

Rectifiability of orbits for two-dimensional nonautonomous differential systems

Dedicated to Professor Hiroyuki Usami on the occasion of his sixtieth birthday

Masakazu Onitsuka^{≥1} and Satoshi Tanaka^{*2}

¹Department of Applied Mathematics, Okayama University of Science, Ridai-cho 1–1, Okayama 700–0005, Japan ²Mathematical Institute, Tohoku University, Aoba 6–3, Aramaki, Aoba-ku, Sendai 980–8578, Japan

> Received 28 September 2020, appeared 24 March 2021 Communicated by Mihály Pituk

Abstract. The present study is concerned with the rectifiability of orbits for the twodimensional nonautonomous differential systems. Criteria are given whether the orbit has a finite length (rectifiable) or not (nonrectifiable). The global attractivity of the zero solution is also discussed. In the linear case, a necessary and sufficient condition can be obtained. Some examples and numerical simulations are presented to explain the results.

Keywords: rectifiability, global attractivity, two-dimensional nonautonomous system. **2020 Mathematics Subject Classification:** 34A34, 34D20, 26B15.

1 Introduction

We consider the two-dimensional nonautonomous differential system

$$x' = -e(t)x + f(t)y - p(t)x(x^{2} + y^{2})^{\lambda},$$

$$y' = -g(t)x - h(t)y - q(t)y(x^{2} + y^{2})^{\lambda},$$
(1.1)

where *e*, *f*, *g*, *h*, *p* and *q* are continuous for $t \ge t_0$, and $\lambda > 0$. Since the right hand side of this system is continuously differentiable with respect to (x, y), so it satisfies the Lipschitz condition. Therefore, the local existence and uniqueness of solutions of (1.1) are guaranteed for the initial-value problem. We can show that, for each $t_0 \in \mathbf{R}$ and $(x_0, y_0) \in \mathbf{R}^2$, the initial value problem (1.1) with $(x(t_0), y(t_0)) = (x_0, y_0)$ has a unique solution on $[t_0, \infty)$ under some conditions (this fact will be shown in Lemma 3.4.). We denote it by $(x(t; t_0, x_0, y_0), y(t; t_0, x_0, y_0))$. Clearly, (1.1) has the zero solution $(x(t), y(t)) \equiv (0, 0)$. Throughout this paper, ||(x, y)|| means

[™]Corresponding author. Email: onitsuka@xmath.ous.ac.jp

^{*}Email: satoshi.tanaka.d4@tohoku.ac.jp

the Euclidean norm of (x, y); that is, $||(x, y)|| := \sqrt{x^2 + y^2}$. Here, let us give a definition about the zero solution of (1.1). The zero solution of (1.1) is said to be *globally attractive* if

$$\lim_{t \to \infty} \|(x(t;t_1,x_0,y_0),y(t;t_1,x_0,y_0))\| = 0$$

for any $t_1 \in [t_0, \infty)$ and any $(x_0, y_0) \in \mathbf{R}^2$. Now rewrite $(x(t; t_0, x_0, y_0), y(t; t_0, x_0, y_0))$ by (x(t), y(t)). We define the *orbit* of (x(t), y(t)) by

$$\Gamma_{(t_0, x, y)} := \{ (x(t), y(t)) \in \mathbf{R}^2 : t \ge t_0 \}$$

The orbit $\Gamma_{(t_0,x,y)}$ is said to be *simple* if $(x(t_1), y(t_1)) \neq (x(t_2), y(t_2))$ for any $t_1, t_2 \in [t_0, \infty)$ with $t_1 \neq t_2$. Now, we assume that the zero solution of (1.1) is globally attractive. The simple orbit $\Gamma_{(t_0,x,y)}$ is said to be *rectifiable* if the length of $\Gamma_{(t_0,x,y)}$ is finite, that is,

$$\lim_{t\to\infty}\int_{t_0}^t\|(x'(s),y'(s))\|ds<\infty.$$

Otherwise, it is said to be *nonrectifiable*.

When $\lambda = 1$ and $e(t) = h(t) = a_0$, f(t) = g(t) = 1, p(t) = q(t) = 1 for all $t \ge t_0$, system (1.1) reduces to the planar nonlinear differential system

$$\begin{aligned} x' &= y - x \left(x^2 + y^2 + a_0 \right), \\ y' &= -x - y \left(x^2 + y^2 + a_0 \right). \end{aligned}$$
 (1.2)

For every solution (x(t), y(t)) of (1.2), using the polar coordinate transformation $x = r \cos \theta$, $y = r \sin \theta$, then we have

$$r' = -r \left(r^2 + a_0\right),$$

 $heta' = -1.$

From $\theta' = -1$, every orbit $\Gamma_{(t_0,x,y)}$ of (1.2) is rotating in a clockwise direction. Moreover, if we suppose $a_0 \ge 0$, then $r' \le -r^3$, so that

$$r(t) \le \frac{1}{\sqrt{2(t-t_0) + r^{-2}(t_0)}} \le \frac{1}{\sqrt{2(t-t_0)}}$$

for $t \ge t_0$. This says that $a_0 \ge 0$ implies that the zero solution of (1.2) is globally attractive. Hence, every orbit $\Gamma_{(t_0,x,y)}$ of (1.2) is a spiral.

Remark 1.1. Since (1.2) is an autonomous system and $r' \leq -r^3$, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to any nontrivial solution (x(t), y(t)) of (1.2) is simple.

Milišić, Žubrinić and Županović [10] studied rectifiability for more general autonomous differential systems based on planar system (1.2). Theorem 8 given in [10] and the above mentioned facts imply the following.

Theorem A. Let (x(t), y(t)) be any nontrivial solution of (1.2). Suppose that $a_0 \ge 0$ holds. Then the zero solution of (1.2) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i) and (ii) below hold:

- (i) if $a_0 > 0$, then the orbit $\Gamma_{(t_0, x, y)}$ is rectifiable;
- (ii) if $a_0 = 0$, then the orbit $\Gamma_{(t_0, x, y)}$ is nonrectifiable.

Remark 1.2. Milišić, Žubrinić and Županović [10] and Žubrinić and Županović [23, 24] dealt with the rectifiability and the fractal analysis of spiral orbits (or trajectories) of some autonomous systems including (1.2). They dealt with more general, but autonomous systems. This study focuses on the rectifiability of the nonautonomous systems.

For simplicity, we denote

$$\begin{aligned}
\alpha_1(t) &:= \min\{e(t), h(t)\} - \frac{|f(t) - g(t)|}{2}, \quad \beta_1(t) := \min\{p(t), q(t)\}, \\
\alpha_2(t) &:= \max\{e(t), h(t)\} + \frac{|f(t) - g(t)|}{2}, \quad \beta_2(t) := \max\{p(t), q(t)\},
\end{aligned}$$
(1.3)

and

$$\gamma_{1}(t) := -\max\{f(t), g(t)\} - \frac{|e(t) - h(t)|}{2} - \frac{|p(t) - q(t)|}{2},$$

$$\gamma_{2}(t) := -\min\{f(t), g(t)\} + \frac{|e(t) - h(t)|}{2} + \frac{|p(t) - q(t)|}{2}.$$
(1.4)

If $e(t) \equiv h(t)$, $f(t) \equiv g(t)$ and $p(t) \equiv q(t)$, then

$$\alpha_1(t) = \alpha_2(t) = e(t), \quad \beta_1(t) = \beta_2(t) = p(t) \text{ and } \gamma_1(t) = \gamma_2(t) = -f(t)$$

for $t \ge t_0$. Moreover, for each c > 0, we denote

$$\rho_i(t;c) := \exp\left(2\lambda \int_{t_0}^t \alpha_i(s)ds\right) \left(c + 2\lambda \int_{t_0}^t \beta_i(s) \exp\left(-2\lambda \int_{t_0}^s \alpha_i(\tau)d\tau\right)ds\right), \quad i = 1, 2.$$
(1.5)

The first main result in this paper is as follows.

Theorem 1.3. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that

$$\alpha_1(t) \ge 0, \ \beta_1(t) \ge 0 \quad \text{for } t \ge t_0,$$
(1.6)

$$\alpha_1(t) + \beta_1(t) > 0 \quad \text{for } t \ge t_0,$$
 (1.7)

and

$$\lim_{t \to \infty} \int_{t_0}^t \alpha_1(s) ds = \infty \quad or \quad \lim_{t \to \infty} \int_{t_0}^t \beta_1(s) ds = \infty.$$
(1.8)

Then the zero solution of (1.1) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

(*i*) *if* $\alpha_1(t) > 0$ *for* $t \ge t_0$ *, and*

$$\limsup_{t \to \infty} \frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)} < \infty, \tag{1.9}$$

then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

(*ii*) *if* $0 < \lambda < 1/2$ *and*

$$\limsup_{t \to \infty} \frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c) + \beta_1(t)} < \infty \quad \text{for each } c > 0,$$
(1.10)

then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

(iii) if $\lambda \geq 1/2$ and

$$\liminf_{t \to \infty} \frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t)\rho_2(t; c) + \beta_2(t)} > 0 \quad \text{for each } c > 0,$$
(1.11)

then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

Using Theorem 1.3 we get the following result, immediately.

Corollary 1.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6), (1.7) and (1.8) hold. Then the zero solution of (1.1) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

- (*i*) if $\alpha_1(t) > 0$ for $t \ge t_0$, and (1.9), then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;
- (*ii*) *if* $0 < \lambda < 1/2$ *and* $\beta_1(t) > 0$ *for* $t \ge t_0$ *, and*

$$\limsup_{t \to \infty} \frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\beta_1(t)} < \infty,$$
(1.12)

then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

(iii) if $\lambda \ge 1/2$ and $\alpha_2(t) = 0$ for $t \ge t_0$, and

$$\liminf_{t \to \infty} \frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\beta_2(t)} > 0,$$
(1.13)

then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

Corollary 1.4 is expressed in a form which does not include the functions ρ_1 and ρ_2 . If $e(t) = h(t) = a_0 \ge 0$, f(t) = g(t) = 1, p(t) = q(t) = 1 for all $t \ge t_0$, then system (1.1) reduces to the planar system

$$x' = -a_0 x + y - x (x^2 + y^2)^{\lambda},$$

$$y' = -x - a_0 y - y (x^2 + y^2)^{\lambda}.$$
(1.14)

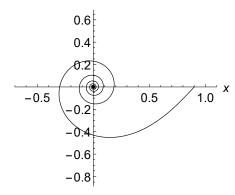
In this case, we know that $\alpha_1(t) = \alpha_2(t) = a_0$, $\beta_1(t) = \beta_2(t) = 1$ and $\gamma_1(t) = \gamma_2(t) = -1$ for all $t \ge t_0$. Then (1.6), (1.7), (1.8), (1.12) and (1.13) hold. If $a_0 > 0$ then (i) in Corollary 1.4 holds. Hence, we get the following result, immediately.

Corollary 1.5. Let (x(t), y(t)) be any nontrivial solution of (1.14). Suppose that $a_0 \ge 0$ holds. Then the zero solution of (1.14) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

- (i) if $a_0 > 0$, then the orbit $\Gamma_{(t_0, x, y)}$ is rectifiable;
- (ii) if $a_0 = 0$ and $0 < \lambda < 1/2$, then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;
- (iii) if $a_0 = 0$ and $\lambda \ge 1/2$, then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

Remark 1.6. From Corollary 1.5, Theorem A is easily obtained.

Figures 1.1–1.4 below show that the orbits corresponding to the nontrivial solution (x(t), y(t)) of (1.14) with (x(0), y(0)) = (0.9, 0). We choose a_0 and λ as follows: $a_0 = 0.1$ and $\lambda = 1$ in Fig. 1.1; $a_0 = 0$ and $\lambda = 0.1$ in Fig. 1.2; $a_0 = 0$ and $\lambda = 0.5$ in Fig. 1.3; $a_0 = 0$ and $\lambda = 0.9$ in Fig. 1.4.



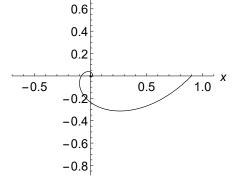
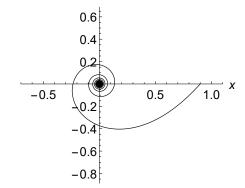


Figure 1.1: $a_0 = 0.1$, $\lambda = 1$; rectifiable.

Figure 1.2: $a_0 = 0$, $\lambda = 0.1$; rectifiable.



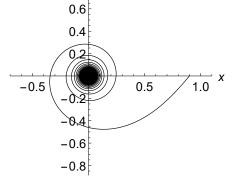


Figure 1.3: $a_0 = 0$, $\lambda = 0.5$; nonrectifiable.

Figure 1.4: $a_0 = 0$, $\lambda = 0.9$; nonrectifiable.

The second main result in this paper is as follows.

Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6), (1.7) and (1.8) hold. Then the zero solution of (1.1) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i) and (ii) below hold:

(*i*) *if*

$$\lim_{t \to \infty} \int_{t_0}^t \frac{\sqrt{[\alpha_2(s) + \beta_2(s)(\rho_1(s;c))^{-1}]^2 + (\max\{|\gamma_1(s)|, |\gamma_2(s)|\})^2}}{(\rho_1(s;c))^{\frac{1}{2\lambda}}} ds < \infty$$
(1.15)

for each c > 0, then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

$$\lim_{t \to \infty} \int_{t_0}^t \frac{\sqrt{[\alpha_1(s) + \beta_1(s)(\rho_2(s;c))^{-1}]^2 + (\max\{\gamma_1(s), -\gamma_2(s), 0\})^2}}{(\rho_2(s;c))^{\frac{1}{2\lambda}}} ds = \infty$$
(1.16)

for each c > 0, then the orbit $\Gamma_{(t_0, x, y)}$ is nonrectifiable.

If $p(t) \equiv q(t) \equiv 0$, then system (1.1) reduces to the two-dimensional linear differential system

$$\begin{aligned} x' &= -e(t)x + f(t)y, \\ y' &= -g(t)x - h(t)y. \end{aligned}$$
 (1.17)

Note that $\beta_1(t) \equiv \beta_2(t) \equiv 0$. For this linear system, using Theorem 1.7, we obtain the following corollary.

Corollary 1.8. Let (x(t), y(t)) be any nontrivial solution of (1.17). Suppose that

$$\alpha_1(t) > 0$$
 for $t \ge t_0$,

and

$$\lim_{t\to\infty}\int_{t_0}^t \alpha_1(s)ds = \infty$$

Then the zero solution of (1.17) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i) and (ii) below hold:

(*i*) *if*

$$\lim_{t\to\infty}\int_{t_0}^t\sqrt{\alpha_2^2(s)+(\max\{|\gamma_1(s)|,|\gamma_2(s)|\})^2}\exp\left(-\int_{t_0}^s\alpha_1(\tau)d\tau\right)ds<\infty,$$

then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

(ii) if

$$\lim_{t\to\infty}\int_{t_0}^t\sqrt{\alpha_1^2(s)+(\max\{\gamma_1(s),-\gamma_2(s),0\})^2}\exp\left(-\int_{t_0}^s\alpha_2(\tau)d\tau\right)ds=\infty,$$

then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

In particular, if $e(t) \equiv h(t)$, $f(t) \equiv g(t)$ then we have the two-dimensional linear differential system

In this case, we know that $\alpha_1(t) \equiv \alpha_2(t) \equiv e(t)$, $\beta_1(t) \equiv \beta_2(t) \equiv 0$ and $\gamma_1(t) \equiv \gamma_2(t) \equiv -f(t)$. We can establish the following result by Corollary 1.8.

Corollary 1.9. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that

$$e(t) > 0 \text{ for } t \ge t_0,$$
 (1.19)

and

$$\lim_{t \to \infty} \int_{t_0}^t e(s) ds = \infty.$$
(1.20)

Then the zero solution of (1.18) is attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable if and only if

$$\lim_{t \to \infty} \int_{t_0}^t \sqrt{e^2(s) + f^2(s)} \exp\left(-\int_{t_0}^s e(\tau)d\tau\right) ds < \infty.$$
(1.21)

Remark 1.10. It is well known that the local attractivity and the global attractivity are equivalent in the linear case (see [1, 20–22]). Hence, the attractivity of (1.18) means the global attractivity.

7

Consider the two-dimensional nonautonomous linear system

$$x' = -\frac{1}{t}x + t^{\sigma}y,$$

$$y' = -t^{\sigma}x - \frac{1}{t}y,$$
(1.22)

where $\sigma \in \mathbf{R}$ and $t \ge 1$. Then assumptions (1.19) and (1.20) are easily satisfied. By Corollary 1.9, the zero solution of (1.22) is attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple. Moreover, we can see that the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable if and only if $\sigma < 0$ (The conditions of Corollary 1.9 will be confirmed in Section 5).

Remark 1.11. Our result on the rectifiability of orbits (or trajectories) of (1.22) is the same as one that the special case of the result given by Naito, Pašić and Tanaka [12, Example 5.2]. Note here that they dealt with half-linear systems. On the other hand, as related research, the rectifiability results of the authors [13,14] can be mentioned, but note that this study has no inclusion relation with them. Moreover, we can find many results on the rectifiability and the fractal analysis of the systems and equations. For example, the reader is referred to [4–7,9,11,15–19].

In the next section, we will discuss the rectifiability for more general systems under the assumption that the zero solution is globally attractive, and the orbit $\Gamma_{(t_0,x,y)}$ is simple. In Section 3, the simplicity and the global attractivity for (1.1) are considered. In Section 4, we prove Theorems 1.3 and 1.7. In Section 5, some examples and numerical simulations are presented.

2 Rectifiability

In this section, we consider the two-dimensional nonautonomous differential system

$$\begin{aligned} x' &= F_1(t, x, y), \\ y' &= F_2(t, x, y), \end{aligned}$$
 (2.1)

where F_1 and F_2 are continuously differentiable with respect to (x, y), and satisfying

$$(F_1(t,0,0),F_2(t,0,0)) \equiv (0,0).$$

For every solution (x(t), y(t)) of (2.1), we introduce the polar coordinate transformation $x = r \cos \theta$, $y = r \sin \theta$. Then we obtain

$$r' = G_1(t, r, \theta),$$

$$r\theta' = G_2(t, r, \theta),$$
(2.2)

where G_1 and G_2 are defined by

$$G_1(t, r, \theta) = \cos \theta F_1(t, r \cos \theta, r \sin \theta) + \sin \theta F_2(t, r \cos \theta, r \sin \theta)$$
(2.3)

and

$$G_2(t, r, \theta) = \cos \theta F_2(t, r \cos \theta, r \sin \theta) - \sin \theta F_1(t, r \cos \theta, r \sin \theta).$$
(2.4)

The obtained result is as follows.

Theorem 2.1. Let G_1 and G_2 be the functions given by (2.3) and (2.4), respectively. Let (x(t), y(t)) be any nontrivial solution of (2.1) on $[t_0, \infty)$. Suppose that the zero solution of (2.1) is globally attractive, and the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple. Then, (i) and (ii) below hold:

(*i*) *if there exist an* $\overline{r} > 0$ *and a continuous function* $h : (0, \overline{r}) \to (0, \infty)$ *such that*

$$\|(G_1(t,r,\theta),G_2(t,r,\theta))\| \le -h(r)G_1(t,r,\theta), \quad (t,r,\theta) \in [t_0,\infty) \times (0,\overline{r}) \times \mathbf{R},$$
(2.5)

and

$$\lim_{r \to +0} \int_{r}^{\overline{r}} h(\eta) d\eta < \infty, \tag{2.6}$$

then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;

(ii) if there exist an $\overline{r} > 0$ and a continuous function $h: (0, \overline{r}) \to (0, \infty)$ such that

$$\|(G_1(t,r,\theta),G_2(t,r,\theta))\| \ge -h(r)G_1(t,r,\theta), \quad (t,r,\theta) \in [t_0,\infty) \times (0,\overline{r}) \times \mathbf{R},$$
(2.7)

and

$$\lim_{r \to +0} \int_{r}^{\overline{r}} h(\eta) d\eta = \infty,$$
(2.8)

then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

Proof. Let (x(t), y(t)) be any nontrivial solution of (2.1). Define the functions r and θ by

$$x(t) = r(t)\cos\theta(t), \quad y(t) = r(t)\sin\theta(t)$$

for $t \ge t_0$, where

$$r(t) = ||(x(t), y(t))||.$$

Then $(r(t), \theta(t))$ is a solution to (2.2). Since the existence and uniqueness of solutions of (2.1) are guaranteed for the initial-value problem, the zero solution $(x(t), y(t)) \equiv (0, 0)$ is unique. Thus, r(t) > 0 for $t \ge t_0$. This together with the global attractivity of (2.1) implies that $\lim_{t\to\infty} r(t) = 0$, and there exists a T > 0 such that

$$r(t) \in (0, \bar{r}) \tag{2.9}$$

for $t \ge t_0 + T$.

Now, we consider case (i). Using (2.5) and (2.9), we have

$$\begin{aligned} \|(x'(t), y'(t))\| &= \|(F_1(t, x(t), y(t)), F_2(t, x(t), y(t)))\| \\ &= \sqrt{(\cos \theta F_1 + \sin \theta F_2)^2 + (\cos \theta F_2 - \sin \theta F_1)^2} \\ &= \|(G_1(t, r(t), \theta(t)), G_2(t, r(t), \theta(t)))\| \\ &\leq -h(r(t))G_1(t, r(t), \theta(t)) = -h(r(t))r'(t) \end{aligned}$$

for $t \ge t_0 + T$. Since h(r) is a positive continuous function on $(0, \overline{r})$, and (2.9) holds, we see that

$$\begin{split} \int_{t_0+T}^t \|(x'(s), y'(s))\| ds &\leq -\int_{t_0+T}^t h(r(s)) r'(s) ds = \int_{r(t)}^{r(t_0+T)} h(\eta) d\eta \\ &\leq \int_{r(t)}^{\overline{r}} h(\eta) d\eta \end{split}$$

for $t \ge t_0 + T$. Therefore, we have

$$\begin{split} \int_{t_0}^t \|(x'(s), y'(s))\| ds &= \int_{t_0}^{t_0 + T} \|(x'(s), y'(s))\| ds + \int_{t_0 + T}^t \|(x'(s), y'(s))\| ds \\ &\leq \int_{t_0}^{t_0 + T} \|(x'(s), y'(s))\| ds + \int_{r(t)}^{\overline{r}} h(\eta) d\eta \end{split}$$

for $t \ge t_0 + T$. Using (2.6), (2.9) with $\lim_{t\to\infty} r(t) = 0$, we conclude that

$$\lim_{t\to\infty}\int_{t_0}^t \|(x'(s),y'(s))\|ds<\infty.$$

Hence, the simple orbit $\Gamma_{(t_0,x,y)}$ is rectifiable.

Next, we consider case (ii). From (2.7) and (2.9), we have

$$\|(x'(t), y'(t))\| \ge -h(r(t))G_1(t, r(t), \theta(t)) = -h(r(t))r'(t)$$

for $t \ge t_0 + T$. Since h(r) is a positive continuous function on $(0, \overline{r})$, and (2.9) holds, we see that

$$\begin{split} \int_{t_0}^t \|(x'(s), y'(s))\| ds &\geq \int_{t_0+T}^t \|(x'(s), y'(s))\| ds \\ &\geq -\int_{t_0+T}^t h(r(s)) r'(s) ds = \int_{r(t)}^{r(t_0+T)} h(\eta) d\eta \\ &= \int_{r(t)}^{\overline{r}} h(\eta) d\eta - \int_{r(t_0+T)}^{\overline{r}} h(\eta) d\eta \end{split}$$

for $t \ge t_0 + T$. From (2.8), (2.9) with $\lim_{t\to\infty} r(t) = 0$, we get

$$\lim_{t\to\infty}\int_{t_0}^t \|(x'(s),y'(s))\|ds=\infty.$$

Consequently, the simple orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable. This completes the proof.

For our main system (1.1), we find that

$$F_{1}(t, x, y) = -e(t)x + f(t)y - p(t)x (x^{2} + y^{2})^{\lambda},$$

$$F_{2}(t, x, y) = -g(t)x - h(t)y - q(t)y (x^{2} + y^{2})^{\lambda},$$

and

$$G_{1}(t,r,\theta) = -(e(t)\cos^{2}\theta + h(t)\sin^{2}\theta)r + (f(t) - g(t))r\sin\theta\cos\theta - (p(t)\cos^{2}\theta + q(t)\sin^{2}\theta)r^{2\lambda+1},$$

$$G_{2}(t,r,\theta) = -(g(t)\cos^{2}\theta + f(t)\sin^{2}\theta)r + (e(t) - h(t))r\sin\theta\cos\theta + (p(t) - q(t))r^{2\lambda+1}\sin\theta\cos\theta.$$
(2.10)

3 Simplicity and global attractivity

In this section, we deal with the simplicity and the global attractivity for our main system (1.1). First, we give two lemmas.

Lemma 3.1. Let G_1 be the function given in (2.10). Then

$$G_1(t,r,\theta) \leq -\left(\alpha_1(t) + \beta_1(t)r^{2\lambda}\right)r$$

holds for $t \ge t_0$ and $r \in [0, \infty)$, where α_1 and β_1 are given in (1.3).

Proof. By (2.10), we get

$$G_{1}(t,r,\theta) \leq -\min\{e(t),h(t)\}r + \frac{|f(t) - g(t)|}{2}r - \min\{p(t),q(t)\}r^{2\lambda+1}$$

= $-(\alpha_{1}(t) + \beta_{1}(t)r^{2\lambda})r$

for $t \ge t_0$ and $r \in [0, \infty)$.

Lemma 3.2. Suppose that (1.6) and (1.7) hold. Then

$$\left(\alpha_1(t)+\beta_1(t)r^{2\lambda}\right)r>0$$

holds for $t \ge t_0$ and $r \in (0, \infty)$, where α_1 and β_1 are given in (1.3).

Proof. By way of contradiction, we suppose that there exists a $t_1 \ge t_0$ such that

$$\left(\alpha_1(t_1)+\beta_1(t_1)r^{2\lambda}\right)r\leq 0.$$

From (1.6) and $r \in (0, \infty)$, we have

$$\alpha_1(t_1) + \beta_1(t_1)r^{2\lambda} = 0.$$

This together with (1.6) says that $\alpha_1(t_1) = \beta_1(t_1) = 0$. However, this contradicts assumption (1.7).

We now consider the simplicity of the nontrivial solutions to (1.1). The obtained result is as follows.

Lemma 3.3. Let (x(t), y(t)) be a nontrivial solution of (1.1). Suppose that (1.6) and (1.7) hold. Then the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple.

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1). Assume to the contrary that there exist $t_1, t_2 \in [t_0, \infty)$ such that $t_1 < t_2$ with $(x(t_1), y(t_1)) = (x(t_2), y(t_2))$. Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Then $r(t_1) = r(t_2)$ holds. Since (x(t), y(t)) is a nontrivial solution and the zero solution is unique, we know that r(t) > 0 for all $t \ge t_0$. From Lemmas 3.1 and 3.2, we see that r'(t) < 0 for $t \ge t_0$. Integrating this inequality from t_1 to t_2 , we obtain

$$r(t_2) - r(t_1) = \int_{t_1}^{t_2} r'(t) dt < 0.$$

This is a contradiction. Consequently, $\Gamma_{(t_0,x,y)}$ is a simple orbit.

We will give an important inequality.

Lemma 3.4. Let (x(t), y(t)) be a nontrivial solution of (1.1) with the initial condition $(x(t_0), y(t_0)) = (x_0, y_0)$. Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Suppose that $\beta_1(t) \ge 0$ holds for $t \ge t_0$. Then (x(t), y(t)) exists on $[t_0, \infty)$ and is the unique solution of (1.1) with $(x(t_0), y(t_0)) = (x_0, y_0)$, and the inequality

$$0 < r(t) \le \exp\left(-\int_{t_0}^t \alpha_1(s)ds\right) \left(r^{-2\lambda}(t_0) + 2\lambda \int_{t_0}^t \beta_1(s) \exp\left(-2\lambda \int_{t_0}^s \alpha_1(\tau)d\tau\right)ds\right)^{-\frac{1}{2\lambda}}$$
(3.1)

holds for $t \ge t_0$, where α_1 and β_1 are given in (1.3).

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1) with $(x(t_0), y(t_0)) = (x_0, y_0)$. Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Let $I \subset [t_0, \infty)$ be the maximal interval of the existence of (x(t), y(t)). Then r(t) > 0 holds for $t \in I$, from the uniqueness of the zero solution. Using Lemma 3.1, we have

$$r'(t) \leq -\left(\alpha_1(t) + \beta_1(t)r^{2\lambda}(t)\right)r(t)$$

for $t \in I$. Set $z(t) := r^{-2\lambda}(t)$. Then, it follows from the above inequality and r(t) > 0 that

$$z'(t) = -2\lambda r^{-2\lambda-1}(t)r'(t) \ge 2\lambda r^{-2\lambda}(t) \left(\alpha_1(t) + \beta_1(t)r^{2\lambda}(t)\right) = 2\lambda\alpha_1(t)z(t) + 2\lambda\beta_1(t)$$

for $t \in I$. Hence

$$\left(\exp\left(-2\lambda\int_{t_0}^t\alpha_1(s)ds\right)z(t)\right)'\geq 2\lambda\beta_1(t)\exp\left(-2\lambda\int_{t_0}^t\alpha_1(s)ds\right)$$

for $t \in I$. Integrating this inequality from t_0 to t, we get

$$\exp\left(-2\lambda\int_{t_0}^t \alpha_1(s)ds\right)z(t) \ge z(t_0) + 2\lambda\int_{t_0}^t \beta_1(s)\exp\left(-2\lambda\int_{t_0}^s \alpha_1(\tau)d\tau\right)ds,$$

and so that

$$r^{-2\lambda}(t) = z(t) \ge \exp\left(2\lambda \int_{t_0}^t \alpha_1(s)ds\right) \left(r^{-2\lambda}(t_0) + 2\lambda \int_{t_0}^t \beta_1(s)\exp\left(-2\lambda \int_{t_0}^s \alpha_1(\tau)d\tau\right)ds\right)$$

for $t \in I$. Therefore, if $\beta_1(t) \ge 0$ for $t \ge t_0$, then we obtain (3.1) for $t \in I$.

Using the above inequality and $\beta_1(t) \ge 0$ for $t \ge t_0$, we have

$$r^{-2\lambda}(t) \ge \exp\left(2\lambda \int_{t_0}^t \alpha_1(s)ds\right)r^{-2\lambda}(t_0),$$

and thus,

$$0 < \|(x(t), y(t))\| \le \|(x_0, y_0)\| \exp\left(-\int_{t_0}^t \alpha_1(s) ds\right) \quad \text{for } t \in I.$$
(3.2)

This inequality means that $I = [t_0, \infty)$, that is, any nontrivial solution of (1.1) exists on $[t_0, \infty)$ by a standard argument of a general theory on ordinary differential equations. Consequently, the initial value problem (1.1) with $(x(t_0), y(t_0)) = (x_0, y_0)$ has a unique solution on $[t_0, \infty)$. \Box

Next, we consider the global attractivity for (1.1). Assuming a stronger condition, we can get stronger stability. The zero solution is said to be *globally exponentially stable* if there exists a k > 0 and, for any $\eta > 0$, there exists a $\delta(\eta) > 0$ such that $t_1 \in \mathbf{R}$ with $t_1 \ge t_0$ and $||(x_0, y_0)|| < \eta$ imply

$$\|(x(t;t_1,x_0,y_0),y(t;t_1,x_0,y_0))\| \le \delta(\eta)\|(x_0,y_0)\|e^{-k(t-t_1)}\|$$

for all $t \ge t_1$. The following lemma is established.

Lemma 3.5. Suppose that (1.6) and (1.8) hold, where α_1 and β_1 are given in (1.3). Then the zero solution of (1.1) is globally attractive. In particular, if there exists an $\underline{a} > 0$ such that

$$\alpha_1(s) \ge \underline{a} \quad \text{for } t \ge t_0, \tag{3.3}$$

then the zero solution of (1.1) is globally exponentially stable.

Proof. Let t_1 satisfy $t_1 \ge t_0$. Let (x(t), y(t)) be any nontrivial solution of (1.1) with $(x(t_1), y(t_1)) = (x_0, y_0)$. Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Using Lemma 3.4, we have inequality (3.1) for $t \ge t_1$.

Now we consider the case $\lim_{t\to\infty} \int_{t_0}^t \alpha_1(s) ds < \infty$. This together with (1.8) yields

$$\lim_{t\to\infty}\int_{t_0}^t\beta_1(s)ds=\infty.$$

Let $L := \lim_{t\to\infty} \int_{t_0}^t \alpha_1(s) ds \ge 0$. Using this and (3.1), we obtain

$$0 < \|(x(t), y(t))\| = r(t) \le \frac{1}{\left(r^{-2\lambda}(t_1) + 2\lambda e^{-2\lambda L} \int_{t_1}^t \beta_1(s) ds\right)^{\frac{1}{2\lambda}}} < \frac{1}{\left(2\lambda e^{-2\lambda L} \int_{t_1}^t \beta_1(s) ds\right)^{\frac{1}{2\lambda}}}$$

for $t \ge t_1$. Hence, any nontrivial solution of (1.1) tends to (0,0) as $t \to \infty$. That is, the zero solution of (1.1) is globally attractive.

Next we consider the case $\lim_{t\to\infty} \int_{t_0}^t \alpha_1(s) ds = \infty$. Then, by assumption (1.6), we obtain inequality (3.2). Therefore, the zero solution of (1.1) is globally attractive. Moreover, if we suppose condition (3.3), then inequality (3.2) implies global exponential stability. This completes the proof.

Remark 3.6. If $\alpha_1(t) \equiv 0$ then, it does not imply the (global) exponential stability for (1.1). For example, we consider the case $\lambda = 1$, e(t) = h(t) = 0 and f(t) = g(t) = 1 and p(t) = q(t) = 1 for $t \ge t_0$. That is, $\alpha_1(t) = \alpha_2(t) = 0$, $\beta_1(t) = \beta_2(t) = 1$ and $\gamma_1(t) = \gamma_2(t) = -1$ for $t \ge t_0$. From (2.2) and (2.10), we have

$$r' = -r^3$$
.

Solving this equation, we get

$$r(t) = \frac{1}{\sqrt{2(t - t_0) + r^{-2}(t_0)}}$$

for $t \ge t_0$. Thus, the zero solution is not exponentially stable. Although not described here in detail, we can see that the zero solution of this system is uniformly asymptotically stable. It is well known that the exponential stability implies the uniform asymptotic stability; the uniform asymptotic stability implies the asymptotic stability (the zero solution is attractive and stable). If (1.1) is a periodic or autonomous system, then the asymptotic stability and the uniform asymptotic stability are equivalent. For example, see [2, 3, 8, 21, 22]. Moreover, if (1.1) is a linear system, the uniform asymptotic stability and the exponential stability are equivalent. For example, the reader is referred to [3,21,22] and the references cited therein. In general, our main equations are nonautonomous and nonlinear, so their stabilities are often different.

4 Proofs of the main theorems

Before proving the main theorems, we give three lemmas.

Lemma 4.1. Let G_1 be the function given in (2.10). Then

$$G_1(t,r,\theta) \ge -\left(\alpha_2(t) + \beta_2(t)r^{2\lambda}\right)r \tag{4.1}$$

holds for $t \ge t_0$ and $r \in [0, \infty)$, where α_2 and β_2 are given in (1.3).

Proof. By (2.10), we get

$$G_{1}(t,r,\theta) \geq -\max\{e(t),h(t)\}r - \frac{|f(t) - g(t)|}{2}r - \max\{p(t),q(t)\}r^{2\lambda+1}$$

= $-\left(\alpha_{2}(t) + \beta_{2}(t)r^{2\lambda}\right)r$

for $t \ge t_0$ and $r \in [0, \infty)$.

Lemma 4.2. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Suppose that $\beta_2(t) \ge 0$ holds for $t \ge t_0$. Then the inequality

$$r(t) \ge \exp\left(-\int_{t_0}^t \alpha_2(s)ds\right) \left(r^{-2\lambda}(t_0) + 2\lambda\int_{t_0}^t \beta_2(s)\exp\left(-2\lambda\int_{t_0}^s \alpha_2(\tau)d\tau\right)ds\right)^{-\frac{1}{2\lambda}}$$
(4.2)

holds for $t \ge t_0$, where α_2 and β_2 are given in (1.3).

Proof. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Using Lemma 4.1, we have

$$r'(t) \ge -\left(\alpha_2(t) + \beta_2(t)r^{2\lambda}(t)\right)r(t)$$

for $t \ge t_0$. Set $z(t) := r^{-2\lambda}(t)$. Then, it follows from the above inequality and r(t) > 0 that

$$z'(t) \le 2\lambda\alpha_2(t)z(t) + 2\lambda\beta_2(t)$$

for $t \ge t_0$. Hence

$$\left(\exp\left(-2\lambda\int_{t_0}^t\alpha_2(s)ds\right)z(t)\right)'\leq 2\lambda\beta_2(t)\exp\left(-2\lambda\int_{t_0}^t\alpha_2(s)ds\right)$$

for $t \ge t_0$. Integrating this inequality from t_0 to t, we get

$$r^{-2\lambda}(t) \le \exp\left(2\lambda \int_{t_0}^t \alpha_2(s)ds\right) \left(r^{-2\lambda}(t_0) + 2\lambda \int_{t_0}^t \beta_2(s) \exp\left(-2\lambda \int_{t_0}^s \alpha_2(\tau)d\tau\right)ds\right)$$

for $t \ge t_0$. Therefore, if $\beta_2(t) \ge 0$ for $t \ge t_0$, then we obtain the inequality in Lemma 4.2. **Lemma 4.3.** Let G_2 be the function given in (2.10). Then

$$\gamma_1(t)r \le G_2(t,r,\theta) \le \gamma_2(t)r \tag{4.3}$$

holds for $t \ge t_0$ and $r \in [0, 1)$, where γ_1 and γ_2 are given by (1.4).

Proof. By (2.10) and $r \in [0, 1)$, we obtain

$$G_{2}(t,r,\theta) \ge -\max\{f(t),g(t)\}r - \frac{|e(t) - h(t)|}{2}r - \frac{|p(t) - q(t)|}{2}r^{2\lambda + 1}$$

$$\ge \gamma_{1}(t)r$$

and

$$G_{2}(t,r,\theta) \leq -\min\{f(t),g(t)\}r + \frac{|e(t)-h(t)|}{2}r + \frac{|p(t)-q(t)|}{2}r^{2\lambda+1}$$

$$\leq \gamma_{2}(t)r.$$

Thus, (4.3) holds.

Now, we will prove the main theorems.

Proof of Theorem 1.3. From Lemma 3.5, the zero solution of (1.1) is globally attractive. Let (x(t), y(t)) be any nontrivial solution of (1.1). By Lemma 3.3, the orbit $\Gamma_{(t_0, x, y)}$ corresponding to (x(t), y(t)) is simple. Let $x = r \cos \theta$, $y = r \sin \theta$. Then we have (2.3) and (2.4). By Lemmas 3.1, 3.2, 4.1 and 4.3, the inequalities

$$0 < \left(\alpha_1(t) + \beta_1(t)r^{2\lambda}\right)r \le |G_1(t,r,\theta)| = -G_1(t,r,\theta) \le \left(\alpha_2(t) + \beta_2(t)r^{2\lambda}\right)r, \quad (4.4)$$

and

$$\max\{\gamma_1(t), -\gamma_2(t), 0\}r \le |G_2(t, r, \theta)| \le \max\{|\gamma_1(t)|, |\gamma_2(t)|\}r$$
(4.5)

hold for $t \ge t_0$ and $r \in (0, 1)$. Therefore, we obtain

$$\frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t) + \beta_2(t)r^{2\lambda}} \le \left|\frac{G_2(t, r, \theta)}{G_1(t, r, \theta)}\right| \le \frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t) + \beta_1(t)r^{2\lambda}}$$
(4.6)

for $t \ge t_0$ and $r \in (0, 1)$.

First, we consider case (i). Suppose that $\alpha_1(t) > 0$ for $t \ge t_0$, and (1.9), that is, there exists a $\mu > 0$ and a $t_1 \ge t_0$ such that

$$\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)} \le \mu$$

holds for $t \ge t_1$. By (1.6), $\beta_1(t) \ge 0$ for $t \ge t_0$. This together with the above inequality implies

$$\sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t) + \beta_1(t)r^{2\lambda}}\right)^2} \le \sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)}\right)^2} \le \sqrt{1 + \mu^2}$$

for $t \ge t_1$. Moreover, we can choose an $M_1 \ge \sqrt{1+\mu^2}$ such that

$$\sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t) + \beta_1(t)r^{2\lambda}}\right)^2} \le M_1$$

for $t_0 \le t \le t_1$. Using these inequalities and (4.6), we have

$$\|(G_1(t,r,\theta),G_2(t,r,\theta))\| \le -\sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|,|\gamma_2(t)|\}}{\alpha_1(t) + \beta_1(t)r^{2\lambda}}\right)^2}G_1(t,r,\theta) \le -M_1G_1(t,r,\theta)$$

for $t \ge t_0$ and $r \in (0, 1)$, so that we get (2.5) with $\overline{r} = 1$ and $h(r) = M_1$. By

$$\lim_{r\to+0}\int_r^1 h(\eta)d\eta=M_1,$$

we have (2.6). Consequently, the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable.

Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Before proving cases (ii) and (iii), we will discuss some properties of r(t). By the global attractivity for (1.1), there exits a $t_1 \ge t_0$ such that

$$0 < r(t) \leq 1$$
 for $t \geq t_1$.

From Lemmas 3.4 and 4.2, we have

$$\rho_1(t;c_0) \le r^{-2\lambda}(t) \le \rho_2(t;c_0) \quad \text{for some } c_0 > 0,$$
(4.7)

and for $t \ge t_0$, where ρ_1 and ρ_2 are given by (1.5). This together with (4.6) implies that

$$\frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t)\rho_2(t;c_0) + \beta_2(t)} r^{-2\lambda}(t) \le \left| \frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))} \right| \le \frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c_0) + \beta_1(t)} r^{-2\lambda}(t)$$
(4.8)

for $t \geq t_1$.

Now, we consider case (ii). Suppose that $0 < \lambda < 1/2$ and (1.10) hold, that is, there exists a $\mu > 0$ and a $t_2 \ge t_1$ such that

$$\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c) + \beta_1(t)} \le \mu$$

holds for $t \ge t_2$. By (4.8), we have

$$\begin{split} \sqrt{1 + \left|\frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))}\right|^2} &\leq \sqrt{r^{4\lambda}(t) + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c_0) + \beta_1(t)}\right)^2}r^{-2\lambda}(t) \\ &\leq \sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c_0) + \beta_1(t)}\right)^2}r^{-2\lambda}(t) \\ &\leq \sqrt{1 + \mu^2}r^{-2\lambda}(t) \end{split}$$

for $t \ge t_2$. Moreover, we can choose an $M_2 \ge \sqrt{1+\mu^2}$ such that

$$\sqrt{1 + \left(\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)\rho_1(t;c_0) + \beta_1(t)}\right)^2} \le M_2$$

for $t_0 \le t \le t_2$. Therefore, we see that

$$\begin{aligned} \|(x'(t), y'(t))\| &= \|(F_1(t, x(t), y(t)), F_2(t, x(t), y(t)))\| = \|(G_1(t, r(t), \theta(t)), G_2(t, r(t), \theta(t)))\| \\ &= \sqrt{1 + \left|\frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))}\right|^2} |G_1(t, r(t), \theta(t))| \\ &\leq M_2 r^{-2\lambda}(t) |G_1(t, r(t), \theta(t))| = -M_2 r^{-2\lambda}(t) r'(t) \end{aligned}$$

holds for $t \ge t_0$. Integrating this inequality, we obtain

$$\int_{t_0}^t \|(x'(s), y'(s))\| ds \le M_2 \int_{r(t)}^{r(t_0)} \eta^{-2\lambda} d\eta = \frac{M_2}{1 - 2\lambda} \left(r^{1 - 2\lambda}(t_0) - r^{1 - 2\lambda}(t) \right) < \frac{M_2 r^{1 - 2\lambda}(t_0)}{1 - 2\lambda}$$

for $t \ge t_0$. Hence, we conclude that the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable.

Finally, we consider case (iii). Suppose that $\lambda \ge 1/2$ and (1.11) hold, that is, there exists a $\nu > 0$ and a $t_2 \ge t_1$ such that

$$\frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t)\rho_2(t; c) + \beta_2(t)} \ge \iota$$

holds for $t \ge t_2$. By (4.8), we have

$$\sqrt{1 + \left|\frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))}\right|^2} > \left|\frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))}\right| \ge \frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t)\rho_2(t; c_0) + \beta_2(t)}r^{-2\lambda}(t) \ge \nu r^{-2\lambda}(t)$$

for $t \ge t_2$. From this, we see that

$$\|(x'(t), y'(t))\| = \sqrt{1 + \left|\frac{G_2(t, r(t), \theta(t))}{G_1(t, r(t), \theta(t))}\right|^2} |G_1(t, r(t), \theta(t))|$$

> $\nu r^{-2\lambda}(t) |G_1(t, r(t), \theta(t))| = -\nu r^{-2\lambda}(t) r'(t)$ (4.9)

for $t \ge t_2$. Now, we consider the case $\lambda = 1/2$. Integrating (4.9), we obtain

$$\int_{t_0}^t \|(x'(s), y'(s))\| ds \ge -\nu \int_{r(t_2)}^{r(t)} \eta^{-1} d\eta = -\nu \log \frac{r(t)}{r(t_2)}$$

for $t \ge t_2$. Since the zero solution of (1.1) is globally attractive, we conclude that the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable. On the other hand, we consider the case $\lambda > 1/2$. Integrating (4.9), we obtain

$$\int_{t_0}^t \|(x'(s), y'(s))\| ds \ge -\nu \int_{r(t_2)}^{r(t)} \eta^{-2\lambda} d\eta = \frac{\nu}{2\lambda - 1} \left(\frac{1}{r^{2\lambda - 1}(t)} - \frac{1}{r^{2\lambda - 1}(t_2)} \right)$$

for $t \ge t_2$. Consequently, $\Gamma_{(t_0,x,y)}$ is nonrectifiable. This completes the proof of Theorem 1.3. \Box

Proof of Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). From Lemmas 3.3 and 3.5, the zero solution of (1.1) is globally attractive, and the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple. Let $(r(t), \theta(t))$ be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Then the global attractivity for (1.1) implies that there exits a $t_1 \ge t_0$ such that

$$0 < r(t) < 1 \quad \text{for } t \ge t_1.$$

From Lemmas 3.4 and 4.2, we have (4.7) for $t \ge t_0$. Using Lemmas 3.1, 3.2, 4.1 and 4.3, we get inequalities (4.4) and (4.5) for $t \ge t_0$ and $r \in (0, 1)$. Therefore,

$$\|(G_1(t,r,\theta),G_2(t,r,\theta))\| \le \sqrt{(\alpha_2(t)+\beta_2(t)r^{2\lambda})^2 + (\max\{|\gamma_1(t)|,|\gamma_2(t)|\})^2 r}$$
(4.10)

and

$$\|(G_1(t,r,\theta),G_2(t,r,\theta))\| \ge \sqrt{(\alpha_1(t)+\beta_1(t)r^{2\lambda})^2 + (\max\{\gamma_1(t),-\gamma_2(t),0\})^2 r}$$
(4.11)

for $t \ge t_0$ and $r \in (0, 1)$.

First we consider case (i). By (4.7), (4.10) and the fact

$$\|(x'(t),y'(t))\| = \|(F_1(t,x(t),y(t)),F_2(t,x(t),y(t)))\| = \|(G_1(t,r(t),\theta(t)),G_2(t,r(t),\theta(t)))\|,$$

we obtain

$$\|(x'(t),y'(t))\| \le \frac{\sqrt{[\alpha_2(t)+\beta_2(t)(\rho_1(t;c_0))^{-1}]^2 + (\max\{|\gamma_1(t)|,|\gamma_2(t)|\})^2}}{(\rho_1(t;c_0))^{\frac{1}{2\lambda}}}$$

for $t \ge t_1$. Hence from (1.15) it follows that $\Gamma_{(t_0,x,y)}$ is rectifiable.

Next we consider case (iii). By (4.7) and (4.11), we obtain

$$\|(x'(t),y'(t))\| \geq \frac{\sqrt{[\alpha_1(t)+\beta_1(t)(\rho_2(t;c_0))^{-1}]^2 + (\max\{\gamma_1(t),-\gamma_2(t),0\})^2}}{(\rho_2(t;c_0))^{\frac{1}{2\lambda}}}$$

for $t \ge t_1$. Integrating this inequality and using (1.16), we conclude that $\Gamma_{(t_0,x,y)}$ is nonrectifiable. This completes the proof of Theorem 1.7.

Using Theorems 1.3 and 1.7, and Lemma 3.5, we can establish the following result.

Theorem 4.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6) and (3.3) hold. Then the zero solution of (1.1) is globally exponentially stable, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

- (i) if (1.9) holds, then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;
- (ii) if (1.15) holds, then the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable;
- (iii) if (1.16) holds, then the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable.

Corollary 1.9 and Lemma 3.5 imply the following.

Corollary 4.5. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that there exists an $\underline{e} > 0$ such that

$$e(t) \ge \underline{e} \quad \text{for } t \ge t_0. \tag{4.12}$$

Then the zero solution of (1.18) is exponentially stable, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple, and the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable if and only if (1.21) holds.

5 Examples and numerical simulations

In this section we will present some examples and numerical simulations.

Example 5.1. Let $\lambda = 0.5$. Consider the two-dimensional nonautonomous differential system (1.1) with

$$e(t) = h(t) = \frac{1}{t}, \quad f(t) = g(t) = \frac{10\cos t}{t} \quad \text{and} \quad p(t) = q(t) = t.$$
 (5.1)

Then

$$\alpha_1(t) = \alpha_2(t) = e(t) = \frac{1}{t}, \quad \beta_1(t) = \beta_2(t) = p(t) = t \text{ and } \gamma_1(t) = \gamma_2(t) = -f(t) = -\frac{10\cos t}{t}$$

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

$$\alpha_1(t) = rac{1}{t} > 0 \quad ext{for} \ t \geq 1,$$

and

$$\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\alpha_1(t)} = 10|\cos t| \le 10 \text{ for } t \ge 1.$$

By Theorem 1.3 (i), we conclude that the zero solution of (1.1) with (5.1) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ is simple and rectifiable. Fig. 5.1 shows the orbit $\Gamma_{(1,x,y)}$ corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.1) and (x(1), y(1)) = (0.9, 0).

Example 5.2. Let $\lambda = 0.1$. Consider the two-dimensional nonautonomous differential system (1.1) with

$$e(t) = h(t) = 0, \quad f(t) = g(t) = \frac{1}{2} + \frac{\cos t}{t} \quad \text{and} \quad p(t) = q(t) = 0.1.$$
 (5.2)

Then

$$\alpha_1(t) = \alpha_2(t) = 0, \quad \beta_1(t) = \beta_2(t) = 0.1 \quad \text{and} \quad \gamma_1(t) = \gamma_2(t) = -\frac{1}{2} - \frac{\cos t}{t}.$$

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

$$\frac{\max\{|\gamma_1(t)|, |\gamma_2(t)|\}}{\beta_1(t)} = 10\left(\frac{1}{2} + \frac{\cos t}{t}\right) \le 15 \text{ for } t \ge 1.$$

By Corollary 1.4 (ii), we conclude that the zero solution of (1.1) with (5.2) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ is simple and rectifiable. Fig. 5.2 shows the orbit $\Gamma_{(1,x,y)}$ corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.3. Let $\lambda = 0.5$. Consider the two-dimensional nonautonomous differential system (1.1) with (5.2). Then

$$\frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\beta_2(t)} \ge \frac{-\gamma_2(t)}{\beta_2(t)} = 10\left(\frac{1}{2} + \frac{\cos t}{t}\right) > \frac{5}{2} \quad \text{for } t \ge 4$$

By Corollary 1.4 (iii), the zero solution of (1.1) with (5.2) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ is simple and nonrectifiable. Fig. 5.3 shows the orbit $\Gamma_{(1,x,y)}$ corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.4. Let $\lambda = 0.5$. Consider the two-dimensional nonautonomous differential system (1.1) with

$$e(t) = h(t) = \frac{1}{t}, \quad f(t) = g(t) = 2 + \cos t \quad \text{and} \quad p(t) = q(t) = \frac{1}{t^2}.$$
 (5.3)

Then

$$\alpha_1(t) = \alpha_2(t) = \frac{1}{t}, \quad \beta_1(t) = \beta_2(t) = \frac{1}{t^2} \text{ and } \gamma_1(t) = \gamma_2(t) = -2 - \cos t.$$

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Since

$$\exp\left(2\lambda\int_{t_0}^t \alpha_2(s)ds\right) = \exp\left(\log\frac{t}{t_0}\right) = \frac{t}{t_0}$$

for $t \ge t_0$, we have

$$\rho_2(t;c) = \frac{t}{t_0} \left(c + t_0 \int_{t_0}^t s^{-3} ds \right) = t \left(\frac{c}{t_0} + \frac{1}{2t_0^2} - \frac{1}{2t^2} \right),$$

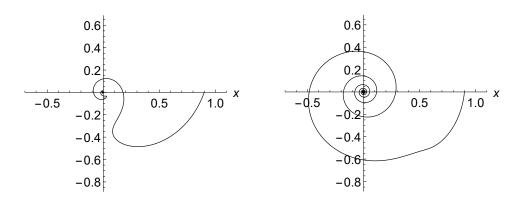


Figure 5.1: Example 5.1; Theorem 1.3 (i); rectifiable.

Figure 5.2: Example 5.2; Corollary 1.4 (ii); rectifiable.

and hence

$$\frac{\max\{\gamma_1(t), -\gamma_2(t), 0\}}{\alpha_2(t)\rho_2(t; c) + \beta_2(t)} \ge \frac{2 + \cos t}{\frac{c}{t_0} + \frac{1}{2t_0^2} + \frac{1}{2t^2}} \ge \frac{1}{\frac{c}{t_0} + \frac{1}{t_0^2}}$$

for $t \ge t_0$. Hence (1.11) is satisfied. By Theorem 1.3 (iii), the zero solution of (1.1) with (5.3) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ is simple and nonrectifiable. Fig. 5.4 shows the orbit $\Gamma_{(1,x,y)}$ corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.3) and (x(1), y(1)) = (0.9, 0).

Example 5.5. Consider the two-dimensional nonautonomous linear system (1.18) with

$$e(t) = 1$$
 and $f(t) = e^t$. (5.4)

Then assumption (4.12) is easily satisfied. It is clear that

$$\int_{t_0}^t \sqrt{e^2(s) + f^2(s)} \exp\left(-\int_{t_0}^s e(\tau) d\tau\right) ds \ge \int_{t_0}^t e^s e^{-s + t_0} ds = e^{t_0}(t - t_0)$$

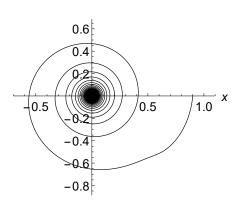
for all $t \ge t_0$. Hence, by Corollary 4.5 we conclude that the zero solution of (1.18) with (5.4) is exponentially stable, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple and nonrectifiable. Fig. 5.5 shows the orbit $\Gamma_{(1,x,y)}$ corresponding to the nontrivial solution (x(t), y(t)) of (1.18) with (5.4) and (x(1), y(1)) = (0.9, 0).

Example 5.6. Consider the two-dimensional nonautonomous linear system (1.22), where $\sigma \in \mathbf{R}$. Then assumptions (1.19) and (1.20) are easily satisfied. By Corollary 1.9 we conclude that the zero solution of (1.22) is globally attractive, the orbit $\Gamma_{(t_0,x,y)}$ corresponding to (x(t), y(t)) is simple. Moreover, the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable if and only if

$$\lim_{t\to\infty}\int_{t_0}^t\sqrt{e^2(s)+f^2(s)}\exp\left(-\int_{t_0}^s e(\tau)d\tau\right)ds<\infty.$$

$$\omega(t) := \sqrt{e^2(t) + f^2(t)} \exp\left(-\int_{t_0}^t e(s)ds\right)$$

Let



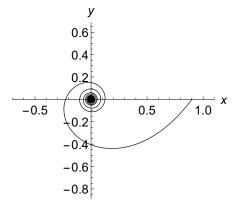


Figure 5.3: Example 5.3; Corollary 1.4 (iii); nonrectifiable.

Figure 5.4: Example 5.4; Theorem 1.3 (iii); nonrectifiable.

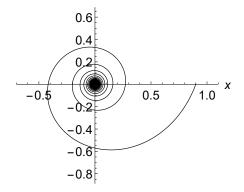


Figure 5.5: Example 5.5; Corollary 4.5; exponentially stable; nonrectifiable.

for all $t \ge 1$. Then we have

$$\omega(t) = t^{-1} \sqrt{t^{-2} + t^{2\sigma}}$$
(5.5)

holds for all $t \ge 1$. We will consider the three cases (i) $\sigma \le -1$, (ii) $-1 < \sigma < 0$ and (iii) $\sigma \ge 0$. Case (i). Using (5.5), we get

$$\int_{1}^{t} \omega(s) ds = \int_{1}^{t} s^{-2} \sqrt{1 + s^{2(\sigma+1)}} ds \le \sqrt{2} \int_{1}^{t} s^{-2} ds = -\sqrt{2}(t^{-1} - 1) < \sqrt{2}$$

for all $t \ge 1$. By Theorem 1.9 we see that the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable.

Case (ii). From (5.5), we have

$$\int_{1}^{t} \omega(s) ds = \int_{1}^{t} s^{\sigma-1} \sqrt{s^{-2(\sigma+1)} + 1} ds \le \sqrt{2} \int_{1}^{t} s^{\sigma-1} ds = \frac{\sqrt{2}}{\sigma} (t^{\sigma} - 1) < \frac{\sqrt{2}}{-\sigma}$$

for all $t \ge 1$. By Corollary 1.9 we see that the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable.

Case (iii). Using (5.5), we get

$$\int_1^t \omega(s) ds \ge \int_1^t s^{\sigma-1} ds \ge \int_1^t s^{-1} ds = \log t$$

for all $t \ge t_0$. By Corollary 1.9 we see that the orbit $\Gamma_{(t_0,x,y)}$ is nonrectifiable. Consequently, we can conclude that the orbit $\Gamma_{(t_0,x,y)}$ is rectifiable if and only if $\sigma < 0$.

Acknowledgements

Masakazu Onitsuka was supported by JSPS KAKENHI Grant Number 20K03668. Satoshi Tanaka was supported by JSPS KAKENHI Grant Number 19K03595. The authors would like to thank the referee for his/her careful reading and comments.

References

- A. BACCIOTTI, L. ROSIER, Liapunov functions and stability in control theory, 2nd ed., Communications and Control Engineering Series, Springer-Verlag, Berlin, 2005. https://doi. org/10.1007/b139028; MR2146587; Zbl 1078.93002
- W. A. COPPEL, Stability and asymptotic behavior of differential equations, D. C. Heath and Co., Boston, 1965. MR0190463; Zbl 0154.09301
- [3] J. K. HALE, Ordinary differential equations, Pure and Applied Mathematics, Vol. 11, Wiley-Interscience, New York, London, Sydney, 1969. MR0419901; Zbl 0186.40901
- [4] L. HORVAT DMITROVIĆ, Box dimension of Neimark–Sacker bifurcation, J. Difference Equ. Appl. 20(2014), No. 7, 1033–1054. https://doi.org/10.1080/10236198.2014.884085; MR3210329; Zbl 1326.37015
- [5] T. KANEMITSU, S. TANAKA, Box-counting dimension of oscillatory solutions to the Emden-Fowler equation, *Differ. Equ. Appl.* 10(2018), No. 2, 239–250. https://doi.org/10.7153/ dea-2018-10-17; MR3805986; Zbl 1404.34036
- [6] L. KORKUT, D. VLAH, D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Generalized Fresnel integrals and fractal properties of related spirals, *Appl. Math. Comput.* 206(2008), No. 1, 236–244. https: //doi.org/10.1016/j.amc.2008.09.009; MR2474969; Zbl 1164.33003
- [7] L. KORKUT, D. VLAH, V. ŽUPANOVIĆ, Fractal properties of Bessel functions, *Appl. Math. Comput.* 283(2016), 55–69. https://doi.org/10.1016/j.amc.2016.02.025; MR3478586; Zbl 1410.33019
- [8] A. N. MICHEL, L. HOU, D. LIU, Stability of dynamical systems: On the role of monotonic and non-monotonic Lyapunov functions, Second edition, Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-15275-2; MR3328630; Zbl 1319.34005
- [9] S. MILIČIĆ, M. PAŠIĆ, Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two-dimensional linear differential systems, *Abstr. Appl. Anal.* 2013, Art. ID 935089, 10 pp. https://doi.org/10.1155/2013/935089; MR3045077; Zbl 1277.34086

- [10] J. P. MILIŠIĆ, D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schrödinger Cauchy problems, *Electron. J. Qual. Theory Differ. Equ.* 2010, No. 60, 1–32. https://doi.org/10.14232/ejqtde.2010.1.60; MR2725003; Zbl 1208.35140
- [11] Y. NAITO, M. PAŠIĆ, Characterization for rectifiable and nonrectifiable attractivity of nonautonomous systems of linear differential equations, *Int. J. Differ. Equ.* 2013, Art. ID 740980, 11 pp. https://doi.org/10.1155/2013/740980; MR3073180; Zbl 1294.34011
- [12] Y. NAITO, M. PAŠIĆ, S. TANAKA, Rectifiable and nonrectifiable solution curves of halflinear differential systems, *Math. Slovaca* 68(2018), 575–590. https://doi.org/10.1515/ ms-2017-0126; MR3805964; Zbl 1441.34066
- [13] M. ONITSUKA, S. TANAKA, Rectifiability of solutions for a class of two-dimensional linear differential systems, *Mediterr. J. Math.* 14(2017), No. 2, Art. No. 51, 11 pp. https://doi. org/10.1007/s00009-017-0854-5; MR3619412; Zbl 1373.34020
- [14] M. ONITSUKA, S. TANAKA, Box-counting dimension of solution curves for a class of twodimensional nonautonomous linear differential systems, *Math. Commun.* 23(2018), No. 1, 43–60. MR3742188; Zbl 1401.34020
- [15] M. PAŠIĆ, Minkowski-Bouligand dimension of solutions of the one-dimensional p-Laplacian, J. Differential Equations 190(2003), 268–305. https://doi.org/10.1016/S0022-0396(02)00149-3; MR1970964; Zbl 1054.34034
- [16] M. PAŠIĆ, S. TANAKA, Fractal oscillations of self-adjoint and damped linear differential equations of second-order, *Appl. Math. Comput.* 218(2011), 2281–2293. https://doi.org/ 10.1016/j.amc.2011.07.047; MR2831502; Zbl 1244.34052
- [17] M. PAŠIĆ, S. TANAKA, Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order, J. Math. Anal. Appl. 381(2011), 27–42. https://doi.org/10. 1016/j.jmaa.2011.03.051; MR2796190; Zbl 1223.34047
- [18] M. PAŠIĆ, D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Oscillatory and phase dimensions of solutions of some second-order differential equations, *Bull. Sci. Math.* 133(2009), 859–874. https: //doi.org/2569871; MR10.1016/j.bulsci.2008.03.004; Zbl 1198.34052
- [19] G. RADUNOVIĆ, D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Fractal analysis of Hopf bifurcation at infinity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22(2012), 1230043, 15 pp. https://doi.org/ 10.1142/S0218127412300431; MR3016148; Zbl 1258.37026
- [20] G. SANSONE, R. CONTI, Non-linear differential equations, International Series of Monographs in Pure and Applied Mathematics, Vol. 67, A Pergamon Press Book, The Macmillan Co., New York, 1964. MR0177153; Zbl 0128.08403
- [21] T. YOSHIZAWA, Stability theory by Liapunov's second method, The Mathematical Society of Japan, Tokyo, 1966. MR0208086; Zbl 0144.10802
- [22] T. YOSHIZAWA, Stability theory and the existence of periodic solutions and almost periodic solutions, Applied Mathematical Sciences, Vol. 14, Springer-Verlag, New York, Heidelberg, 1975. MR0466797; Zbl 0304.34051

- [23] D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Fractal analysis of spiral trajectories of some planar vector fields, Bull. Sci. Math. 129(2005), 457–485. https://doi.org/10.1016/j.bulsci.2004.11. 007; MR2142893; Zbl 1076.37015
- [24] D. ŽUBRINIĆ, V. ŽUPANOVIĆ, Poincaré map in fractal analysis of spiral trajectories of planar vector fields, *Bull. Belg. Math. Soc. Simon Stevin* 15(2008), Dynamics in perturbations, 947–960. https://doi.org/10.36045/bbms/1228486418; MR2484143; Zbl 1153.37011