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Abstract. Sharp conditions are obtained for the unique solvability of focal bound-
ary value problems for higher-order functional differential equations under integral
restrictions on functional operators. In terms of the norm of the functional operator,
unimprovable conditions for the unique solvability of the boundary value problem are
established in the explicit form. If these conditions are not fulfilled, then there exists a
positive bounded operator with a given norm such that the focal boundary value prob-
lem with this operator is not uniquely solvable. In the symmetric case, some estimates
of the best constants in the solvability conditions are given. Comparison with existing
results is also performed.

Keywords: functional differential equations, focal boundary value problem, unique
solvability.

2020 Mathematics Subject Classification: 34K06, 34K10.

1 Introduction

We consider here boundary value problems
(−1)(n−k)x(n) (t) + (Tx) (t) = f (t) , t ∈ [0, 1] ,

x(i) (0) = 0, i = 0, . . . , k− 1,

x(j) (1) = 0, j = k, . . . , n− 1,

(1.1)

where n ∈ {2, 3, . . .}, k ∈ {1, 2, . . . , n− 1}, T : C[0, 1] → L[0, 1] is a linear bounded operator,
C[0, 1] and L[0, 1] are the space of real continuous and integrable functions (respectively)
with the standard norms, f ∈ L[0, 1]. A real absolutely continuous function with absolutely
continuous derivatives up to (n − 1)-th order which satisfies the boundary conditions from
(1.1) and satisfies the functional differential equation from (1.1) almost everywhere on [0, 1] is
called a solution to problem (1.1).
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The boundary value problems with such kind of boundary conditions are called focal ones.
The solvability of such problems for linear and non-linear functional differential equations
occupies a special place in many studies of physical, chemical, and biological processes (see,
for example, [1, 2, 7, 14, 31, 37] end references there).

The focal problem for the ordinary differential equation
(−1)(n−k)x(n) (t) = f (t) , t ∈ [0, 1] ,

x(i) (0) = 0, i = 0, . . . , k− 1,

x(j) (1) = 0, j = k, . . . , n− 1,

has a unique solution x(t) =
∫ 1

0 G(t, s) f (s) ds, t ∈ [0, 1], where Green’s function G(t, s) is
defined by the equality [20]

G(t, s) =
1

(n− k− 1)!
1

(k− 1)!

∫ min(t,s)

0
(s− τ)n−k−1(t− τ)k−1 dτ, t, s ∈ [0, 1]. (1.2)

Note, that the function G(t, s) is an oscillating kernel by the Kalafaty–Gantmacher–Krein The-
orem [17] (see also [18, 19, 22, 34]), therefore, in particular, the inequality∣∣∣∣ G(τ1, s1) G(τ1, s2)

G(τ2, s1) G(τ2, s2)

∣∣∣∣ > 0 (1.3)

holds for all 0 < τ1 < τ2 ≤ 1, 0 < s1 < s2 ≤ 1. Problem (1.1) enjoys the Fredholm property
[8, Ch. 2]. Thus, if the homogeneous problem has only a trivial solution, then problem (1.1)
has a unique solution for all f ∈ L[0, 1].

Obviously, boundary value problem (1.1) is equivalent to the equation

x(t) = −
∫ 1

0
G(t, s)(Tx)(s) ds +

∫ 1

0
G(t, s) f (s) ds, t ∈ [0, 1]. (1.4)

Applying some fixed point theorems, for example, the classical methods for estimating the
norm of the operator G : C[0, 1]→ C[0, 1] defined by the equality

(Gx)(t) = −
∫ 1

0
G(t, s)(Tx)(s) ds, t ∈ [0, 1],

one can obtain various unique solvability conditions for problem (1.1).
Conditions for the solvability of focal boundary value problems for higher-order differen-

tial equations were obtained in the works by R. Agarwal [1,4], R. Agarwal and I. Kiguradze [3],
and others [5,6,15,20,21,23,28,29,31,32,35,36,38]. As for those conditions as applied to the lin-
ear higher-order functional differential equations, among the results related to the norm of the
operator T, the author does not know of any that would significantly improve the following.

Denote
T̃n,k ≡ (n− 1)(n− k− 1)!(k− 1)!

Proposition 1.1. Problem (1.1) is uniquely solvable if

‖ T‖C→L ≤ T̃n,k. (1.5)
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Proof. We have

G(1, 1) =
1
T̃n,k

> G(t, s) ≥ 0

for all (t, s) ∈ [0, 1] × [0, 1], (t, s) 6= (1, 1). Therefore, if the condition of the statement is
fulfilled, then for any non-zero solution x to equation (1.4) for f ≡ 0 the following inequalities
hold:

|x(t)| =
∣∣∣∣∫ 1

0
G(t, s)(Tx)(s) ds

∣∣∣∣ < G(1, 1)
∫ 1

0
|(Tx)(s)| ds

≤ G(1, 1)‖ T‖C→L‖ x‖C ≤ ‖ x‖C for all t ∈ [0, 1].

Since the continuous function |x(t)| has a maximal value at a corresponding point t? ∈ [0, 1],
the inequality |x(t?)| < ‖x‖C is impossible. It follows that the homogeneous boundary value
problem has only the trivial solution. Therefore, the Fredholm boundary value problem (1.1)
is uniquely solvable.

Examples show that the constant in the right-hand side of inequality (1.5) is unimpovable.
Let us define a linear bounded operator Tθ : C[0, 1]→ L[0, 1], θ ∈ (0, 1), by the equality

(Tθx)(t) =

0, t ∈ [0, θ],

− x(1)∫ 1
θ G(1,s) ds

, t ∈ (θ, 1].

Homogeneous problem (1.1) for T = Tθ and f ≡ 0 has a non-trivial solution

x(t) =
∫ 1

θ
G(t, s) ds, t ∈ [0, 1].

Therefore, this problem isn’t uniquely solvable. Since

lim
θ→1−

‖ Tθ‖C→L = lim
θ→1−

1− θ∫ 1
θ G(1, s) ds

= T̃n,k,

for every ε > 0 there exists a linear bounded operator T : C[0, 1] → L[0, 1] with ‖ T‖C→L =

T̃n,k + ε such that problem (1.1) isn’t uniquely solvable.
However, it was shown in [24–26] that for certain monotone functional operators and

for some boundary value problems, the solvability conditions based on contraction mapping
principle can be essentially weakened.

An operator T : C[0, 1] → L[0, 1] is called positive if it maps non-negative functions from
C[0, 1] to almost everywhere non-negative functions from L[0, 1]. The norm of such an oper-
ator is defined by the equality ‖ T‖C→L =

∫ 1
0 (T1 )(t) dt, where 1 (t) = 1, t ∈ [0, 1], is the unit

function. For p ∈ L[0, 1] and a measurable function h : [0, 1]→ [0, 1], the operator

(Tx)(t) = p(t)x(h(t)), t ∈ [0, 1],

is positive if the function p ∈ L[0, 1] is non-negative. Its norm equals ‖ T‖C→L =
∫ 1

0 p(t) dt.
This work is devoted to weakening the solvability conditions (1.5) for problem (1.1) with

positive linear operators T : C[0, 1] → L[0, 1]. We obtain a necessary and sufficient condition
for the focal boundary value problem (1.1) to be uniquely solvable for all positive operators T
with a given norm.

For some other boundary value problems, similar unimprovable conditions are obtained
by R. Hakl, A. Lomtatidze, S. Mukhigulashvili, B. Půža, J. Šremr, and others [10,16,24–27,30].
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2 Main results

Theorem 2.1. Let a non-negative number T be given. Problem (1.1) is uniquely solvable for all
positive linear operators T : C[0, 1]→ L[0, 1] with norm T if and only if

T ≤ min
0<t<1, 0<s<1

G(t, 1) + G(1, s) + 2
√

G(t, s)G(1, 1)
G(t, s)G(1, 1)− G(t, 1)G(1, s)

≡ Tn,k.

Taking into account (1.3), the constants Tn,k are well-defined. Green’s function G(t, s) has
explicit representation (1.2), therefore, the best constant Tn,k from the solvability conditions can
be easily calculated approximately. Note, since Green’s functions of corresponding problems
are symmetric, we have

Tn,k = Tn,n−k.

In some cases, the constants are calculated exactly. In particular, T2,1, T4,2, T6,3 are obtained in
Example 3.3, and the constant T3,1 is obtained in Example 3.9. For even n in Theorem 3.2, the
constants Tn,n/2 are represented using one-dimensional minimization. In Corollaries 3.5, 3.6,
asymptotically unimprovable estimates for Tn,n/2 are obtained.

The proof of Theorem 2.1 is based on the following assertion [11, Theorem 2.28, p. 106]
(see also a similar proof in [12]).

Proposition 2.2 ([11,12]). Let T be a non-negative number. Problem (1.1) is uniquely solvable for all
positive linear operators T : C[0, 1] → L[0, 1] with norm T if and only if for all numbers c, d, τ1, τ2,
T1, T2 satisfying the conditions

c, d ∈ [0, 1], 0 ≤ τ1 ≤ τ2 ≤ 1, T1 ≥ 0, T2 ≥ 0, T1 + T2 ≤ T , (2.1)

the inequality

∆ ≡ ∆(τ1, τ2, c, d, T1, T2)

≡ 1 + T1G(τ1, c) + T2G(τ2, d) + T1T2(G(τ1, c)G(τ2, d)− G(τ2, c)G(τ1, d)) ≥ 0
(2.2)

holds.

Proof of Theorem 2.1. We will use Proposition 2.2. Let

R ≡ G(τ1, c)G(τ2, d)− G(τ2, c)G(τ1, d).

If R ≥ 0, then ∆ = 1 + T1G(τ1, c) + T2G(τ2, d) + T1T2R > 0.
Let further R < 0 and 0 < τ1 < τ2 < 1. From (1.3) and R < 0 it follows that

0 < d < c ≤ 1. (2.3)

For fixed points τ1, τ2, c, d, and T1, ∆ takes its minimum at T2 = T − T1 or at T2 = 0. In
the latter case, ∆ = 1 + T1G(τ1, c) ≥ 1.

Thus, the inequality (2.2) should be verified only at T2 = T − T1 for all T1 ∈ [0, T ]. In this
case, we have

∆ ≡ ∆(τ1, τ2, c, d, T1)

≡ 1 + T1G(τ1, c) + (1− T1)G(τ2, d) + T1(1− T1)R

= −T 2
1 R + T1(G(τ1, c)− G(τ2, d) + T R) + 1 + T G(τ2, d).
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Let us find the minimum of this value in the variable T1 at fixed values of other variables.
Denote B ≡ G(τ1, c)− G(τ2, d).
If |B/R| > T , then the value ∆ takes its minimum on T1 ∈ [0, T ] at T1 = 0 or T1 = T . In

the first case, we have ∆ = 1 + T G(τ2, d) ≥ 1, in the second one, ∆ = 1 + T G(τ1, c) ≥ 1.
If |B/R| ≤ T , then the minimum of ∆ occurs at

T1 =
G(τ1, c)− G(τ2, d) + T R

2R
≡ T + B/R

2
.

This minimum value is equal to

∆min =
R
4
T 2 + T

(
B
2
+ G(τ2, d)

)
+ 1 +

B2

4R
,

therefore, ∆min ≥ 0 if and only if the following inequalities hold:

Q(τ1, τ2, c, d) ≤ T ≤ S(τ1, τ2, c, d),

where

Q(τ1, τ2, c, d) ≡ G(τ1, c) + G(τ2, d)− 2
√

G(τ1, d)G(τ2, c)
|R| ,

S(τ1, τ2, c, d) ≡ G(τ1, c) + G(τ2, d) + 2
√

G(τ1, d)G(τ2, c)
|R| .

From the inequality (1.3) for s1 = d and s2 = c it follows that

G(τ1, c) + G(τ2, d)− 2
√

G(τ1, d)G(τ2, c)
|R| ≤ |G(τ1, c)− G(τ2, d)|

|R| ≤ |B||R| ≤ T .

Therefore, inequality (2.2) is satisfied for all parameters satisfying the conditions (2.1) if
and only if

T ≤ min
0≤τ1≤τ2≤1

c,d∈[0,1], R<0

S(τ1, τ2, d, c) ≡ T̃ .

Since (2.3), we have

T̃ = min
0<τ1<τ2≤1
0<d<c≤1

S(τ1, τ2, d, c).

Our aim is to simplify the expression for evaluating T̃ .
For 0 ≤ τ1 ≤ τ2 ≤ 1, 0 < d < c ≤ 1, we prove that

S′τ2
(τ1, τ2, d, c) =

1
R2

(
G′τ2

(τ2, d)
G(τ2, d)

A−
G′τ2

(τ2, c)
G(τ2, c)

B
)
≤ 0, (2.4)

where

A = G(τ1, c)2G(τ2, d) + G(τ1, d)G(τ2, d)G(τ2, c) + 2G(τ1, c)G(τ2, d)
√

G(τ1, d)G(τ2, c),

B = G(τ1, c)G(τ1, d)G(τ2, c) + G(τ1, d)G(τ2, d)G(τ2, c)

+ (G(τ1, c)G(τ2, d) + G(τ1, d)G(τ2, c))
√

G(τ1, d)G(τ2, c).
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Since the function G(t, s) is an oscillating kernel, we easily see that B ≥ A ≥ 0. Indeed, we
have

B− A = (G(τ1, c) +
√

G(τ1, d)G(τ2, c))(G(τ1, d)G(τ2, c)− G(τ1, c)G(τ2, d)) ≥ 0.

Let us prove that for each t ∈ (0, 1] the function G′t(t,s)
G(t,s) does not decrease in the second

argument for s ∈ (0, 1]. It suffices to show that for all 0 < t1 < t2 ≤ 1, 0 < s1 < s2 ≤ 1, the
inequality

G(t2, s2)− G(t1, s2)

G(t1, s2)
≥ G(t2, s1)− G(t1, s1)

G(t1, s1)

holds. This inequality is a direct consequence of the inequality (1.3). It follows that inequality
B ≥ A implies inequality (2.4).

Similarly, it is verified that for 0 ≤ τ1 ≤ τ2 ≤ 1, 0 < d < c ≤ 1, the inequality

S′c(τ1, τ2, d, c) ≤ 0 (2.5)

holds. From (2.4) and (2.5) it follows that in (2.5) the value T̃ has the minimum point at τ2 = 1
and c = 1. This implies the assertion of the theorem.

3 Consequences

For calculating the constants Tn,n/2, we need the following lemma, a technical proof of which
was carried out in the paper [13].

Lemma 3.1. Let n = 2k. Then the function

M(t, s) =
√

G(t, s)G(1, 1)−
√

G(t, 1)G(s, 1), t, s ∈ [0, 1],

has its maximum value at t = s.

Let us show that for even n to calculate the constants Tn,n/2, it is sufficient to solve an
one-dimensional optimization problem.

Theorem 3.2. Let a non-negative number T and n = 2k be given. Problem (1.1) is uniquely solvable
for all positive linear operators T : C[0, 1]→ L[0, 1] with the norm T if and only if

T ≤ 2 ((n/2− 1)!)2

max
0<t<1

(
t(n−1)/2

n−1 −
∫ t

0 (t− τ)n/2−1(1− τ)n/2−1 dτ
) ≡ Tn,n/2. (3.1)

Proof. Let us use the Theorem 2.1. We have

G(t, 1) + G(1, s) + 2
√

G(t, s)G(1, 1)
G(t, s)G(1, 1)− G(t, 1)G(1, s)

=
(
√

G(t, 1)−
√

G(1, s))2

G(t, s)G(1, 1)− G(t, 1)G(1, s)
+

2√
G(t, s)G(1, 1)−

√
G(t, 1)G(1, s)

.

It follows that if t0 = s0 and the point (t, s) = (t0, s0) is the minimum point of the function

2√
G(t, s)G(1, 1)−

√
G(t, 1)G(1, s)

,
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then the minimum of the value expressing the exact estimate of the norm of the operator T
under the conditions of the Theorem 2.1 will be taken at this point.

Lemma 3.1 implies that for n = 2k the minimum under the conditions of Theorem 2.1 is
taken namely at s = t. Calculating G(t, t) and G(t, 1) using representation (1.2), we obtain the
assertion of the theorem.

Example 3.3. Under the conditions of the Theorem 3.2 for n = 2, n = 4, and n = 6 the values
Tn,n/2 are calculated exactly. We have

T2,1 = 8

(the maximum in the representation of T2,1 (3.1) occurs at t2 = 1/4);

T4,2 = 66 + 30
√

5,

(the maximum in the representation of T4,2 (3.1) occurs at t4 = 3−
√

5
2 );

T6,3 = 120
2t3

6 − 10t2
6 + 20t6 + 12

√
t6

t3
6(1− t6)(t4

6 − 9t3
6 + 36t2

6 − 64t1
6 + 36)

≈ 2610,

where the point of the maximum t6 in representation (3.1) of T6,3 is defined by the equalities

t6 = ((C− 1−
√

27− C2 + 22/C)/4)2 ≈ 0.49,

C =

√
2(124 + 4

√
97)1/3 + 9 + 48(124 + 4

√
97)−1/3.

Remark 3.4. Apparently only the constant

T2,1 = 8 (3.2)

was previously known. In particular, equality (3.2) follows from the results of the work [33] on
the solvability of two-dimensional systems functional differential equations. The solvability
conditions associated with the rest of the found constants Tn,k are new.

For even n ≥ 8, we obtain sufficient conditions for solvability (lower bounds for the con-
stants Tn,n/2).

Corollary 3.5. Let n = 2k ≥ 8 and a linear operator T : C[0, 1]→ L[0, 1] be positive. If

‖ T‖C→L ≤
(n2 − 9)(n2 − 1) ((n/2− 1)!)2

3 + (n− 2)
( n−7

n−3

) n+1
2

,

then problem (1.1) is uniquely solvable.

Corollary 3.6. Let n = 2k ≥ 8 and a linear operator T : C[0, 1]→ L[0, 1] be positive. If

‖ T‖C→L ≤ e2(n− 3)3 ((n/2− 1)!)2 , (3.3)

then problem (1.1) is uniquely solvable.

Remark 3.7. In (3.3), the constant e2 and the exponent 3 are sharp.
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Proof of Corollary 3.5. Let us introduce the notation

yn(t) ≡
t(n−1)/2

n− 1
−
∫ t

0
(t− τ)n/2−1(1− τ)n/2−1 dτ,

Yn ≡ max
0<t<1

yn(t), Tn ≡ Tn,n/2.

By Theorem 3.2, it is obvious that

Tn ≡
2 ((n/2− 1)!)2

Yn
.

We obtain the estimate Ŷn ≥ Yn. Then

Tn ≥ T̂n ≡
2 ((n/2− 1)!)2

Ŷn
,

therefore, the condition T ≤ T̂n ensures the unique solvability of the problem (1.1) for each
positive operator T with given norm T .

It is convenient to present y′n using the hypergeometric function 2F1 [9, p. 69]:

y′n(t) =
t(n−3)/2

2
− (n/2− 1)

∫ t

0
(t− τ)n/2−2(1− τ)n/2−1 dτ

=
t(n−3)/2

2
− (n/2− 1)tn/2−1

∫ 1

0
(1− θ)n/2−2(1− tθ)n/2−1 dθ

=
t(n−3)/2

2
− tn/2−1

2F1(1− n/2, 1; n/2; t) ≡ t(n−3)/2

2
zn(t),

(3.4)

where
zn(t) ≡ 1− 2

√
t 2F1(1, 1− n/2; n/2; t).

Further, for the hypergeometric function, the following properties will be used (it is obvious
that in our case the hypergeometric function is a polynomial, moreover, we only need real
parameters and a real argument). [9, p. 71–72] :

dm

dtm 2F1(a, b; c; t) =
(a)m(b)m

(c)m
2F1(a + m, b + m; c + m; t), t ∈ [0, 1],

(a)m = a(a + 1) · . . . · (a + m− 1), m = 1, 2, 3, . . . , (a)0 = 1,

2F1(a, b; c; t) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

θb−1(1− θ)c−b−1

(1− tθ)c−b−1 θ t ∈ [0, 1], c > b > 0. (3.5)

Estimating zn(t), we obtain an approximation for y′n(t). Let

ẑn(t) ≡ (t− 1)
(

1
2(n− 3)

+
t− 1

8

)
.

Lemma 3.8. For every n ≥ 8, the inequality

zn(t) ≥ ẑn(t), t ∈ [0, 1], (3.6)

holds.
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Proof. It suffices to show that

Hn(t) ≡ 2F1(1, 1− n/2; n/2; t) ≤
1 + (1− t)

(
1

2(n−3) +
t−1

8

)
2
√

t
≡ Zn(t), t ∈ (0, 1]. (3.7)

We have

Zn(1) = Hn(1) = 1/2, Z′n(1) = H′n(1) = −
n− 2

4(n− 3)
, Z′′n (1) = H′n(1) =

n− 2
4(n− 3)

.

To prove (3.7), it is now sufficient to prove that for all t ∈ (0, 1]

H′′′n (t) =
6 (1− n

2 )3

( n
2 )3

2F1(4, 4− n/2; n/2 + 3; t) ≥ Z′′′n (t) =
3(n(t2 + 2t− 35) + 3t2 − 10t + 85)

128(n− 3)t7/2 .

It remains to verify the chain of the inequalities

H′′′n (t) ≥ w0(t) ≥ w1(t) ≥ w2(t) ≥ Z′′′n (t), t ∈ (0, 1], (3.8)

where
w0(t) ≡ H′′′n (0) + t(H′′′n (1)− H′′′n (0)),

H′′′n (0) = −6
(n/2− 3)(n/2− 2)(n/2− 1)
(n/2)(n/2 + 1)(n/2 + 2)

, H′′′n (1) = −6
(n/2− 1)2(n/2− 2)(n/2− 3)
(n− 5)(n− 4)(n− 3)(n− 2)

,

w1(t) ≡
45
8

t− 6, w2(t) =
3(t2 + 2t− 35)

128t7/2 .

To prove the first inequality in (3.8), we use the equality [9, p. 71]

H(m)
n (t) =

(1− n/2)m(1)m

(n/2)m
2F1(1− n/2 + m, 1 + m; n/2 + m; t),

from which it follows that the sign of the function H(m)
n (t) coincides with (−1)m, in particular,

for m = 3, m = 4, m = 5 (it is also taken into account that due to the integral representa-
tion (3.5) [9, p. 72] the function 2F1(1− n/2 + m, 1 + m; n/2 + m; t) is non-negative. The rest
inequalities can be verified directly.

Define the function ŷn by the equality

ŷn(t) ≡ −
1
2

∫ 1

t
s

n−3
2 ẑn(s) ds, t ∈ (0, 1].

It is clear that ŷn(1) = yn(1) = 0. From (3.4) and (3.6) it follows that

ŷn(t) ≥ yn(t), t ∈ [0, 1].

Its maximum Ŷn ≥ Yn the function ŷn(t) takes at the point tn ∈ (0, 1) defined by the equality

ŷ′n(tn) =
t

n−3
2

n

2
ẑn(tn) = 0.

therefore, we get

tn =
n− 7
n− 3

,

Ŷn =
∫ 1

tn

s
n−3

2

2
(1− s)

(
1

2(n− 3)
+

s− 1
8

)
ds =

6 + 2(n− 2)
( n−7

n−3

)n/2+1/2

(n2 − 9)(n2 − 1)
.

This implies the assertion of Corollary 3.5.
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Proof of Corollary 3.6. It is easy to see that

lim
n→∞

(n− 3)3Ŷn =
2
e2 .

Moreover, (n− 3)3Ŷn < 2
e2 for all n ≥ 8. Thus, the statement of Corollary 3.6 is also true.

Example 3.9. Consider problem (1.1) for the third-order equation for k = 1
x′′′ (t) + (Tx) (t) = f (t) , t ∈ [0, 1] ,

x(0) = 0,

x′(1) = 0, x′′(1) = 0,

(3.9)

By Theorem 2.1 problems (3.9) is uniquely solvable for all positive linear operators T :
C[0, 1]→ L[0, 1] with the norm T if and only if

T ≤ min
0<s≤t<1

2
t2 − s2 + 2s + 2

√
(2t− s)s

s(1− t)(2t− s− st)
= 6(3 + 2

√
3) u 38.8.

Note, the minimum occurs at s = (3−
√

3)/6, t = (3−
√

3)/3.
For each ε > 0, there is a positive operator with the norm 6(3 + 2

√
3) + ε, for which

problem (3.9) is not uniquely solvable.
Proposition 1.1 only allows us to claim that problems (3.9) is uniquely solvable if the norm

of the operator T is less than or equal to two.

Example 3.10. It is clear that the constant Tn,k from the necessary and sufficient conditions of
Theorem 2.1 is equal or greater than the constants T̃n,k from Preposition 1.1. With the help
of approximate computation, we make the following table containing the integer parts of the
quotients Tn,k/T̃n,k, which shows how the classical results are improved by Theorem 2.1:

k = 1 k = 2 k = 3 k = 4 k = 5
n = 2 8
n = 3 19
n = 4 31 44
n = 5 42 75
n = 6 54 109 130
n = 7 66 145 190
n = 8 78 184 255 275
n = 9 90 226 326 366
n = 10 101 269 404 464 481

Every element of this table shows approximately how many times the conditions of Theo-
rem 2.1 are weaker than in Proposition 1.1 for given n and k, and gives a sufficient solvability
conditions for corresponding problem (1.1). Formulate, for example, one such sufficient con-
dition.

Proposition 3.11. For n = 10 and k = 1 problem (1.1) is uniquely solvable if T : C[0, 1]→ L[0, 1] is
a linear positive operator and

∫ 1
0 (T1 )(t) dt ≤ 101 · 9!. There exists a linear positive operator T with∫ 1

0 (T1 )(t) dt ≥ 102 · 9! such that problem (1.1) isn’t uniquely solvable.
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