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Abstract. This paper is devoted to the study of the period function of planar generic and
non-generic turning points. In the generic case (resp. non-generic) a non-degenerate
(resp. degenerate) center disappears in the limit ε → 0, where ε ≥ 0 is the singular
perturbation parameter. We show that, for each ε > 0 and ε ∼ 0, the period function
is monotonously increasing (resp. has exactly one minimum). The result is valid in an
ε-uniform neighborhood of the turning points. We also solve a part of the conjecture
about a uniform upper bound for the number of critical periods inside classical Liénard
systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use
singular perturbation theory and the family blow-up.
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1 Introduction

We consider slow-fast polynomial Liénard equations of center type

Xε,η :


ẋ = y−

(
x2n +

l

∑
k=1

akx2n+2k
)

,

ẏ = ε2n
(
−x2n−1 +

m

∑
k=1

bkx2n+2k−1
)

,

(1.1)

where l, m, n ≥ 1, η := (a1, . . . , al , b1, . . . , bm) is kept in a compact set K of Rl+m and ε ≥ 0 is
the singular perturbation parameter kept small. System Xε,η is invariant under the symmetry
(x, t) → (−x,−t) and has a center at the origin for all ε > 0, ε ∼ 0, and for all η ∈ K.
The center is non-degenerate when n = 1 or nilpotent when n > 1. In the limit ε = 0, we
encounter drastic changes in the dynamics of (1.1): the system has a curve of singular points,
given by {y = x2n + ∑l

k=1 akx2n+2k}, passing through the origin, and horizontal regular orbits
(see Figure 1.1).
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Figure 1.1: Dynamics of X0,η with 5 contact points.

A portion of the curve of singularities near the origin consists of the normally attracting
part {x > 0}, the normally repelling part {x < 0} and the contact point (x, y) = (0, 0) between
them. We call the contact point a turning point because closed orbits surrounding the center,
for ε > 0 small, pass from the attracting part to the repelling part of the curve of singularities.
When n = 1, the turning point at the origin is generic (sometimes called simple). When n > 1,
we deal with a non-generic or degenerate turning point.

The period function of a center assigns to each periodic orbit its minimal period. Isolated
critical points of the period function are called critical periods (or critical periodic orbits)
and are central in the qualitative study of the period function. One can note that critical
periods do not depend on the parametrization of the set of periodic orbits used. Indeed, if
{γs}s∈(0,1) is such a parametrization and s 7→ T(s) is the period of the periodic orbit γs, for
any diffeomorphism s 7→ ξ = ξ(s), d

ds T(ξ(s)) = d
dξ T(ξ(s)) d

ds ξ(s). Therefore the number of
isolated zeros of d

ds (T ◦ ξ) and d
ds T are the same.

The main purpose of this paper is to give a complete local study of the period function of
Xε,η , near the center at the origin, in both the generic and non-generic case. The study is valid
in a small fixed neighborhood of the turning point that is independent of (ε, η). Thus, the
neighborhood does not shrink to the origin as ε → 0. In the generic (resp. non-generic) case,
the period function of the center in Xε,η is strictly monotonous increasing (resp. has exactly
one critical period which is a minimum). More precisely, let us denote by T(y; ε) the period
function of the center at the origin of system (1.1) with ε > 0, ε ∼ 0, parametrized by the
positive y-axis. Then we have:

Theorem 1.1. Let l, m ≥ 1 and n = 1 (resp. n > 1) be fixed. For any compact K ⊂ Rl+m there exist
ε0 > 0 and y0 > 0 small enough such that the period function T(y; ε) of the center of system (1.1) is
strictly monotonous increasing (resp. has a global minimum) in the interval ]0, y0], for all ε ∈ ]0, ε0]

and η ∈ K.

We prove Theorem 1.1 in Section 3.4. To prove Theorem 1.1, we use a blow-up at the origin
in the (x, y, ε)-space to desingularize system (1.1). Roughly speaking, after the blow-up we
distinguish between “very small”, “small” and “intermediate” closed orbits surrounding the
center (x, y) = (0, 0). The period function of the center of system (1.1) cannot be studied uni-
formly in these three regions and we have to use different techniques for each type of closed
orbits. To treat the period function near the very small closed orbits (the ones closest to the
center), we use Chicone and Jacobs [2], in the generic case, and generalized polar coordinates,
in the non-generic case. The small closed orbits can be treated using the monotonicity crite-
rion due to Schaaf [11], in the generic case, and a result due to Sabatini [10], in the non-generic
case. The size of the very small and small closed orbits tends to zero as ε → 0. In order to
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obtain the result in an (ε, η)-uniform neighborhood of (x, y) = (0, 0), the period function near
the passage from the small closed orbits to large closed orbits of size O(1) in the (x, y)-space
has to be studied. In this passage, we encounter the so-called intermediate closed orbits. The
period function near such intermediate closed orbits, in both the generic and non-generic
case, will be studied using techniques from [6, 8], where small-amplitude limit cycles in an
ε-uniform neighborhood of slow-fast Hopf points have been investigated (the slow-fast Hopf
points correspond to the generic case). For more details we refer to Section 2.

We point out that Theorem 1.1 can be proved in a more general framework of smooth
Liénard systems. More precisely, the same local result is true if we replace (1.1) with {ẋ =

y− x2n + O(x2n+2), ẏ = ε2n (−x2n−1 + O(x2n+1)
)
} where O(x2n+2) (resp. O(x2n+1)) is an even

(resp. odd) C∞-perturbation term that may depend on parameters kept in a compact set. The
proof in this more general setting is analogous to the proof for polynomial Liénard equations
presented in this paper.

Theorem 1.1, in the generic case n = 1, can be used to solve a part of the following
conjecture formulated in [4]: there exists a uniform upper bound on the number of critical
periods of classical Liénard equations {ẋ = y−G(x), ẏ = −x} where G is an even polynomial
of degree 2N, N ≥ 1, and G(0) = 0. Moreover, this upper bound is conjectured to be 2N − 2.
Following Theorem 5 in [4], this can be reduced to the following problem: there exist a small
ε0 > 0 and an integer M > 0 such that the slow-fast systemẋ = y−

(
x2N +

N−1

∑
k=1

c2kx2k
)

,

ẏ = −εx,

(1.2)

has at most M critical periods, for all ε ∈ ]0, ε0] and (c2, c4, . . . , c2(N−1)) ∈ SN−2. The following
result covers the case where the curve of singularities of (1.2), at level ε = 0, has only one
contact point, the one at the origin (x, y) = (0, 0).

Theorem 1.2. Let c0
2 > 0 be small and fixed and let N ≥ 1 be a fixed integer. Denote by C the

set of all values (c2, c4, . . . , c2(N−1)) ∈ SN−2 such that c2 ≥ c0
2 and G′(x)

x > 0 for all x ∈ R, where
G(x) = x2N + ∑N−1

k=1 c2kx2k. For any compact set C̃, with C̃ ⊂ C, there exists a small ε0 > 0 such
that system (1.2) has no critical periods for all ε ∈ ]0, ε0] and (c2, c4, . . . , c2(N−1)) ∈ C̃.

We prove Theorem 1.2 in Section 3.5. Note that keeping the parameter in a compact set C̃
ensures that the critical curve has no contact points other than the origin. The compact set

C̃ = {(c2, c4, . . . , c2(N−1)) ∈ SN−2 | c2 ≥ c0
2 and ci ≥ 0 for i = 4, . . . , 2(N − 1)}

is always contained in the set C defined in Theorem 1.2. When N = 1, Theorem 1.2 implies
that {ẋ = y− x2, ẏ = −εx} has no critical periods for all ε ∈ ]0, ε0], for some small ε0 > 0.
When N = 2, we have to deal with the slow-fast systems {ẋ = y− x4 ± x2, ẏ = −εx}. From
Theorem 1.2 follows that the system with the negative sign in front of x2 has no critical periods.
The system with the positive sign in front of x2 is conjectured to have at most 2 critical periods
(see [4]). As explained in [4], it is more difficult to deal with the part of the conjecture when
the curve of singularities of (1.2) has more contact points.

When c2 is uniformly nonzero, Theorem 1.1 in the generic case implies that system (1.2)
has no critical periods in an ε-uniform neighborhood of the origin in the (x, y)-space. It
suffices to notice that the change of coordinates (x, y) → (c2x, c2y) transforms (1.2) into (1.1).
See Section 3.5.
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2 Blow-up and statement of results

2.1 Family blow-up at the origin in the (x, y, ε)-space

To be able to study the period function near the turning point, uniformly in (ε, η) with ε > 0
small, we have to desingularize the system Xε,η near (x, y, ε) = (0, 0, 0) using the so-called
family blow-up. The family blow-up is the following “singular” coordinate change with
n ≥ 1:

Ψ : R+ × S2
+ → R3 : (r, (x̄, ȳ, ε̄)) 7→ (x, y, ε) = (rx̄, r2nȳ, rε̄), ε̄ ≥ 0.

We define the blown-up vector field as the pullback of Xε,η + 0 ∂
∂ε divided by r2n−1: X̄η :=

1
r2n−1 Ψ∗

(
Xε,η + 0 ∂

∂ε

)
. To study the blown-up vector field X̄η (or r2n−1X̄η) near the blow-up

locus {0} × S2
+, it is convenient to use different charts with “rectified” coordinates, instead

of the spherical coordinates. For our purposes, only the family chart {ε̄ = 1} and the phase
directional chart {ȳ = 1} are relevant for the study of the period function since all closed
orbits near the center (x, y) = (0, 0) are visible therein (see Figure 2.1).

In the family chart {ε̄ = 1}, we have

(x, y, ε) = (rx̄, r2nȳ, r)

with (x̄, ȳ) kept in an arbitrary but fixed compact set. In this chart, r = ε and system (1.1)
becomes XF := ε2n−1X̄F, where

X̄F :


˙̄x = ȳ−

(
x̄2n +

l

∑
k=1

akε2k x̄2n+2k
)

,

˙̄y = −x̄2n−1 +
m

∑
k=1

bkε2k x̄2n+2k−1.

(2.1)

System (2.1) is invariant under the symmetry (x̄, t)→ (−x̄,−t) and has a center at the origin,
for all ε ≥ 0, ε ∼ 0 and η ∈ K. When ε = 0, we are located on the blow-up locus and the
vector field (2.1) becomes {

˙̄x = ȳ− x̄2n,

˙̄y = −x̄2n−1.
(2.2)

A first integral of (2.2) is given by

H(x̄, ȳ) = e−2nȳ
(

ȳ− x̄2n +
1

2n

)
. (2.3)

Note that the invariant curve {ȳ = x̄2n− 1
2n} is the boundary of the period annulus (see Figure

2.1). The main advantage of the family blow-up is that the blown-up vector field (2.1) has no
curves of singularities.

The (x̄, ȳ)-compact sets in which we will study system (2.1) (see Section 2.2) shrink to the
origin in the (x, y)-space as ε → 0. To obtain (ε, η)-uniform results, we also have to study
Xε,η in the phase directional chart {ȳ = 1}. In the chart {ȳ = 1}, we deal with the coordinate
change

(x, y, ε) = (RX, R2n, RE),
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ε̄ = 1

ȳ = 1

p−p+

Figure 2.1: The family blow-up at the origin (x, y, ε) = (0, 0, 0) and dynamics
on the blow-up locus. To study the period function of (1.1) in an (ε, η)-uniform
neighborhood of (x, y) = (0, 0), it suffices to use the charts {ε̄ = 1} and {ȳ = 1}.

where R ≥ 0 and E ≥ 0 are small and X is kept in any compact set. System (1.1) becomes
XD := R2n−1X̄D, where

X̄D :



Ẋ = 1−
(

X2n +
l

∑
k=1

akR2kX2n+2k
)
+

1
2n

XE2nF(X, R, η),

Ṙ = − 1
2n

RE2nF(X, R, η),

Ė =
1

2n
E2n+1F(X, R, η),

(2.4)

with F(X, R, η) = X2n−1−∑m
k=1 bkR2kX2n+2k−1. For R = E = 0, the system has semi-hyperbolic

singularities at X = −1 (denoted by p+) and X = 1 (denoted by p−). The singularity p+ (resp.
p−) has the X-axis as unstable (resp. stable) manifold and a two-dimensional center manifold,
transverse to the X-axis.

Using (2.1) and (2.4) we easily detect the singular polycycle Γ on the blow-up locus con-
sisting of singularities p+ and p− and the regular orbits that are heteroclinic to them (see
Figure 2.1). Note that p± are the end points of the regular curve {ȳ = x̄2n − 1

2n}.
It is clear now that the study of the period function of the center in (1.1), in a small ε-

uniform neighborhood of (x, y) = (0, 0), can be divided into three parts: the study near the
center (x̄, ȳ) = (0, 0) of (2.1), the study of the interior of the period annulus inside the family
(2.1), away from (x̄, ȳ) = (0, 0) and Γ, and the study near Γ, combining systems (2.1) and (2.4).
The results related to the first two parts (resp. the third part) are stated in Section 2.2 (resp.
Section 2.3).

2.2 Statement of results inside the vector field X̄F

Let l, m ≥ 1 be fixed. For the vector field X̄F given in (2.1) we define by TF(ȳ; ε) the period
function of the center at the origin parametrized by the ȳ-axis. As we will see in Sections 3.1
and 3.2, the function TF(ȳ; ε) is well defined in any compact interval [ȳ1, ȳ2] and when the
turning point is generic it can be extended analytically to ȳ = 0. We prove the following two
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results concerning the period function of system X̄F. The first one states the behaviour of the
period function of the center of system (2.1) close to the equilibrium at the origin, whereas the
second one is a global statement in the interior of the period annulus.

Theorem 2.1. For any compact K ⊂ Rl+m there exist ȳ0 > 0 small enough and ε0 > 0 small enough
such that d

dȳ TF(ȳ; ε) > 0 (resp. d
dȳ TF(ȳ; ε) < 0) for n = 1 (resp. n > 1) for all ȳ ∈ ]0, ȳ0], ε ∈ [0, ε0]

and η ∈ K. Moreover, TF(ȳ; ε)→ 2π (resp. +∞) as ȳ→ 0+ for n = 1 (resp. n > 1).

Theorem 2.2. For any compact K ⊂ Rl+m and any 0 < ȳ1 < ȳ2 < +∞ there exists ε0 > 0 small
enough such that d

dȳ TF(ȳ; ε) > 0 (resp. d2

dȳ2 TF(ȳ; ε) > 0) for n = 1 (resp. n > 1) for all ȳ ∈ [ȳ1, ȳ2],
ε ∈ [0, ε0] and η ∈ K.

We prove Theorem 2.1 in Section 3.1 and Theorem 2.2 in Section 3.2. A key fact in the
proof of the previous results is that, when ε = 0, the vector field (2.1) becomes (2.2) with a
first integral given by (2.3). As we will see, the period function of (2.1) is an ε-perturbation of
the period function of (2.2).

2.3 Statement of results near Γ

In both the generic and non-generic case, we have the following result about the period func-
tion of the center of the vector field r2n−1X̄η , with r > 0, in an η-uniform neighborhood of Γ.

Theorem 2.3. Let l, m ≥ 1 be fixed. For any compact K ⊂ Rl+m there exists ε0 > 0 small enough
such that the period function of the center of system r2n−1X̄η , with r > 0, near the polycycle Γ is
monotonous increasing for all ε ∈ ]0, ε0] and η ∈ K.

We prove Theorem 2.3 in Section 3.3. For a precise definition of a neighborhood of Γ in
the family blow-up coordinates and the period function near Γ see Section 3.3.

3 Proof of Theorem 1.1–Theorem 2.3

First we prove Theorem 2.1, Theorem 2.2 and Theorem 2.3. Then we glue them together and
prove Theorem 1.1 (see Section 3.4). Theorem 1.2 is proved in Section 3.5.

3.1 Proof of Theorem 2.1

Let us start considering the case n = 1. We define by TF(x̄; ε) the period function of system
(2.1) parametrized by the x̄-axis. Notice that, since n = 1, the center at the origin is non-
degenerate and therefore the period function can be extended analytically to x̄ = 0. For ε ≥ 0
small system (2.1) is an analytic perturbation of the quadratic system{

˙̄x = ȳ− x̄2,
˙̄y = −x̄.

(3.1)

Therefore we can consider the Taylor’s series development at ε = 0 of TF(x̄; ε),

TF(x̄; ε) = T0(x̄) + O(ε),

where T0(x̄) is the period function of system (3.1) parametrized by the x̄-axis. In particular, if
d

dx̄T0(x̄) > 0 then d
dx̄TF(x̄; ε) > 0 for every ε ≥ 0 small enough. In consequence, the assertion
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concerning n = 1 in Theorem 2.1 will follow once we show that the period function T0(x̄) of
the quadratic system (3.1) is monotonous increasing near the origin.

To do so we use Chicone and Jacobs [2] result on quadratic centers to deduce that, in a
neighborhood of the origin,

T0(x̄) = 2π + p2(λ)x̄2 + O(x̄3),

where p2(λ) = π
12 (16λ2

2 + 8λ2λ5 + λ2
5 + 18λ2

3 − 12λ3λ6 + 9λ3λ4 + 10λ2
6 − λ4λ6 + λ2

4), λ =

(λi)
6
i=2, and λi stand for the coefficients of the Bautin’s normal form for quadratic systems{

ẋ = −y− λ3x2 + (2λ2 + λ5)xy + λ6y2,

ẏ = x + λ2x2 + (2λ3 + λ4)xy− λ2y2.

In our case system (3.1) can be brought to the Bautin’s normal form with the change of
variable {ȳ 7→ −ȳ} and corresponds to the parameters λ2 = λ5 = λ6 = 0, λ3 = 1 and
λ4 = −2. Consequently, for system (3.1) the period function near the origin can be written as

T0(x̄) = 2π +
π

3
x̄2 + O(x̄3).

This fact, together with the discussion at the beginning of the section, shows that there exist
ε0, x̄0 > 0 small such that d

dx̄TF(x̄; ε) > 0 for x̄ ∈ ]0, x̄0] and ε ∈ [0, ε0]. Since monotonicity is
unaltered by parametrization, this finishes the proof of Theorem 2.1 for the case n = 1.

For n > 1 the center at the origin becomes degenerate and Chicone–Jacobs procedure
do not apply. With the aim of studying the period function of system (2.1) near the origin
(x̄, ȳ) = (0, 0) for n > 1 we consider the change to generalized polar coordinates

(x̄, ȳ) = (r cos θ, rn sin θ)

with r ≥ 0 and θ ∈ T. After this change system (2.1) is written as
ṙ =

rn

cos2 θ + n sin2 θ

(
cos θ sin θ − cos2n−1 θ sin θ + O(r)

)
,

θ̇ =
rn−1

cos2 θ + n sin2 θ

(
− n sin2 θ − cos2n θ + O(r)

)
.

We note that terms with ε small are inside O(r) so the forthcoming arguments are uniform
with respect to ε ∈ [0, ε0].

For r > 0 small enough we have θ̇ < 0. Therefore we can parametrize the orbits near
the origin by ϕ := −θ. We denote by TF(s; ε) the period of the solution r(ϕ, s) and for the
sake of simplicity we write f (ϕ) := cos2 ϕ + n sin2 ϕ, α(ϕ) := cos2n−1 ϕ sin ϕ − cos ϕ sin ϕ,
β(ϕ) := n sin2 ϕ + cos2n ϕ. Note that β(ϕ) > 0. Due to the symmetry of system (2.1) the
function TF(s; ε) writes

TF(s; ε) = 2
∫ π

2

− π
2

dϕ

ϕ̇
= 2

∫ π
2

− π
2

f (ϕ)dϕ

r(ϕ, s)n−1
(

β(ϕ) + O(r(ϕ, s))
) .

Moreover,
d

dϕ
r(ϕ, s)

r(ϕ, s)
=

α(ϕ)

β(ϕ)
+ O(r(ϕ, s)) =

α(ϕ)

β(ϕ)
+ O(s),
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where in the second equality we use r(ϕ, s) = O(s). Therefore,

r(ϕ, s) = r(0, s)e
∫ ϕ

0

(
α(φ)
β(φ)

+O(s)
)

dφ
= s
(
e
∫ ϕ

0
α(φ)
β(φ)

dφ
+ O(s)

)
.

We denote ρ(ϕ) := e
∫ ϕ

0
α(φ)
β(φ)

dφ
> 0. Substituting the previous equality in the expression of

TF(s; ε) and taking into account that O(r(ϕ, s)) = O(s) we get

TF(s; ε) =
2

sn−1

∫ π
2

− π
2

f (ϕ)dϕ(
ρ(ϕ) + O(s)

)n−1(
β(ϕ) + O(s)

)
=

2
sn−1

∫ π
2

− π
2

(
f (ϕ)

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
dϕ

=
2

sn−1

(∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
.

Since f , ρ and β are positive, the last equality shows that TF(s; ε)→ +∞ as s→ 0+ for n > 1.
Moreover,

d
ds

TF(s; ε) = −2(n− 1)
sn

(∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
+

2
sn−1 O(1)

=
1
sn

(
−2(n− 1)

∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
.

The last equality shows that d
dsTF(s; ε) → −∞ as s → 0+. This ends the proof of Theorem 2.1

for n > 1.

Remark 3.1. We could also use the following generalized polar coordinates

(x̄, ȳ) = (rρ1(θ), rnρ2(θ))

where (ρ1(θ), ρ2(θ)) is the solution of {ẋ = −y, ẏ = x2n−1}with initial condition (x(0), y(0)) =
(1, 0). Using this coordinate change the above expressions become simpler (e.g. β(ϕ) = 1 for
all ϕ, with ϕ = −θ).

3.2 Proof of Theorem 2.2

In order to study the global behaviour of the period function of system (2.1) uniformly on
ε ≥ 0 small in a compact set inside the period annulus it is enough to study the period
function of the system (2.2), that is when ε = 0. We denote by T0(ȳ) the period function
of system (2.2) parametrized by the positive ȳ-axis, and we consider ȳ inside an arbitrary
compact interval [ȳ1, ȳ2] with 0 < ȳ1 < ȳ2 < +∞. By continuity with respect to the small
parameter ε of system (2.1), taking ε small enough the ȳ-axis is also transversal to all orbits
of (2.1), which are also periodic for ȳ ∈ [ȳ1, ȳ2]. We can then define TF(ȳ; ε) as the period
function of system (2.1) parametrized by the same ȳ as T0. The function TF(ȳ; ε) is analytic for
ε ≥ 0, ε ∼ 0, and so we can consider its Taylor’s series development at ε = 0,

TF(ȳ; ε) = T0(ȳ) + O(ε).

Then, since the center of system (2.2) is not isochronous, properties of the period function
of system for ε = 0 are reflected for ε ≥ 0 small enough. In particular, d

dȳ T0(ȳ) > 0 and
d2

dȳ2 T0(ȳ) > 0 for all ȳ ∈ [ȳ1, ȳ2] will imply d
dȳ TF(ȳ; ε) > 0 and d2

dȳ2 TF(ȳ; ε) > 0 for all ȳ ∈ [ȳ1, ȳ2]

and ε ≥ 0 small, respectively. For this reason, Theorem 2.2 is a consequence of the following
result.
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Proposition 3.2. The period function of the center (2.2) is strictly monotone increasing for n = 1 and
it is strictly convex for n > 1.

The first part of the proof of Proposition 3.2 relies on the application of the following
monotonicity criterion due to Schaaf [11].

Theorem 3.3. Consider a Hamiltonian system of the form u̇ = −v, v̇ = g(u), where function g satisfy
the following assumptions:

1. g : R→ R is three times continuously differentiable with g(0) = 0 and g′(0) > 0.

2. For all u ∈ R where g′(u) > 0:
(
5(g′′)2 − 3g′g′′′

)
(u) > 0.

3. If g′(u) = 0 then g(u)g′′(u) < 0.

Then the origin is a center and the period function is strictly increasing in the whole period annulus.

One of the key elements to prove the second part of Proposition 3.2 is to show that at
most one critical period can exist in the interior of the period annulus. To do so we use the
following result due to Sabatini [10]. For the sake of shortness in the statement, we define the
following operator for smooth functions defined on an interval I:

K[g] := 3g2g′′2 − 3gg′2g′′ − g2g′g′′′

g′4
.

Theorem 3.4. Consider a Hamiltonian of the form H(u, v) = G(u) + F(v), where G(u) = αu2k +

o(u2k) ∈ C∞(IG), F(v) = βv2` + o(v2`) ∈ C∞(IF), 0 ∈ IG ∩ IF, 0 < k, ` ∈ N, α, β > 0. Here IG
and IF denote the maximal interval of definition of G and F, respectively. Then the origin is a center
and if

µs2 := 4
(

1 + 2
GG′′

G′2
FF′′

F′2
+K[G] +K[F]

)
> 0

then the period function is strictly convex in the whole period annulus.

Proof of Proposition 3.2. The change of variables {u = ln(1 + 2n(ȳ− x̄2n)), v = x̄} transforms
(2.2) into the Hamiltonian system with separable variables{

u̇ = −2nv2n−1,

v̇ = V ′n(u),
(3.2)

where Vn(u) = 1
2n (e

u − u− 1). We notice that both periodic functions of system (3.2) and (2.2)
are the same through the change of variable. We shall prove the results for (3.2).

Let us prove the first assertion of the statement. To do so, we apply Schaaf’s criterion to
system (3.2) with n = 1. After a positive constant rescaling of time and taking g = V ′1 we
have that the assumptions in Theorem 3.3 are fulfilled since g′(u) = V ′′1 (u) =

1
2 eu > 0 for all

u ∈ R and
(
5(g′′)2 − 3g′g′′′

)
(u) = 1

2 e2u > 0 for all u ∈ R. Therefore the period function of
system (3.2) is strictly increasing and so d

dȳ T0(ȳ) > 0 for all ȳ > 0. This proves the assertion
concerning n = 1.

Let us consider n > 1. With the aim of applying Theorem 3.4 we denote G(u) = Vn(u) =
1

2n (e
u − u− 1) and F(v) = v2n. Clearly the first part of the assumptions of the theorem are

fulfilled since Vn(u) = 1
4n u2 + o(u2). We claim that µs2 ≥ 1

n2 > 0 for all n ≥ 2. After showing
the inequality, the result follows by direct application of Theorem 3.4.
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Using the expressions of F and G we have that

µ̂s2(u, n) := µs2(u, n)− 1
n2 =

4eu

n(eu − 1)4 η(u, n),

where η(u, n) = nu2 + (1 + 3n)u + 2n + 1 + (2nu2 − 2u − 3n − 3)eu + ((1 − 3n)u + 3)e2u +

(n− 1)e3u. A direct computation shows that

d
dn

µ̂s2(u) =
4(eu − u− 1)eu

n2(eu − 1)2 > 0

for all u ∈ R. Therefore to prove the claim it is enough to show that η(u, 2) ≥ 0.
We perform a derivation-division procedure with respect to eu achieving the following

equality:

e−u d3

du3

(
e−u d3

du3 η(u, 2)
)
= 216eu − 40u− 156.

The previous expression has exactly two simple negative zeros. Indeed, its derivative is zero
only at u = ln(5/27), the image at u = 0 is positive and the limits u → ±∞ are both +∞. A
sequence of simple arguments of continuity, number of zeros of the derivative, the values at
u = 0 and the values of the limits at ±∞ yields to show that η(u, 2) ≥ 0 for all u ∈ R. This
finishes the proof of the claim.

3.3 Proof of Theorem 2.3

We define a section Σ1 ⊂ {X = 0} parametrized by (R1, E1) ∈ [0, R0
1]× [0, E0

1] for some small
R0

1, E0
1 > 0. The section Σ1 is defined using the coordinates (X, R, E) of (2.4) (we write (R1, E1)

instead of (R, E) to avoid confusion later). Similarly, we define Σ4 ⊂ {x̄ = 0} parametrized
by (ȳ, ε), with ε ∈ [0, R0

1E0
1], where (x̄, ȳ, ε) are the coordinates of (2.1). The sections Σ1, Σ4 are

transverse to the blown-up vector field X̄η and located near the polycycle Γ (see Figure 3.1).
Since system (2.1) (resp. (2.4)) is invariant under the symmetry (x̄, t) → (−x̄,−t) (resp.

(X, t) → (−X,−t)), it suffices to study the time spent between Σ1 and Σ4, i.e. the half time
period function of r2n−1X̄η , denoted by H. Our goal is to prove that LH > 0 on Σ1 (for
R0

1, E0
1 > 0 small enough but fixed), with ε > 0, where L is the Lie-derivative along the vector

field R ∂
∂R − E ∂

∂E (see Section 3.3.5). This implies that r2n−1X̄η (r > 0) has no critical periods
near Γ and the period function is monotonous increasing there. When ε = 0, system (1.1) has
no center.

We aligned up H in three parts: the time H1,2 spent between Σ1 and Σ2 (Section 3.3.2), the
time H2,3 spent between Σ2 and Σ3, near the semi-hyperbolic singularity p− (Section 3.3.1),
and the time H3,4 between Σ3 and Σ4 (Section 3.3.3). In Section 3.3.4 we glue the local results
together. Section 3.3.5 is devoted to the study of the Lie-derivative LH.

3.3.1 The study of H2,3

In this section we study the time H2,3 inside the family XD, i.e. X̄D multiplied by R2n−1. First,
we bring X̃D := F(X, R, η)−1X̄D, locally near p− = (1, 0, 0), to a normal form which simplifies
the study of H2,3 (transverse sections Σ2,3 will be defined in the normal form coordinates).
Since p− is partially hyperbolic for all η ∈ K, there exists a Ck η-family of center manifolds at
p−, given as a graph of X = 1 + ψ(R, E, η) with ψ(0, 0, η) ≡ 0. Following [5] in the generic
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R = 0

X
R E = 0

E

RE = ε

p−

p+

Σ1Σ2
Σ3

Σ4

(a) (b)

RE = ε

Figure 3.1: (a) Closed orbits near the polycycle Γ, inside RE = ε, for a fixed
ε > 0. Γ is located on the blow-up locus {r = 0} (it corresponds to {R = 0}
in the phase directional chart). The center is visible in the family chart. (b) The
study of the time spent inside {x ≥ 0} is divided into three parts: Σ1 → Σ2,
Σ2 → Σ3 and Σ3 → Σ4. In the first two parts, we use the vector field XD, and in
the last part we use XF.

case or [3] in the non-generic case, an η-family of center manifolds can be chosen to be C∞

(i.e. ψ can be C∞). We fix such ψ.
Using the coordinate change Z = X− (1+ψ(R, E, η)), the fixed family of center manifolds

becomes {Z = 0} and the vector field X̃D changes to
Ż = −

(
Φ(R, E, η) + O(Z)

)
Z,

Ṙ = − 1
2n

RE2n,

Ė =
1

2n
E2n+1,

(3.3)

where Φ is a smooth function with Φ(0, 0, η) = 2n. We used the fact that the family of center
manifolds is invariant for X̃D. Now, we can normally linearize the vector field (3.3) using
Theorem 1.1 of [7].

Theorem 3.5. There is a smooth family Πη : (Z, R, E) → (Z̄, R, E) of local diffeomorphisms, defined
in an η-uniform neighborhood of the origin in the (Z, R, E)-space, which brings (3.3) into the normally
linearized vector field

X̂D :


Ż = −Φ(R, E, η)Z,

Ṙ = − 1
2n

RE2n,

Ė =
1

2n
E2n+1,

(3.4)

where Φ is defined in (3.3) and where we denote Z̄ again by Z. The diffeomorphisms Πη preserve
{RE = const}: Πη(Z, R, E) = (Z(1 + Zπη(Z, R, E)), R, E) with a smooth family πη .

Remark 3.6. The coordinate change in the normal linearization theorem from [7] is C∞-smooth
and preserves the parameter η and the leaves of the foliation {RE = const} (the center vari-
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ables R, E are preserved). In [6], this normal linearization theorem has been used in the generic
case (see also Remark 1.2 in [7]). In the same way we apply it to the non-generic case. We
point out that we could also use Ck center manifolds and the normal linearization theorem of
[1] with a Ck-coordinate change that preserves η and {RE = const}. The size of the domain
of the coordinate change may tend to zero as k → ∞. The finite smoothness is not a problem
in our proof.

We conclude that, in the normal form coordinates (Z, R, E) of (3.4), XD can be written as

R2n−1κ(Z, R, E, η)X̂D, (3.5)

where κ(Z, R, E, η) = F(Z(1 + O(Z)) + 1 + ψ, R, η) and κ(0, 0, 0, η) = 1.
In the normal form coordinates, we define Σ2 ⊂ {Z = −Z0}, parametrized by (R2, E2) ∈

[0, R0
2]× [0, E0

2] for some small constants Z0, R0
2, E0

2 > 0, and Σ3 ⊂ {E = E3}, parametrized by
(Z, R) with Z ∼ 0 and R ∈ [0, R3] for some small constants R3, E3 > 0. All the constants are
chosen such that the transverse sections Σ2,3 are located in the domain of Π−1

η and such that
the passage w.r.t. X̂D between Σ2 and Σ3 is well-defined.

We can now find the time H2,3(R2, E2) in (3.5), spent between Σ2 and Σ3. Note that the
orbit of X̂D (or (3.5) with R > 0) with the initial point (R2, E2) > (0, 0) on Σ2 has the form(

Z(E, R2, E2),
R2E2

E
, E
)

with Z(E, R2, E2) = −Z0 exp
(
−2n

∫ E
E2

Φ(
R2E2

s ,s,η)
s2n+1 ds

)
. Using this, the time H2,3 can be written as

H2,3(R2, E2) =
2n

(R2E2)2n−1

∫ E3

E2

dE
E2κ(Z(E, R2, E2), R2E2

E , E, η)
. (3.6)

Since |Z(E, R2, E2)| ≤ Z0 for E ≥ E2 and κ is positive and bounded for (Z, R, E) ∼ (0, 0, 0)
and η ∈ K, it is clear that (3.6) tends to +∞ as ε = R2E2 → 0, uniformly in η. (Note that the
integral in (3.6) is of order O( 1

E2
).) We will use the expression (3.6) in Section 3.3.4.

We conclude this section with a result about the transition map of X̂D between Σ2 and Σ3.

Proposition 3.7. There is a C∞-function J in (R2, E2, E2
2 ln E2, η) such that the transition map

(R2, E2)→ (Z, R) along the trajectories of (3.4) between Σ2 and Σ3 is given by R = R2E2
E3

and

Z = −Z0 exp
(
− 1

E2n
2

J(R2, E2, E2
2 ln E2, η)

)

with J(0, 0, 0, η) = 2n.

Proof. When n = 1, the proof of the proposition can be found in [6] (Proposition 4.9). The
proof of the case “n > 1” is analogous to the proof of the case “n = 1”.

Proposition 3.7 implies that the transition map between Σ2 and Σ3 is C∞-smooth in
(R2, E2, η). This will be used in the gluing process in Section 3.3.4.
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3.3.2 The study of H1,2

In this section we deal with the time H1,2, spent between Σ1 and Σ2, inside the vector field XD.
The smooth sections Σ1,2 are defined above. Note that the system (2.4) has no singularities
between Σ1 and Σ2 (since the section Σ2 is located uniformly away from the singularity p−,
the X-component of (2.4) is strictly positive between Σ1 and Σ2, for all (R, E) ∼ (0, 0) and for
all η kept in the compact set K). Since XD is (2.4), multiplied by R2n−1, it can be seen that

H1,2(R1, E1) =
1

R2n−1
1

I1 (R1, E1, η) , (3.7)

where I1 is a strictly positive C∞-function. We conclude this section with

Proposition 3.8. There exists a C∞-function J(R1, E1, η) such that the transition map (R1, E1) →
(R2, E2) along the trajectories of (2.4) between Σ1 and Σ2 is given by

(R2, E2) =
(

R1(1 + E2n
1 J(R1, E1, η)), E1(1 + E2n

1 J(R1, E1, η))−1
)

.

Proof. In the generic case (n = 1), the proof of the proposition is given in [6, Proposition 5.1].
The proof of the non-generic case (n > 1) is analogous to the proof of the generic case.

We use (3.7) and Proposition 3.8 in Section 3.3.4.

3.3.3 The study of H3,4

In this section we deal with the time H3,4, spent between Σ3 and Σ4, inside the vector field XF

(XF is equal to (2.1), multiplied by a constant ε2n−1 = (RE)2n−1). The smooth sections Σ3,4 are
defined above. If we parametrize Σ3 with (x̄, ε) ((x̄, ȳ, ε) are the coordinates of (2.1)), then we
can write H3,4 as

H3,4(x̄, ε) =
1

ε2n−1 I3 (x̄, ε, η) , (3.8)

where I3 is a strictly positive C∞-function. This follows from the fact that the vector field (2.1)
is regular along Γ on the blow-up locus, between Σ3 and Σ4 (see Figure 3.1).

3.3.4 The study of H

In this section we glue together the local results obtained in Sections 3.3.1–3.3.3 and find an
expression for the half time period function H. We know that

H(R1, E1) = H1,2(R1, E1) + H2,3(R2, E2) + H3,4(x̄, ε),

where the orbit of r2n−1X̄η (X̄η is the blown-up vector field defined in Section 2) with the
initial point (R1, E1) ∈ Σ1 intersects section Σ2 at the point (R2, E2) and section Σ3 at the point
(x̄, ε). From (3.6) follows that

H2,3(R2, E2) =
2n

(R1E1)2n−1

∫ E3

E2

dE
E2κ(Z(E, R2, E2), R1E1

E , E, η)
, (3.9)

where R2 and E2 are the C∞-functions of (R1, E1, η) given in Proposition 3.8. Here we used
that ε = R1E1 = R2E2. Now, we want express H3,4(x̄, ε) in terms of (R1, E1). Let us recall that
the constant E3 > 0 comes from the definition of Σ3. Using x̄ = X

E3
and X = Z(1 + O(Z)) +
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1 + ψ(R1E1
E3

, E3, η) on Σ3 (O(Z) is a C∞-function, see Section 3.3.1), and the fact that Z is a
C∞-function in (R1, E1, η) (we combine Proposition 3.7 and Proposition 3.8), we see that x̄ is a
C∞-function of (R1, E1, η) and ε = R1E1. This and (3.8) imply that

H3,4(x̄, ε) =
1

(R1E1)2n−1 Ĩ3 (R1, E1, η) (3.10)

where Ĩ3 is a strictly positive C∞-function. Combining (3.7), (3.9) and (3.10), we finally get

H(R1, E1) =
2n

(R1E1)2n−1

(∫ E3

E2

dE
E2κ(Z(E, R2, E2), R1E1

E , E, η)
+ I(R1, E1, η)

)
, (3.11)

where I is a C∞-function (thus, bounded). Note that the H2,3-contribution is dominant in
(3.11) and that H(R1, E1) tends to +∞ as ε = R1E1 → 0, uniformly in η. We know that
R2 = R1 (1 + o(1)) and E2 = E1 (1 + o(1)) where the o(1)-terms are C∞-functions of (R1, E1, η),
equal to 0 when E1 = 0. In Section 3.3.5 we show that the Lie-derivative of the integral in
(3.11) is of order O( 1

E1
).

3.3.5 Lie-derivative of H

When we fix any value of (ε, η), with ε > 0 small, H is 1-variable function defined on interval
{(R1, E1) ∈ Σ1 | R1E1 = ε} (see Figure 3.1(b)). To study critical periods of H on such intervals,
we define the Lie-derivative of H along the vector field R1

∂
∂R1
− E1

∂
∂E1

(it is tangent to the
intervals and without singularities there):

LH := R1
∂H
∂R1
− E1

∂H
∂E1

.

It can be easily seen that the Lie-derivative of a C∞-function in (R1, E1, η) (e.g. Ĩ in (3.11)) is
a C∞-function in (R1, E1, η), equal to zero when (R1, E1) = (0, 0). We also have L (R1E1) = 0
and L

(
Rl1

1 El2
1

)
= (l1 − l2)Rl1

1 El2
1 for l1, l2 ∈ Z. For more details about the Lie-derivative we

refer the reader to [6, 9].
The Lie-derivative of the time (3.11) can be written as

(LH)(R1, E1) =
2n

(R1E1)2n−1

(
1 + o(1)

E1κ(−Z0, R1(1 + o(1)), E1(1 + o(1)), η)

+
∫ E3

E2

− ∂κ
∂Z (Z(E, R2, E2), R1E1

E , E, η)

E2
(

κ(Z(E, R2, E2), R1E1
E , E, η)

)2 (LZ)(E, R1, E1)dE + o(1)

)
, (3.12)

where o(1)-terms are C∞-functions of (R1, E1, η), equal to zero when (R1, E1) = (0, 0), and LZ
is given by

(LZ)(E, R1, E1) =
2nZ0 (Φ(R1, E1, η) + o(1))

E2n
1

exp

(
−2n

∫ E

E2

Φ(R1E1
s , s, η)

s2n+1 ds

)
, (3.13)

where o(1)-terms have the same property as above. We show that the first term in (3.12) is
dominant.
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Since κ is uniformly positive near the origin (κ(0, 0, 0, η) = 1) and ∂κ
∂Z and Φ are bounded,

we find an upper bound for the integral in (3.12):∣∣∣∣∫ E3

E1(1+o(1))

∣∣∣∣ ≤ αZ0

E2n
1

∫ E3

E1(1+o(1))

1
E2 exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1 ds

)
dE (3.14)

for some constant α > 0 independent of Z0. (We write E2 = E1(1 + o(1)).) For E1 > 0 and
E1 ∼ 0, we aligned up the integral on the right-hand side of (3.14) in two parts:

∫ E3

E1(1+o(1))
=
∫ 2E1

E1(1+o(1))
+
∫ E3

2E1

.

We denote the first integral by J1 and the second by J2. We make in J1 the change of variable
E = E1τ, getting

J1 =
1
E1

∫ 2

1+o(1)

1
τ2 exp

(
−2n

∫ E1τ

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1 ds

)
dτ

=
1
E1

∫ 2

1+o(1)

1
τ2 exp

(
− 2n

E2n
1

∫ τ

1+o(1)

Φ(R1
u , E1u, η)

u2n+1 du

)
dτ

≤ 1
E1

∫ 2

1+o(1)

1
τ2 exp

(
− β

E2n
1

(τ − 1− o(1))
)

dτ

≤ γE2n−1
1 (3.15)

for some constants β, γ > 0 independent of Z0. In the second step we used the change of
variable s = E1u and in the third step we used the fact that the integrand function in

∫ τ
1+o(1)

is uniformly positive (Φ(0, 0, η) = 2n). In the last step the term 1
τ2 is bounded on the segment

[1 + o(1), 2] and the integral of the exponential function is bounded by E2n
1 , multiplied by a

positive constant. Note also that the o(1)-terms in the last step are equal.
Concerning the integral J2 we get

J2 =
∫ E3

2E1

1
E2 exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1 ds

)
dE

≤
∫ E3

2E1

1
E2 exp

(
−2n

∫ 2E1

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1 ds

)
dE

=
∫ E3

2E1

1
E2 exp

(
− 2n

E2n
1

∫ 2

(1+o(1))

Φ(R1
u , E1u, η)

u2n+1 du

)
dE

≤ exp
(
− β

E2n
1

) ∫ E3

2E1

1
E2 dE ≤ γ

E1
exp

(
− β

E2n
1

)
(3.16)

for some new constants β, γ > 0. Finally, combining inequalities (3.15) and (3.16) we obtain∣∣∣∣∫ E3

E1(1+o(1))

∣∣∣∣ ≤ αZ0

E2n
1

(J1 + J2) ≤
α1Z0

E1
+

α2

E2n+1
1

exp
(
− β

E2n
1

)
for some constants α1, α2, β > 0. It is clear now that the first term in (3.12) is the leading term
since 1

κ > α1Z0 (Z0 > 0 is as small as we want but fixed).
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We conclude that there are no critical periods for any fixed level ε > 0 on Σ1 with R0
1, E0

1 >

0 small enough and fixed, uniformly in η. The Lie-derivative LH tends to +∞ as ε → 0,
uniformly in η. Since LH > 0 and 2nȳ ∂

∂ȳ + 0 ∂
∂ε = R1

∂
∂R1
− E1

∂
∂E1

the period function is
monotonous increasing (as large ȳ increases, i.e. as we go away from the center (x̄, ȳ) = (0, 0),
the period function increases). This completes the proof of Theorem 2.3.

3.4 Proof of Theorem 1.1

Let n ≥ 1 and T(y; ε) be the period function of the center at the origin of system (1.1) with
ε > 0, ε ∼ 0, parametrized by the positive y-axis, with y ∼ 0. We have the following relation
between the (x, y, ε)-coordinates, the family directional coordinates and the phase directional
coordinates defined in Section 2.1:

x = εx̄ = RX, y = ε2nȳ = R2n, ε = RE.

Note that the positive y-axis is given by {x = 0}. In the family chart (resp. the phase direc-
tional chart), it corresponds to {x̄ = 0} (resp. {X = 0}).

For each ε > 0 and ε ∼ 0, we consider T in the following intervals: ]0, ε2nȳ0], [ε2nȳ1, ε2nȳ2]

and [ε2nȳ3, y0] where ȳ0, ȳ1, y0 > 0 are small and independent of ε and ȳ2, ȳ3 > 0 are large
and independent of ε. For ȳ0, y0 small and ȳ3 large, it suffices to decrease ȳ1 and increase
ȳ2 to cover the interval ]0, y0]. In the interval ]0, ε2nȳ0] (resp. [ε2nȳ1, ε2nȳ2] and [ε2nȳ3, y0])
we use Theorem 2.1 (resp. Theorem 2.2 and Theorem 2.3). Let us recall that the results of
Theorem 2.3 are valid in a section Σ1 ⊂ {X = 0} parametrized by (R, E) ∈ ]0, R0

1]×]0, E0
1]

where R0
1, E0

1 > 0 are small enough and fixed (see Section 3.3). The interval ]0, R0
1] × {E0

1}
corresponds to y = ε2n(E0

1)
−2n and ε ∈ ]0, R0

1E0
1] (we denote (E0

1)
−2n by ȳ3). The interval

{R0
1}×]0, E0

1] is given by y = (R0
1)

2n (we denote (R0
1)

2n by y0) and ε ∈ ]0, R0
1E0

1]. Theorem 2.1 is
valid for ȳ ∈ ]0, ȳ0] and ε ∈ ]0, ε0] where ȳ0, ε0 > 0 are small enough. In the (y, ε)-coordinates,
it corresponds to y ∈ ]0, ε2nȳ0] and ε ∈ ]0, ε0]. Finally, for any small ȳ1 > 0 and any large
ȳ2 > 0, Theorem 2.2 is valid for ȳ ∈ [ȳ1, ȳ2] and ε ∈ ]0, ε1] where ε1 > 0 is small enough. It
corresponds to y ∈ [ε2nȳ1, ε2nȳ2] and ε ∈ ]0, ε1] in the original coordinates.

Note that the notion of critical period is independent of the chosen coordinates and the
chosen transverse section (for example, if we work with the polar coordinates (r, θ) instead of
(x̄, ȳ), we have the same number of critical periods, counting multiplicity).

We consider two cases: n = 1 and n > 1. Suppose first that n = 1. Following Theorem
2.1, we have that ∂T

∂y (y; ε) > 0 for all y ∈ ]0, ε2ȳ0] and ε ∈ ]0, ε0]. Indeed, we know that

T(y; ε) = 1
ε TF(

y
ε2 ; ε) where TF(ȳ; ε) is the period function of the center of (2.1), parametrized

by the positive ȳ-axis. Now, it suffices to see that

∂T
∂y

(y; ε) =
1
ε3

∂TF

∂ȳ

( y
ε2 ; ε

)
(3.17)

and that ∂TF
∂ȳ (ȳ; ε) > 0 for all ȳ ∈ ]0, ȳ0] and ε ∈ ]0, ε0] (Theorem 2.1). On the other hand,

we know that T(y; ε) = TD(
√

y, ε√
y ) where TD(R, E) is the period function of rX̄η near the

polycycle Γ (X̄η is the blown-up vector field). Note that

∂T
∂y

(y; ε) =
1

2y
(LTD)

(√
y,

ε
√

y

)
and that LTD > 0 for all (R, E) ∈ ]0, R0

1]×]0, E0
1] (see Theorem 2.3). Thus, ∂T

∂y (y; ε) > 0 for
all y ∈ [ε2ȳ3, y0] and ε > 0 small. Finally, by taking ȳ1 < ȳ0 and ȳ2 > ȳ3, we have that
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∂TF
∂ȳ (ȳ; ε) > 0 for all ȳ ∈ [ȳ1, ȳ2] and ε > 0 small (see Theorem 2.2) and thus ∂T

∂y (y; ε) > 0 for all
y ∈ [ε2ȳ1, ε2ȳ2] and ε > 0 small (see (3.17)). This ends the proof of Theorem 1.1 in the generic
case.

Suppose now that n > 1. The study of the non-generic case is similar to the study of the
generic case. We have ∂T

∂y (y; ε) < 0 for all y ∈ ]0, ε2ȳ0] and for all ε > 0 small (see Theorem 2.1),

and ∂T
∂y (y; ε) > 0 for all y ∈ [ε2ȳ3, y0] and ε > 0 small (see Theorem 2.3). Using Theorem 2.2

we find that ∂2T
∂y2 (y; ε) > 0 for all y ∈ [ε2ȳ1, ε2ȳ2] and ε > 0 small. This implies that at most

one critical period can exist in ]0, y0]. Since ∂T
∂y goes from − to +, we conclude that precisely

one critical period exists in ]0, y0]. This completes the proof of Theorem 1.1 in the non-generic
case.

3.5 Proof of Theorem 1.2

We consider system (1.2) with N ≥ 1 and denote c := (c2, c4, . . . , c2(N−1)) ∈ SN−2 (when N = 1,
we don’t have the parameter c). When N ≥ 2, we assume that c2 ≥ c0

2 for some arbitrarily
small and fixed c0

2 > 0. Let C and G be as defined in Theorem 1.2 and let C̃ be an arbitrary
and fixed compact subset of C. Let c ∈ C̃. We replace ε in (1.2) by ε2. It is clear that, if we
can prove the result in a small interval in the new ε-space, then we have proved it in a small
interval in the old ε-space.

If we apply the scaling (x, y) =
( x̃

c2
, ỹ

c2

)
to (1.2), we get

ẋ = y−
(

x2 +
N−1

∑
k=2

c̄2kx2k + c̄2Nx2N
)

,

ẏ = −ε2x,

(3.18)

where c̄2k = c2kc1−2k
2 , for k = 2, . . . , N − 1, and c̄2N = c1−2N

2 . (We use the old notation (x, y)
instead of (x̃, ỹ) for the sake of simplicity.) Since c is kept in the compact set C̃, it is clear that
c̄ = (c̄4, . . . , c̄2N) is also contained in a compact set, denoted by C̄, and that

Ḡ′(x)
x

> 0, (3.19)

for all x ∈ R and c̄ ∈ C̄, where Ḡ denotes the polynomial in x in the first equation of (3.18).
Note that Ḡ(x) = c2G( x

c2
) and that system (3.18) is of type (1.1) with n = 1.

It suffices to show that there exists ε0 > 0 small such that system (3.18) has no critical
periods for all ε ∈ ]0, ε0] and c̄ ∈ C̄. Let T(y; ε) be the period function of the center at the
origin of system (3.18) with ε > 0 and ε ∼ 0, parametrized by the positive y-axis. In the rest
of this section we prove that d

dy T(y; ε) > 0 on {y > 0}, for all ε ∈ ]0, ε0] and c̄ ∈ C̄, for some
ε0 > 0. This will imply that there are no critical periods uniformly in ε ∼ 0. We study the
period function T in the following intervals: ]0, y0], [ρ, 1

ρ ] and [y1, ∞[, where y0 > 0 is small
enough, y1 > 0 is large enough and ρ > 0 is arbitrarily small (see Figure 3.2). When we find
y0 and y1, we decrease ρ (i.e., increase the segment [ρ, 1

ρ ]) to cover the entire {y > 0}.
Following Theorem 1.1, there exist ε0 > 0 and y0 > 0 such that d

dy T(y; ε) > 0 for all
y ∈ ]0, y0] and (ε, c̄) ∈ ]0, ε0]× C̄.

Consider now the period function T in the segment [ρ, 1
ρ ], for any small and fixed ρ > 0.

The reduced flow (sometimes called the slow system) of (3.18) along the critical curve {y =
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Figure 3.2: Dynamics of (3.18). The curve of singularities, at level ε = 0, with
indication of small-amplitude, detectable and large closed orbits, for ε > 0 and
ε ∼ 0.

Ḡ(x)}, away from the contact point (x, y) = (0, 0), is given by

x′ = − x
Ḡ′(x)

(or y′ = −x).

Note that the reduced flow is well-defined and uniformly negative for all x kept in large
compact sets and c̄ ∈ C̄. Here we use (3.19). The orbit through the point y ∈ [ρ, 1

ρ ] is attracted
to the curve of singularities {x > 0}, follows the reduced flow directed towards the turning
point at the origin and then goes back to the point y due to the symmetry. This implies that T
is well-defined for y ∈ [ρ, 1

ρ ]. Following [3, Theorem 2.1] or [4], the period function T and its

derivative, restricted to the segment [ρ, 1
ρ ], are given by

T(y; ε) = 2
1
ε2

(
T0(y) + o(1)

)
and

d
dy

T(y; ε) = 2
1
ε2

(
d

dy
T0(y) + o(1)

)
,

with ε > 0 small enough, where T0(y) is the transition time (at level ε = 0) of the reduced flow
along the attracting part of the curve of singularities between the ω-limit of the point y ∈ [ρ, 1

ρ ]

and the turning point. Using the expressions for the reduced flow we have for y ∈ [ρ, 1
ρ ]

T0(y) = −
∫ 0

y

dỹ
x̃

= −
∫ 0

y

dỹ
g(ỹ)

,

where x̃ = g(ỹ) represents the attracting part of the critical curve, i.e. ỹ = Ḡ(g(ỹ)). Finally,
we get

d
dy

T0(y) =
1

g(y)
> 0

for all y ∈ [ρ, 1
ρ ] and c̄ ∈ C̄. We conclude that d

dy T(y; ε) > 0 for all y ∈ [ρ, 1
ρ ], c̄ ∈ C̄ and

ε ∈ ]0, ε0] for some small ε0 > 0. We point out that we are allowed to use the results of [3]
because the reduced flow has no singularities.

It remains to show that d
dy T(y; ε) > 0 for y ∈ [y1, ∞[, c̄ ∈ C̄ and ε ∈ ]0, ε0] for y1 > 0

large enough and ε0 > 0 small enough. To investigate the period function when y → ∞, we
apply the coordinate change (x, y) =

( x̃
q , 1

q2N

)
to (3.18), where q > 0 is small and x̃ is kept in

a compact set. In the new coordinates (3.18) becomes 1
q2N−1 X∞ where the vector field X∞ is
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given by 
˙̃x = 1−

(
q2N−2 x̃2 +

N−1

∑
k=2

c̄2kq2N−2k x̃2k + c̄2N x̃2N
)
+

1
2N

ε2q4N−2 x̃2,

q̇ =
1

2N
ε2q4N−1 x̃.

(3.20)

On the line {q = 0} (it represents infinity in the (x, y)-phase space), system (3.20) has two

semi-hyperbolic singularities x̃ = ±
( 1

c̄2N

) 1
2N (resp. x̃ = ±1) when N ≥ 2 (resp. N = 1). Note

that c̄2N is uniformly positive and bounded. It suffices to look at the positive sign. When

ε = 0, we have the curve of (semi-hyperbolic) singularities x̃ =
( 1

c̄2N

) 1
2N + O(q) (resp. x̃ = 1).

The reduced flow is given by

q′ =
1

2N
q4N−1

((
1

c̄2N

) 1
2N

+ O(q)

) (
resp. q′ =

1
2

q3
)

.

Using a Takens normal form for Ck-equivalence (see e.g. [5]), system X∞ near the semi-
hyperbolic singularity on the line {q = 0} is Ck-equivalent to{

˙̂x = −x̂,
˙̂q = ε2q̂4N−1h(q̂, ε, c̄),

(3.21)

where h is a positive Ck-function. We denote system (3.21) by X̂∞. We conclude that in the
normal form coordinates (x̂, q̂) the vector field 1

q2N−1 X∞ can be written as

1
q̂2N−1ĥ(x̂, q̂, ε, c̄)

X̂∞, (3.22)

where ĥ is a positive Ck-function. We choose two transverse sections Σ− ⊂ {x̂ = x̂0},
parametrized by q̂, and Σ+ ⊂ {q̂ = q̂0}, parametrized by x̂, for some small and fixed x̂0, q̂0 > 0.
We compute the time of (3.22) spent between Σ− and Σ+, near (x̂, q̂) = (0, 0). The orbit of
(3.21) or (3.22) starting at q̂1 ∈ Σ−, with q̂1 > 0, is given by

x̂(q̂, q̂1) = x̂0 exp
(
− 1

ε2

∫ q̂

q̂1

dz
z4N−1h(z, ε, c̄)

)
.

Now is the time spent by the orbit given by

T (q̂1; ε) =
1
ε2

∫ q̂0

q̂1

h̄(x̂(z, q̂1), z, ε, c̄)dz
z2N

with a positive Ck-function h̄. The derivative is given by

d
dq̂1
T (q̂1; ε) = − h̄(x̂0, q̂1, ε, c̄)

ε2q̂2N
1

+
1
ε2

∫ q̂0

q̂1

∂h̄
∂x̂ (x̂(z, q̂1), z, ε, c̄) ∂x̂

∂q̂1
(z, q̂1)

z2N dz. (3.23)

Now, we proceed exactly as in Section 3.3.5. The first term in (3.23) tends to −∞ as ε2q̂2N
1 → 0

and we show that it is a dominant term. We have∣∣∣∣ 1
ε2

∫ q̂0

q̂1

∣∣∣∣ ≤ αx̂0

ε4q̂4N−1
1

∫ q̂0

q̂1

exp
(
− 1

ε2

∫ z
q̂1

ds
s4N−1h(s,ε,c̄)

)
z2N dz (3.24)
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with a positive constant α. We used the fact that ∂h̄
∂x̂ is bounded and h is uniformly positive.

For the [q̂1, 2q̂1]-part of the integral on the right hand side of (3.24), we get

∫ 2q̂1

q̂1

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1

ε2

∫ q̂1 z̃
q̂1

ds
s4N−1h(s,ε,c̄)

)
z̃2N dz̃

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1

ε2 q̂4N−2
1

∫ z̃
1

ds̃
s̃4N−1h(q̂1 s̃,ε,c̄)

)
z̃2N dz̃

≤ 1
q̂2N−1

1

∫ 2

1

exp
(
− β(z̃−1)

ε2 q̂4N−2
1

)
z̃2N dz̃

≤ γε2q̂2N−1
1 , (3.25)

where β, γ > 0 are constants. (See Section 3.3.5 for each step.) On the other hand, we have

∫ q̂0

2q̂1

≤
∫ q̂0

2q̂1

exp
(
− 1

ε2

∫ 2q̂1
q̂1

ds
s4N−1h(s,ε,c̄)

)
z2N dz

=
∫ q̂0

2q̂1

exp
(
− 1

ε2 q̂4N−2
1

∫ 2
1

ds̃
s̃4N−1h(q̂1 s̃,ε,c̄)

)
z2N dz

≤ exp

(
− β

ε2q̂4N−2
1

) ∫ q̂0

2q̂1

dz
z2N

≤ γ

q̂2N−1
1

exp

(
− β

ε2q̂4N−2
1

)
(3.26)

for some new constants β, γ > 0. Combining (3.24), (3.25) and (3.26) we finally have

∣∣∣∣ 1
ε2

∫ q̂0

q̂1

∣∣∣∣ ≤ α1 x̂0

ε2q̂2N
1

+
α2

ε4q̂6N−2
1

exp

(
− β

ε2q̂4N−2
1

)

for positive constants α1, α2, β. Now, it suffices to notice that x̂0 > 0 can be arbitrarily small
but fixed.

The time of 1
q2N−1 X∞ spent between {x̃ = 0} and Σ− is of order O(q2N−1) (X∞ is regular in

this region). Following [3], the time spent between Σ− and the turning point and its derivative
are of order O( 1

ε2 ). This implies that the contribution (3.23) is dominant. Thus, d
dy T(y; ε) > 0

for large y. This ends the proof of Theorem 1.2.
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