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Abstract. In this paper, we consider the large time behavior of solution for the
chemotaxis-shallow water system in R2. The lower bound for time decay rates of the
bacterial density and the chemoattractant concentration are proved by the method of en-
ergy estimates, which implies these two variables tend to zero at the L2-rate (1 + t)−

1
2 .

Furthermore, by the Fourier splitting method, we also show the first order spatial
derivatives of the bacterial density tends to zero at the L2-rate (1 + t)−1.
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1 Introduction

In this paper, we are interested in two-dimensional chemotaxis-shallow water system

nt + div(nu) = Dn∆n−∇ · (nχ(c)∇c),

ct + div(cu) = Dc∆c− n f (c),

ht + div(hu) = 0,

hut + hu · ∇u + h2∇n +
1
2
(1 + n)∇h2 = µ∆u + (µ + λ)∇(divu),

(1.1)

which was proposed in [2] to describe the dynamics of the oxygen and aerobic bacteria in
the incompressible fluids with free surface. Here n, c, h, u denote the bacterial density, the
chemoattractant concentration, the fluid height and the fluid velocity field, respectively. The
constants Dn and Dc are the corresponding diffusion coefficients for the cells and substrate.
The chemotactic sensitivity χ(c) and the consumption rate of the substrate by the cells f (c)
are supposed to be given smooth functions. The constants µ and λ are the shear viscosity
and the bulk viscosity coefficients respectively with the following physical restrictions: µ >

0, µ + λ ≥ 0. In order to complete system (1.1), the initial conditions are given by

(n, c, h, u)(x, t)|t=0 = (n0(x), c0(x), h0(x), u0(x)), for x ∈ R2. (1.2)
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As the space variable tends to infinity, we assume

lim
|x|→∞

(n0, c0, h0 − 1, u0)(x) = 0. (1.3)

Chemotaxis exists widely in the nature. The bacteria or microorganisms often live in a
viscous fluid with chemical stimulation and like to move towards a chemically more advan-
tageous circumstance for better survival known as chemotaxis. To describe the dynamics of
swimming bacteria, Tuval et al. [16] proposed a coupled system of the chemotaxis model and
the viscous incompressible fluid. Since then, there has been many results in literature on the
solvability and stability of this chemotaxis-fluid system. The local weak solution was proved
by Lorz [9] and the local smooth solution was showed by Chae–Kang–Lee [1]. Liu–Lorz [8]
and Winkler [22] established the global weak solutions. The global classical and strong solu-
tion was proved by Winkler [19] and Duan–Lorz–Markowich [4], respectively. The stability
problem was studied in [3,11,20,23] and the small-convection limit was investigated by Wang
et al.[18]. We also would like refer to [5–7,12,13,15,21,24] and the references therein for more
related works on the chemotaxis-fluid system with nonlinear diffusion.

Considering the fact that the surface of the fluid is a free boundary, the modified shallow
water type chemotactic model (1.1) is derived in [2]. For large initial data allowing vacuum,
i.e. the bacterial density n is allowed to vanish, the authors in [2] established the local existence
of strong solutions and the blow-up criterion. In [14], we proved the global well-posedness of
strong solution and studied the upper bound decay rates of the global solution with the initial
data far from vacuum. Recently, Wang–Wang [17] showed the upper bound decay estimates
of the global solutions in Lp space with the initial bacterial density allowing vacuum.

In this paper, based on the previous works [14, 17], we are interested in the large time
behavior of the global solution for the chemotaxis-shallow water system with the bacterial
density n being allowed to vanish. The lower bound decay rates for the chemoattractant
concentration c, the bacterial density n and its one order spatial derivatives will be given.

In what follows, for simplicity, let Dn = Dc = 1, χ(c) ≡ 1, f (c) = c. Furthermore, through-
out this paper, we use Hk(R2)(k ∈ R) to denote the usual Sobolev spaces with norm ‖ · ‖Hk

and Lp(R2)(1 ≤ p ≤ ∞) to denote the usual Lp spaces with norm ‖ · ‖Lp . C denotes constant
independent of time t. For the sake of simplicity, ‖(A, B)‖X := ‖A‖X + ‖B‖X.

Now, we first recall the following result obtained in [17].

Theorem 1.1. Assume that the initial data (n0, c0, h0 − 1, u0) ∈ H4 ∩ L1 satisfies n0, c0 ≥ 0 and
h0 > 0 and there exists a small positive constant δ0 such that ‖(n0, c0, h0 − 1, u0)‖H4∩L1 ≤ δ0, then
the system (1.1)–(1.3) has a unique global classical solution which satisfies

‖∇k(n, c, h− 1, u)(t)‖L2 ≤ C(1 + t)−
1+k

2 , for k = 0, 1, 2. (1.4)

The main result in this paper can be stated as follows.

Theorem 1.2. Assume that the assumptions of Theorem 1.1 hold and the Fourier transform F (n0) =

n̂0 and F (c0) = ĉ0 satisfy |n̂0| ≥ n̄ > 0 and |ĉ0| ≥ c̄ > 0 for 0 ≤ |ξ| � 1, with n̄ and c̄ are small
constants. Then, the bacterial density n and the chemoattractant concentration c of global solution to
the system (1.1)–(1.3) has the lower bound for time decay rates for all t ≥ T1

‖(n, c)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇n(t)‖L2 ≥ C(1 + t)−1,

where T1 is a positive large time.
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Remark 1.3. By combining the results in Theorem 1.1 and Theorem 1.2, one can find that the
bacterial density and the chemoattractant concentration tend to zero at the L2-rate (1 + t)−

1
2

and the first order spatial derivatives of the bacterial density tends to zero at the L2-rate
(1 + t)−1.

Remark 1.4. From the structure of the system (1.1), we can find the fluid height and the fluid
velocity field satisfy the hyperbolic and parabolic coupled system with linear term ∇n. This
means that the method in this paper will no longer be valid for the lower bound decay rates
of the fluid height and the fluid velocity field.

Remark 1.5. It is worth mentioning that many functions, for example δ0e−|x| or δ0e−|x|
2
, can

fulfill the hypotheses in Theorem 1.1 and Theorem 1.2 simultaneously.

2 The lower bound for time decay rates

Let us first consider the following linearized system of (1.1)1 and (1.1)2.{
∂tnl − ∆nl = 0,

∂tcl − ∆cl = 0,
(2.1)

with the initial data (nl , cl)(x, 0) = (n0, c0)(x).

Lemma 2.1. Assume that the Fourier transform F (n0) = n̂0 and F (c0) = ĉ0 satisfy |n̂0| ≥ n̄ > 0
and |ĉ0| ≥ c̄ > 0 for 0 ≤ |ξ| � 1, with n̄ and c̄ are small constants. Then, nl and cl in (2.1) have the
decay rates

‖(nl , cl)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇(nl , cl)(t)‖L2 ≥ C(1 + t)−1. (2.2)

Proof. Since nl satisfies a heat equation, with the help of semigroup method, we have
nl(x, t) = e−∆tn0(x). Thus, using the Fourier transform, we have∫

R2
|nl |2dx =

∫
R2
|n̂0|2e−2|ξ|2tdξ ≥ n̄2

∫
|ξ|�1

e−2|ξ|2tdξ ≥ C(1 + t)−1,∫
R2
|∇nl |2dx =

∫
R2
|n̂0|2ξ2e−2|ξ|2tdξ ≥ C(1 + t)−2.

Similarly, we can also obtain the lower bounds for cl . Therefore, we complete the proof of this
lemma. �

Next, we recall a known result which will be used later (see [3, 17]).

Lemma 2.2. Assume that the assumptions of Theorem 1.1 hold. Then the global strong solution
(n, c, h, u) to the Cauchy problem of system (1.1)–(1.3) satisfies

n(t, x) ≥ 0, c(t, x) ≥ 0 a.e. in (0,+∞)×R2. (2.3)

Now, we are ready to deal with the nonlinear part of (1.1)1 and (1.1)2. Set nr = n− nl and
cr = c− cl , then nr and cr satisfy{

∂tnr − ∆nr = −div(nu)−∇ · (n∇c),

∂tcr − ∆cr = −div(cu)− nc,
(2.4)

with the initial data (nr, cr)(x, 0) = (0, 0). Here, (2.4) is a non-homogeneous linear heat equa-
tions.
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Remark 2.3. It is worth mentioning that the method in our paper can be extended to parabolic
equations with other different types of nonlinear sources to get the lower bound for time decay
rates. However, these nonlinear sources can not contain linear part in it. More precisely, taking
the logistic source term in the equation for n as an example, we consider

∂tnr − ∆nr = −div(nu)−∇ · (n∇c) + ρn− µn2,

where ρ and µ are constants. It follows from (1.4), the linear term ‖ρn(t)‖L2 only gives us
(1 + t)−

1
2 decay rate. Thus, we can not get the the lower bound for time decay rates with

‖nr(t)‖L2 ≤ C(1 + t)−
1
2 .

Lemma 2.4. Assume that the assumptions of Theorem 1.1 hold. Then, nr and cr in (2.4) have the decay
rates

‖(nr, cr)(t)‖L2 ≤ C(1 + t)−1 and ‖∇nr(t)‖L2 ≤ C(1 + t)−
3
2 . (2.5)

Proof. Define S1 = div(nu)+∇ · (n∇c) and S2 = div(cu). By virtue of the semigroup method,
Duhamel’s principle and Lemma 2.2, from (2.4) we have

‖(nr, cr)(t)‖L2

≤
∫ t

0

(∫
R2

e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|2)dξ

) 1
2

dτ

≤
∫ t

0

(∫
|ξ|≤1

e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|2)dξ +
∫
|ξ|≥1

e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|2)dξ

) 1
2

dτ (2.6)

≤ C
∫ t

0
(1 + t− τ)−1(‖|ξ|−1(Ŝ1, Ŝ2)‖L∞ + ‖(S1, S2)‖L2

)
dτ

≤ C
∫ t

0
(1 + t− τ)−1(‖(n, c, u,∇c)‖2

L2 + ‖(S1, S2)‖L2

)
dτ.

It follows from the Sobolev inequality and (1.4) that

‖(S1, S2)‖L2 ≤ ‖∇u‖L4‖(n, c)‖L4 + ‖u‖L4‖∇(n, c)‖L4 + ‖∇n‖L4‖∇c‖L4 + ‖n‖L∞‖∇2c‖L2

≤ C(1 + t)−2.
(2.7)

Thus, using (1.4) again, we obtain∫ t

0
(1 + t− τ−1‖(n, c, u,∇c)‖2

L2‖L2 dτ ≤
∫ t

0
(1 + t− τ)−1(1 + τ)−1dτ ≤ (1 + t)−1,∫ t

0
(1 + t− τ)−1‖(S1, S2)‖L2 dτ ≤

∫ t

0
(1 + t− τ)−1(1 + τ)−2dτ ≤ (1 + t)−1.

This, together with (2.6), implies

‖(nr, cr)(t)‖L2 ≤ C(1 + t)−1. (2.8)

Next, applying ∇ to (2.4)1, then multiplying by ∇n, integrating over R2, after integration
by parts and using (2.7), it infers that

1
2

d
dt

∫
R2
|∇nr|2dx +

∫
R2
|∇2nr|2dx =

∫
R2

S1 · ∇2nrdx ≤ 1
2

∫
R2
|∇2nr|2dx + C(1 + t)−4,
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which gives

d
dt

∫
R2
|∇nr|2dx +

∫
R2
|∇2nr|2dx ≤ C(1 + t)−4. (2.9)

Denoting the time sphere S0 (see [10]) as follows

S0 :=

{
ξ ∈ R2 ∣∣ |ξ| ≤ ( R

1 + t

) 1
2
}

,

where R is a constant defined below. Then, we can get∫
R2
|∇2nr|2dx ≥

∫
R2\S0

|ξ|4|n̂r|2dξ

≥ R
1 + t

∫
R2\S0

|ξ|2|n̂r|2dξ

≥ R
1 + t

∫
R2
|ξ|2|n̂r|2dξ − R2

(1 + t)2

∫
S0

|n̂r|2dξ.

(2.10)

Substituting (2.10) into (2.9) and then applying (2.8), we obtain

d
dt

∫
R2
|∇nr|2dx +

R
1 + t

∫
R2
|∇nr|2dx

≤ R2

(1 + t)2

∫
R2
|nr|2dx + C(1 + t)−4 ≤ CR2(1 + t)−4. (2.11)

Choosing R = 7
2 , multiplying (2.11) by (1 + t)

7
2 and integrating over [0, t], it holds that

‖∇nr(t)‖2
L2 ≤ C(1 + t)−3,

which, together with (2.8) completes the proof of this lemma.

Proof of Theorem 1.2. It follows from Lemma 2.1 and Lemma 2.4 that

‖(n, c)‖L2 ≥ ‖(nl , cl)‖L2 − ‖(nr, cr)‖L2

≥ C(1 + t)−
1
2 − C(1 + t)−1

≥ C(1 + t)−
1
2 − C

(1 + t)
1
2
(1 + t)−

1
2 ,

‖∇n‖L2 ≥ ‖∇nl‖L2 − ‖∇nr‖L2

≥ C(1 + t)−1 − C(1 + t)−
3
2

≥ C(1 + t)−1 − C

(1 + t)
1
2
(1 + t)−1.

Obviously, we can choose a T1 > 0 large enough such that for t ≥ T1, we have the lower bound
for time decay rates

‖(n, c)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇n(t)‖L2 ≥ C(1 + t)−1.

Therefore, we complete the proof of Theorem 1.2.
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