t0,t0+T)

|c(s)|d g(s) < +∞.

Therefore, the set Ar = {t ∈ [t0, t0 + T) ∩ Dg : |c(t)∆+g(t)| ≥ r} must be finite. Hence,
denoting Br = ([t0, t0 + T) ∩ Dg) \ Ar, we have that

∑
t∈[t0,t0+T)∩Dg

∣∣ log |1 + c(t)∆+g(t)|
∣∣ = ∑

t∈Ar

∣∣ log |1 + c(t)∆+g(t)|
∣∣+ ∑

t∈Br

∣∣ log |1 + c(t)∆+g(t)|
∣∣

≤ ∑
t∈Ar

∣∣ log |1 + c(t)∆+g(t)|
∣∣+ 2 ∑

t∈Br

|c(t)∆+g(t)| < +∞.

This shows that (3.4) holds. Now (3.5) follows from the extra hypothesis.

As a consequence of Lemma 3.1 and the product differentiation rule, we can reformulate
Lemmas 6.2 and 6.3 in [3] into the following results.

Theorem 3.2. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩

Dg. Then, the map c̃ : [t0, t0 + T)→ R, defined as

c̃(t) =


c(t) if t ∈ [t0, t0 + T)\Dg,

log
(
1 + c(t)∆+g(t)

)
∆+g(t)

if t ∈ [t0, t0 + T) ∩ Dg,
(3.6)

belongs to L1
g([t0, t0 + T), R); the map ec(·, t0) : [t0, t0 + T]→ (0,+∞),

ec(t, t0) := exp
(∫

[t0,t)
c̃(s)d g(s)

)
, t ∈ [t0, t0 + T], (3.7)

is well-defined and g-absolutely continuous on [t0, t0 + T]; and the map x : [t0, t0 + T]→ R, given by
x(t) = x0ec(t, t0), t ∈ [t0, t0 + T], solves the initial value problem (3.2) g-a.e. in [t0, t0 + T).

Remark 3.3. Observe that, for any t ∈ [t0, t0 + T) ∩ Dg,

ec(t+, t0) = lim
s→t+

exp
(∫

[t0,s)
c̃(s)d g(s)

)
= lim

s→t+

(
exp

(∫
[t0,t)

c̃(s)d g(s)
)

exp
(∫

[t,s)
c̃(s)d g(s)

))
= ec(t, t0) exp

(∫
{t}

c̃(s)d g(s)
)
= ec(t, t0)(1 + c(t)∆+g(t)).

Essentially, this shows that the limitations that the map in (3.3) had at the discontinuity points
are avoided for ec(·, t0).

An analogous improvement to the more general result [3, Lemma 6.5] can be obtained
making use of the information in Lemma 3.1 regarding (3.4) instead of (3.5). In that case, we
obtain the following result.
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Theorem 3.4. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 + T) ∩

Dg. Then, the set
T−c = {t ∈ [t0, t0 + T) ∩ Dg : 1 + c(t)∆+g(t) < 0}

has finite cardinality. Furthermore, if T−c = {t1, . . . , tk}, t0 ≤ t1 < t2 < · · · < tk < tk+1 = t0 + T,
then the map ĉ : [t0, t0 + T)→ R, defined as

ĉ(t) =


c(t) if t ∈ [t0, t0 + T)\Dg,

log
∣∣1 + c(t)∆+g(t)

∣∣
∆+g(t)

if t ∈ [t0, t0 + T) ∩ Dg,

belongs to L1
g([t0, t0 + T), R); the map êc(·, t0) : [t0, t0 + T]→ R\{0}, given by

êc(t, t0) =


exp

(∫
[t0,t)

ĉ(s)d g(s)
)

if t0 ≤ t ≤ t1,

(−1)j exp
(∫

[t0,t)
ĉ(s)d g(s)

)
if tj < t ≤ tj+1, j = 1, . . . , k,

is well-defined and g-absolutely continuous on [t0, t0 + T]; and the map x : [t0, t0 + T]→ R, given by
x(t) = x0êc(t, t0), t ∈ [t0, t0 + T], solves the initial value problem (3.2) g-a.e. in [t0, t0 + T).

Now, we move on to the study of the nonhomogeneous case. The study of this problem
was also carried out in [3]. In particular, [3, Proposition 6.8] guarantees the existence of a
unique solution of (3.2) under certain hypothesis. Furthermore, although it is not explicitly
stated in the result, its proof provides a way to obtain it through the connection with the
problem in [3, Proposition 6.7], and they have been made explicit in [2]. However, the proof
of [3, Proposition 6.7] relays on the product rule for Stieltjes derivatives which, as it has been
pointed out before, was not correct in that paper. Specifically, it is equation (6.16) in [3] that
makes use of this property. It is possible to show that such expression remains true with the
product formula in Proposition 2.5. Nevertheless, here we will use a different approach to the
study of (3.2). Namely, we will recreate the method of variation of constants in this context.

Roughly speaking, the method of variation of constants revolves around the idea that the
solution of a nonhomogeneous linear equation can be expressed as the sum of a solution of
the homogeneous linear equation plus a particular solution of the nonhomogeneous one. In
order to obtain the particular solution, we consider the following family of functions

xC(t) = Cxh(t), t ∈ [t0, t0 + T], C ∈ R,

where xh is a given solution of x′g(t) = c(t)x(t). Observe that each element of the family xC,
C ∈ R, also solves the same problem. From there, we make a guess that a particular solution is
similar to that one, where we allow the constants to vary, i.e. we consider them as a function.
Explicitly, we guess that the solution is of the form

x(t) = C(t)xh(t), t ∈ [t0, t0 + T],

for some function C : [t0, t0 + T] → R . Then, we try our guess on the corresponding non-
homogeneous linear equation. In order to do so, we need to make use of the product rule
for Stieltjes derivatives, statement (ii) in Proposition 2.5. Let t ∈ [t0, t0 + T) be such that x′g(t)
exists. In that case,

x′g(t) = C′g(t)xh(t) + C(t)xh(t)(−d(t)) + C′g(t)xh(t)(−d(t))∆+g(t)

= xh(t)(C′g(t)(1− d(t)∆+g(t))− C(t)d(t)).
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Hence, for such t ∈ [t0, t0 + T), it follows that x′g(t) + d(t)x(t) = xh(t)C′g(t)(1− d(t)∆+g(t)).
Therefore, if x solves the nonhomogeneous linear equation, we must have that for such t ∈
[t0, t0 + T),

h(t) = xh(t)C′g(t)(1− d(t)∆+g(t)).

Therefore, if we can find a function C satisfying the equation above, we obtain a particular
solution of the nonhomogeneous linear equation and, as a consequence, the general solution
of the same problem. Then, imposing the initial condition, we obtain the following result.

Theorem 3.5. Let d, h ∈ L1
g([t0, t0 + T), R) be such that 1− d(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 +

T) ∩ Dg. Then the map x : [t0, t0 + T]→ R, defined as

x(t) = ê−d(t, t0)

(
x0 +

∫
[t0,t)

h(s)
ê−d(s, t0)(1− d(s)∆+g(s))

d g(s)
)

, t ∈ [t0, t0 + T], (3.8)

is well-defined, g-absolutely continuous on [t0, t0 + T] and it solves (3.1) g-a.e. in [t0, t0 + T).
If, in particular, 1− d(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg, then

x(t) = e−d(t, t0)

(
x0 +

∫
[t0,t)

h(s)
e−d(s, t0)(1− d(s)∆+g(s))

d g(s)
)

, t ∈ [t0, t0 + T]. (3.9)

Proof. First of all, note that, under the corresponding hypotheses, the maps ê−d(·, t0) and
e−d(·, t0) are well-defined. Let us show that the map x in (3.8) has the stated properties.

Consider the maps E, H : [t0, t0 + T)→ R defined as

E(t) = ê−d(t, t0)(1− d(t)∆+g(t)), H(t) =
h(t)
E(t)

, t ∈ [t0, t0 + T).

Since E(t) = ê−d(t, t0) for all t ∈ I \Dg and Dg is countable, E is g-measurable. Moreover, since
E 6= 0 by definition, and h and E are g-measurable, it follows that H is g-measurable. Further-
more, H belongs to L1

g([t0, t0 + T), R). Indeed, first of all note that for each t ∈ [t0, t0 + T),

|ê−d(t, t0)| = exp
(∫

[t0,t)
ĉ(s)d g(s)

)
≥ exp

(
−
∫
[t0,t)
|ĉ(s)|d g(s)

)
≥ exp

(
−
∫
[t0,t0+T)

|ĉ(s)|d g(s)
)

.

Observe that m := exp
(
−
∫
[t0,t0+T) |ĉ(s)|d g(s)

)
> 0. Hence,

|H(t)| ≤ 1
m

|h(t)|
|1− d(t)∆+g(t)| , t ∈ [t0, t0 + T).

Therefore, it is enough to show that the map h : [t0, t0 + T)→ R, defined as

h(t) =
h(t)

1− d(t)∆+g(t)
, t ∈ [t0, t0 + T),

is g-integrable to prove that H ∈ L1
g([t0, t0 + T), R). In order to see that h is g-integrable,

observe that the set A = {t ∈ [t0, t0 + T) : d(t)∆+g(t) > 1/2} has finite cardinality as

∑
t∈A

1
2
< ∑

t∈[t0,t0+T)∩Dg

|d(t)∆+g(t)| ≤
∫
[t0,t0+T)

|d(s)|d g(s) < +∞.
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As a consequence, we have that |h(t)| ≤ 2|h(t)| for all t ∈ [t0, t0 + T) \ A, from which the
g-integrability of h follows. Hence, H ∈ L1

g([t0, t0 + T), R). Now, Theorem 2.9 yields that x
is g-absolutely continuous on [t0, t0 + T]. Hence, all that is left to do is to check that x solves
(3.1).

By definition, we have that x(t0) = x0. Furthermore, (i) in Proposition 2.5 and Theorems
2.9 and 3.4, ensure that for g-a.a. t ∈ [t0, t0 + T),

x′g(t) = −d(t)ê−d(t, t0)

(
x0 +

∫
[t0,t)

H(s)d g(s)
)
+ ê−d(t, t0)H(t)− ê−d(t, t0)d(t)H(t)∆+g(t)

= −d(t)x(t) + ê−d(t, t0)H(t)(1− d(t)∆+g(t)) = −d(t)x(t) + h(t),

i.e. x solves (3.1).
Now, the expression of x in (3.9) follows from the extra hypothesis and the definition of

ê−d(·, t0) and e−d(·, t0)

Observe that, unlike [3, Proposition 6.8], Theorem 3.5 does not guarantee the uniqueness
of solution of (3.1) but it offers an explicit expression for a solution of the problem under
simpler conditions as condition (3.4) is not required. Nevertheless, using the results in the
next section, we will be able to show that (3.1) has a unique solution under the assumption
that d ∈ L1

g([t0, t0 + T), R).

4 Gronwall’s inequality for Lebesgue–Stieltjes integrals

In this section we turn our attention to the Gronwall inequality in the setting of Lebesgue–
Stieltjes integrals. Here, following the ideas [5], we obtain an integral inequality involving the
solution of the linear problem with Stieltjes derivatives. This argument improves, as we show
later, the corresponding results existing in the literature, such as those in [6, 8, 11, 12, 17].

In order to simplify the proof of the main result of this section, Proposition 4.3, we include
the following result. By doing this, we can also reflect on the meaning of Proposition 4.1 for
the study of the corresponding linear equation in (3.2).

Proposition 4.1. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 +

T) ∩ Dg. Then the map h : [t0, t0 + T]→ R, defined as

h(t) = (ec(t, t0))
−1, t ∈ [t0, t0 + T], (4.1)

is well-defined, g-absolutely continuous on [t0, t0 + T] and

h′g(t) =
−c(t)

ec(t, t0)(1 + c(t)∆+g(t))
, g-a.a. t ∈ [t0, t0 + T). (4.2)

Proof. Define h1(t) = ec(t, t0), t ∈ [t0, t0 + T]. Since h1 is g-absolutely continuous on [t0, t0 + T],
it has bounded variation on that interval (see [10, Proposition 5.3]) and thus, it is bounded on
[t0, t0 + T]. In particular, if we take

m := exp
(
−
∫
[t0,t0+T)

|c̃(s)|d g(s)
)

, M := exp
(∫

[t0,t0+T)
|c̃(s)|d g(s)

)
,

where c̃ is the modified function in (3.6), we have that 0 < m ≤ h(t) ≤ M < +∞, t ∈
[t0, t0 + T]. Hence, taking h2(t) = 1/t, t ∈ [m, M], we can rewrite h as h(t) = h2 ◦ h1, which
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shows that it is well-defined. Now, as in the classical setting, this is enough to ensure that h is
g-absolutely continuous on [t0, t0 + T], see [3, Proposition 5.3].

Let t ∈ [t0, t0 + T) be such that h′g(t) exists. If t 6∈ Dg, then by the chain rule, [10, Theo-
rem 2.3],

h′g(t) = h′2(h1(t))(h2)
′
g(t) =

−1
(ec(t, t0))2 ec(t, t0)c(t) =

−c(t)
ec(t, t0)

,

which coincides with (4.2) since ∆+g(t) = 0. On the other hand, if t ∈ Dg, using Remarks 2.3
and 3.3 we have that

h′g(t) =
(ec(t+, t0))−1 − (ec(t, t0))−1

∆+g(t)
=

(1 + c(t)∆+g(t))−1 − 1
ec(t, t0)∆+g(t)

=
−c(t)

ec(t, t0)(1 + c(t)∆+g(t))

which concludes the proof.

Remark 4.2. Observe that Proposition 4.1 shows that, under the corresponding hypotheses,
(ec(t, t0))−1 solves the Stieltjes differential equation x′g(t) = −c(t)x(t) except at the disconti-
nuity points of the derivator, presenting the limitations that the map in (3.3) had. In order to
obtain an equality at those points, one would have to modify the map c in an analogous way
to (3.6), which would lead to Theorem 3.2 under the corresponding hypotheses for −c.

As we mentioned before, Proposition 4.1 allows us to derive a version of Gronwall’s in-
equality in the context of Lebesgue–Stieltjes integrals. Naturally, in this context, the exponen-
tial map involved in the inequality is the one in (3.7). However, as we will see later, we can
obtain a different version of Gronwall’s inequality involving the usual exponential map. Let
us state and prove our first version of Gronwall’s inequality for the Lebesgue–Stieltjes integral.

Proposition 4.3. Let u, K, L : [t0, t0 + T) → [0,+∞) be such that L, K · L, u · L ∈ L1
g([t0, t0 + T),

[0,+∞)). If

u(t) ≤ K(t) +
∫
[t0,t)

L(s)u(s)d g(s), t ∈ [t0, t0 + T), (4.3)

then

u(t) ≤ K(t) +
∫
[t0,t)

K(s)L(s) exp
(∫

[s,t)
L̃(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T), (4.4)

where L̃ is the modified function in (3.6). Moreover, if the map ϕ : [t0, t0 + T) → R, defined as
ϕ(t) = K(t)(1 + L(t)∆+g(t)), is nondecreasing, then

u(t) ≤ ϕ(t)eL(t, t0), t ∈ [t0, t0 + T). (4.5)

Proof. First, observe that 1 + L(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg. Therefore, the maps
L̃ and eL(·, t0) are well-defined.

Define U(t) =
∫
[t0,t) L(s)u(s)d g(s), t ∈ [t0, t0 + T]. It follows from the hypotheses and

Theorem 2.9 that U is well-defined, g-absolutely continuous on [t0, t0 + T] and

U′g(t) = L(t)u(t), g-a.a. t ∈ [t0, t0 + T).

Let h : [t0, t0 + T] → R be as in (4.1) for c = L and define v(t) = U(t)h(t), t ∈ [t0, t0 + T].
This is enough to ensure that v is g-absolutely continuous on [t0, t0 + T], which guarantees
that v′g(t) exists g-almost everywhere in [t0, t0 + T).
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Given t ∈ [t0, t0 + T) such that v′g(t) exists, Propositions 2.5 and 4.1 yield

v′g(t) = U′g(t)(h(t) + h′g(t)∆
+g(t)) + h′g(t)U(t)

= u(t)L(t)
(

h(t)− L(t)h(t)
1 + L(t)∆+g(t)

∆+g(t)
)
− L(t)h(t)

1 + L(t)∆+g(t)
U(t)

= u(t)L(t)h(t)
1

1 + L(t)∆+g(t)
− L(t)h(t)U(t)

1 + L(t)∆+g(t)

=
L(t)h(t)

1 + L(t)∆+g(t)

(
u(t)−

∫
[t0,t)

L(s)u(s)d g(s)
)

.

Thus, inequality (4.3) and the fact that 1 + L(t)∆+g(t) ≥ 1 for all t ∈ [t0, t0 + T), ensure that

v′g(t) ≤
K(t)L(t)h(t)

1 + L(t)∆+g(t)
≤ K(t)L(t)h(t), g-a.a. t ∈ [t0, t0 + T).

Therefore, it follows from Fundamental Theorem of Calculus for the Lebesgue–Stieltjes inte-
gral, Theorem 2.7, that

v(t) = v(t0) +
∫
[t0,t)

v′g(s)d g(s) ≤
∫
[t0,t)

K(s)L(s)h(s)d g(s), t ∈ [t0, t0 + T]

and, as a consequence, for all t ∈ [t0, t0 + T] we have∫
[t0,t)

L(s)u(s)d g(s) = eL(t, t0)v(t)

≤ eL(t, t0)
∫
[t0,t)

K(s)L(s)h(s)d g(s)

= eL(t, t0)
∫
[t0,t)

K(s)L(s) (eL(s, t0))
−1 d g(s)

=
∫
[t0,t)

K(s)L(s) exp
(∫

[s,t)
L̃(r)d g(r)

)
d g(s).

Thus, it follows from 4.3 that

u(t) ≤ K(t) +
∫
[t0,t)

K(s)L(s) exp
(∫

[s,t)
L̃(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T);

that is, (4.4) holds.
To prove (4.5), for each t ∈ [t0, t0 + T), define

ψt(s) = exp
(∫

[s,t)
L̃(r)d g(r)

)
=

eL(t, t0)

eL(s, t0)
, s ∈ [t0, t].

Then, it follows from (4.4) that for all t ∈ [t0, t0 + T),

u(t) ≤ K(t) +
∫
[t0,t)

K(s)L(s)ψt(s)d g(s)

≤ K(t)(1 + L(t)∆+g(t)) +
∫
[t0,t)

K(s)(1 + L(s)∆+g(s))
L(s)ψt(s)

1 + L(s)∆+g(s)
d g(s).

Now, since ϕ(t) = K(t)(1 + L(t)∆+g(t)) is nondecreasing, we have that

u(t) ≤ ϕ(t)
(

1 +
∫
[t0,t)

L(s)ψt(s)
1 + L(s)∆g(s)

d g(s)
)

, t ∈ [t0, t0 + T].
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On the other hand, Proposition 4.1 ensures that for all t ∈ [t0, t0 + T), the map ψt is g-
absolutely continuous on [t0, t] and

(ψt)
′
g(s) =

−L(s)
1 + L(s)∆g(s)

ψt(s) g-a.a. s ∈ [t0, t).

This fact, together with the Fundamental Theorem of Calculus, Theorem 2.7, yields that

u(t) ≤ ϕ(t)
(

1−
∫
[t0,t)

(ψt)
′
g(s) d g(s)

)
= ϕ(t) (1− (ψt(t)− ψt(t0))) = ϕ(t)ψt(t0),

for all t ∈ [t0, t0 + T), from which the result follows.

Remark 4.4. The bound (4.4), under the corresponding hypotheses, is sharp. Indeed, let
g : R → R be a nondecreasing and left-continuous function, K : [t0, t0 + T) → [0,+∞) be
constant and L be g-integrable on [t0, t0 + T). The map x(t) = KeL(t, t0), t ∈ [t0, t0 + T], is
g-absolutely continuous on [t0, t0 + T]. As a consequence, and with the aid of Theorems 2.7
and 3.2, we have that

x(t) = K +
∫
[t0,t)

L(s)KeL(s, t0)d g(s), t ∈ [t0, t0 + T],

that is, (4.3) holds. Furthermore, that same expression shows that (4.4) also holds with the
equality.

This type of inequalities for Stieltjes integrals already exist in the literature, see for example
[6, 8, 11, 12, 17]. Let us briefly discuss the relations between the mentioned references and
Proposition 4.3. First, in [12, Theorem 7.5.3], the authors worked in the more general context
of the Kurzweil–Stieltjes integral. Nevertheless, the results can be compared in the context
of the Lebesgue–Stieltjes integral as the integrability in this sense implies the integrability
in the Kurzweil–Stieltjes sense. In that case, we can see that the hypotheses required there
are stronger than the ones in Proposition 4.3. Furthermore, it is possible to deduce through
our next result, Corollary 4.5, that (4.5) gives a sharper bound than the one [12, Theorem
7.5.3]. A similar argument can be done for [8, Chapter 22], where the authors imposes some
condition regarding the length of the jumps that the map g presents to arrive to a similar
inequality that is not as sharp as the one provided in Proposition 4.3. The same thing happens
when we consider the generalized version of the Gronwall inequality in [17, Theorem 1.40].
For the particular setting in which we recover the usual Gronwall inequality (namely, when
ω(r) = r) then we obtain the same inequality as in [12, Theorem 7.5.3], which we have already
discussed. Now, for [6, 11], the authors obtained a Gronwall type inequality in the context
of a certain family of linear operators. The operators there considered can be the Lebesgue–
Stieltjes integrals in this paper. In that case, the authors impose some conditions on the
discontinuities of the map g, and moreover, the inequality is expressed using an unknown
function introduced in [6], called Gronwall majorant. Hence, in the context of our work, the
inequality in Proposition 4.3 provides more information.

Note that (4.5) in Proposition 4.3 becomes the usual Gronwall’s inequality when the deriva-
tor g is the identity map. Furthermore, as we mentioned before, we can obtain a different
Gronwall type inequality involving the usual exponential map, i.e. not involving the mod-
ified map in (3.6). However, the bound in Proposition 4.3 is sharper than the one in the
following result.
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Corollary 4.5. Let u, K, L : [t0, t0 + T) → [0,+∞) be such that L, K · L, u · L ∈ L1
g([t0, t0 + T),

[0,+∞)). If (4.3) holds, then

u(t) ≤ K(t) +
∫
[t0,t)

K(s)L(s) exp
(∫

[s,t)
L(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T).

Moreover, if the map ϕ(t) = K(t)(1 + L(t)∆g(t)) is nondecreasing, then

u(t) ≤ ϕ(t) exp
(∫

[t0,t)
L(r)d g(r)

)
, t ∈ [t0, t0 + T).

Proof. Given the inequalities in Proposition 4.3, it is enough to show that L̃ ≤ L on [t0, t0 + T).
Observe that L̃ = L on [t0, t0 + T) \ Dg. Thus, we only need to show the inequality for
[t0, t0 + T) ∩ Dg.

For t ∈ [t0, t0 + T) ∩ Dg, we have that 1 + L(t)∆g(t) > 0. Now, since log(1 + s) ≤ s for
s ∈ (−1,+∞), it follows that

L̃(t) =
log
(
1 + L(t)∆g(t)

)
∆g(t)

≤ L(t)∆g(t)
∆g(t)

= L(t),

which concludes the proof.

As in the classical setting, Gronwall’s inequality allows us to obtain a uniqueness result
for a general initial value problem under the assumption that the map defining the problem
satisfies a Lipschitz condition. We present this information in the following result.

Theorem 4.6. Let X ⊂ Rn, x0 ∈ X and f : [t0, t0 + T)× X → Rn. If there exists τ ∈ (0, T] and
L ∈ L1

g([t0, t0 + τ), [0,+∞)) such that

‖ f (t, x)− f (t, y)‖ ≤ L(t)‖x− y‖, g-a.a. t ∈ [t0, t0 + τ), x, y ∈ X,

then the initial value problem

x′g(t) = f (t, x(t)), g-a.a. t ∈ [t0, t0 + T), x(t0) = x0, (4.6)

has at most one g-absolutely continuous solution on [t0, t0 + τ).

Proof. Suppose that x1, x2 ∈ ACg([t0, t0 + τ], Rn) are two solutions of (4.6) on [t0, t0 + τ). It
follows from Theorem 2.7 that f (·, xi(·)) ∈ L1

g([t0, t0 + τ), Rn), i = 1, 2. As a consequence, we
have that the map ‖ f (·, x1(·))− f (·, x2(·))‖ is g-integrable over [t0, t0 + τ).

Define u(t) = ‖x1(t) − x2(t)‖, t ∈ [t0, t0 + τ]. Clearly, u is nonnegative and bounded
on [t0, t0 + τ] as x1 and x2 are bounded, see [10, Proposition 5.3]. Hence, it follows that
u, u · L ∈ L1

g([t0, t0 + τ), [0,+∞)). Furthermore, the Fundamental Theorem of Calculus yields
that for t ∈ [t0, t0 + τ],

u(t) =
∥∥∥∥∫

[t0,t)
f (s, x1(s))d g(s)−

∫
[t0,t)

f (s, x2(s))d g(s)
∥∥∥∥

≤
∫
[t0,t)
‖ f (s, x1(s))− f (s, x2(s))‖d g(s) ≤

∫
[t0,t)

L(s)u(s)d g(s).

Hence, (4.3) holds with K = 0. As a consequence, (4.4) holds for K = 0, which implies that
u = 0 on [t0, t0 + τ), or equivalently, x1 = x2 on that interval.
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We can now combine Theorems 3.5 and 4.6 to obtain the following result which is, to some
extend, a revision of [3, Proposition 6.8].

Theorem 4.7. Let d, h ∈ L1
g([t0, t0 + T), R) be such that 1 − d(t)∆g(t) 6= 0 for all t ∈

[t0, t0 + T) ∩ Dg. Then the unique g-absolutely continuous solution of (3.1) is given by the map
in (3.8). If, in particular, 1− d(t)∆g(t) > 0 for all t ∈ [t0, t0 + T)∩Dg, then the unique g-absolutely
continuous solution of (3.1) matches (3.9).
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