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Abstract. We present a set of conditions enabling a polynomial system of ordinary dif-
ferential equations in the plane to have invariant algebraic curves. These conditions are
necessary and sufficient. Our main tools include factorizations over the field of Puiseux
series near infinity of bivariate polynomials generating invariant algebraic curves. The
set of conditions can be algorithmically verified. This fact gives rise to a method, which
is able not only to find some irreducible invariant algebraic curves, but also to perform
their classification. We study in details the problem of classifying invariant algebraic
curves in the most difficult case: we consider differential systems with infinite number
of trajectories passing through infinity. As an example, we find necessary and sufficient
conditions such that a general polynomial Liénard differential system has invariant al-
gebraic curves. We present a set of all irreducible invariant algebraic curves for quintic
Liénard differential systems with a linear damping function. It is supposed in scientific
literature that the degrees of their irreducible invariant algebraic curves are bounded
by 6. While we derive irreducible invariant algebraic curves of degree 9.

Keywords: invariant algebraic curves, Darboux polynomials, Liénard differential sys-
tems, Puiseux series.
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1 Introduction

Performing the complete classification of trajectories contained in algebraic curves or surfaces
for a given polynomial system of ordinary differential equations is a very difficult problem.
Such algebraic curves and surfaces producing trajectories of a differential system are called
invariants. The knowledge of the set of all irreducible invariants is very important in describ-
ing dynamical properties and establishing integrability of a system under consideration. It
was noted by Jean Gaston Darboux and Henri Poincaré that the main difficulty in finding ir-
reducible invariants lies in the fact that their degrees are unknown in advance. Nowadays the
problem of defining an upper bound on the degrees of irreducible invariant algebraic curves
is known as the Poincaré problem. This problem is very difficult in general settings. Solutions
are only available in restricted cases, for more details see [20] and references therein.
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Let us consider the following polynomial system of ordinary differential equations in the
plane

xt = P(x, y), yt = Q(x, y) (1.1)

with coprime polynomials P(x, y) and Q(x, y) ∈ C[x, y]. By C[x, y] we denote the ring of
bivariate polynomials with coefficients from the field of complex numbers C. The curve
F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an invariant algebraic curves of this system when-
ever the following condition is valid Ft|F=0 = (PFx + QFy)|F=0 = 0. If F(x, y) is irreducible
in C[x, y], then the ideal generated by F(x, y) is radical. Consequently, there exists an el-
ement λ(x, y) of the ring C[x, y] such that the following linear partial differential equation
P(x, y)Fx + Q(x, y)Fy = λ(x, y)F is satisfied. The polynomial λ(x, y) is called the cofactor of
the invariant algebraic curve F(x, y) = 0. The degree of λ(x, y) is at most d− 1, where d is
the maximum between the degrees of the polynomials P(x, y) and Q(x, y). Let the variable
y be privileged with respect to the variable x, then the function y(x) satisfies the following
algebraic first-order ordinary differential equation

P(x, y)yx −Q(x, y) = 0. (1.2)

The aim of the present article is to present new necessary and sufficient conditions for
the existence of invariant algebraic curves. Our main tools include asymptotic analysis of
solutions to equation (1.2) and some results of algebraic geometry. The problem of finding
a set of conditions satisfied by a polynomial system of ordinary differential equations in the
plane with invariant algebraic curves was previously considered by J. Chavarriga et al. [3].
The method of article [3] also uses the local properties of solutions of differential system (1.2).
The conditions obtained by J. Chavarriga et al. are necessary conditions, but not sufficient.
Let us name some other works [15–17], which deal with algebraic functions, asymptotic series
and their role in finding first integrals and invariant algebraic curves of system (1.1).

Puiseux (or fractional power) series generalize Laurent series and can be used if one needs
to find local representations of solutions for algebraic equations of the form F(x, y(x)) = 0
with F(x, y) ∈ C[x, y] \C[x]. A Puiseux series in a neighborhood of the point x = ∞ reads as

y(x) =
+∞

∑
l=0

clx
l0−l
n0 , (1.3)

where l0 ∈ Z, n0 ∈ N. The set of formal Puiseux series given by (1.3) produces an alge-
braically closed field, which we denote by C∞{x}. In addition, we shall consider the ring
C∞{x}[y] of polynomials in one variable with coefficients from the field C∞{x}. It follows
from the algebraic closeness of the field C∞{x} that every element from the ring C∞{x}[y] is
a product of polynomials in y of degree at most one. The differentiation in the field C∞{x} is
defined as a formal operation with most of the properties similar to those valid for convergent
Puiseux series. Any bivariate polynomial F(x, y) ∈ C[x, y] can be viewed as an element of
the ring C∞{x}[y]. Consequently, for the algebraic curve F(x, y) = 0 given by the polynomial
F(x, y), we can construct a factorization into a zero-degree and first-degree factors in the ring
C∞{x}[y], see [5, 6, 10, 24].

All the Puiseux series solving equation (1.2) can be found using algorithms of the power
geometry [1, 2] and Painlevé methods [19]. After the classification of Puiseux series satisfying
equation (1.2) is completed, the computation of invariant algebraic curves F(x, y) = 0 can
be made purely algebraic. Indeed, one should require that the non-polynomial part of the
factorization for the polynomial F(x, y) in the ring C∞{x}[y] vanishes. Generally speaking,
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this approach gives an infinite algebraic system. Due to the Hilbert’s basis theorem only finite
number of equations can be considered in practice. Note that the roles of x and y can be
changed.

Let us name other methods of finding invariant algebraic curves. The most commonly used
methods include the method of undetermined coefficients, the method of the extactic polyno-
mial [4, 21], and an algorithm based on decomposing the vector field related to the original
differential system into weight-homogenous components [19]. The method of undetermined
coefficients is able to find invariant algebraic curves of fixed degrees only. In addition, the
computations may be sufficiently involved. The method of the extactic polynomial was intro-
duced by M. N. Lagutinski [21] and further developed by C. Christopher et al. [4] This method
requires calculating certain determinants that are as a rule sufficiently huge. In addition, the
method needs a priori information about an upper bound on the degrees of irreducible in-
variant algebraic curves. The algorithm of decomposing the vector field related to the original
system into weight-homogenous components gives an infinite sequence of partial differential
equations. On the contrary, the second part of the method of Puiseux series is purely alge-
braic. Moreover, the latter method is capable to solve the Poincaré for a given polynomial
differential system. This comparison shows that the method of Puiseux series presented in
works [5, 6, 10] and developed in this article is a natural and visual method of finding and
classifying invariant algebraic curves of polynomial differential systems in the plane (1.1). Let
us mention that the problem of finding all irreducible invariant algebraic curves of differential
systems (1.1) with infinite number of trajectories passing through infinity was not considered
in articles [5, 6, 10]. Meanwhile this case turns out to be the most difficult. In this work our
goal is to fill this gap. In other words we shall examine the situation with infinite number of
Puiseux series near the point x = ∞ that satisfy equation (1.2).

As an application of our method we shall consider the famous Liénard differential systems.
The systems of first-order ordinary differential equations given by

xt = y, yt = − f (x)y− g(x) (1.4)

are commonly referred to as Liénard differential systems. These systems are used to model
different phenomena in physics, chemistry, biology, economics, etc. In this article we consider
polynomial Liénard differential systems, i.e. f (x) and g(x) are polynomials

f (x) = f0xm + · · ·+ fm, g(x) = g0xn + · · ·+ gn, f0g0 6= 0 (1.5)

with coefficients in the field C. K. Odani proved that Liénard systems with n ≤ m have
no invariant algebraic curves with the exception for some trivial cases [23]. Integrability
properties of these families of systems under the condition n ≤ m were studied by J. Llibre and
C. Valls [22]. H. Żolądek considered the problem of finding limit cycles contained in the ovals
of hyperelliptic invariant algebraic curves (y− p(x))2 − q(x) = 0 with p(x), q(x) ∈ C[x], see
[25]. The general structure of irreducible invariant algebraic curves and some other properties
in the case m < n < 2m + 1 were investigated in articles [6, 10]. Explicit expressions of
invariant algebraic curves for Liénard differential systems with m = 1 and n = 2 where
presented in work [14]. This article is devoted to the leftover cases: n ≥ 2m + 1. Let us note
that the case n = 2m+ 1 is in certain sense degenerate and the problem of classifying invariant
algebraic curves for n = 2m + 1 is very complicated. This degeneracy can be explained
analyzing properties of Puiseux series satisfying an algebraic first-order ordinary differential
equation of the form (1.2) related to associated Liénard differential systems.
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This article is organized as follows. In Section 2 we present and prove our main results
and consider some computational aspects of solving an algebraic system resulting form our
theorems. In Section 3 we study Liénard differential systems with n ≥ 2m + 1 in details. In
particular, we present the general structure of their invariant algebraic curves and cofactors.
Finally, in Section 4 we derive the complete classification of irreducible invariant algebraic
curves of systems (1.4) with m = 1 (deg f (x) = 1) and n = 5 (deg g(x) = 5). In the Appendix,
an algorithm of finding Puiseux series solving an algebraic first-order ordinary differential
equation is described.

2 Computational aspects of the Puiseux series method

Let us begin this section with some preliminary observations resulting from a factorization of
an invariant algebraic curve F(x, y) = 0 of differential system (1.1) in the ring C∞{x}[y]. It
is straightforward to show that invariant algebraic curves of differential system (1.1) capture
Puiseux series satisfying equation (1.2).

Lemma 2.1 ([5]). Let y(x) be a Puiseux series near the point x = ∞ that satisfies the equation
F(x, y) = 0 with F(x, y) = 0 being an invariant algebraic curve of differential system (1.1) such that
F(x, y) ∈ C[x, y] \C[x]. Then the series y(x) solves equation (1.2).

Suppose S(x, y) is an element of the ring C∞{x}[y]. Let us introduce two operators of
projection acting in this ring. The first operator {S(x, y)}+ gives the sum of the monomials of
S(x, y) with non-negative integer powers. In other words, {S(x, y)}+ yields the polynomial
part of S(x, y). Analogously, the projection {S(x, y)}− = S(x, y) − {S(x, y)}+ produces the
non-polynomial part of S(x, y). It is straightforward to show that these projections are linear
operators. The action of the projection operators can be extended to the ring of Puiseux series
in y near the point y = ∞ with coefficients from the field C∞{x}.

By µ(x) we shall denote the highest-order coefficient (with respect to y) of the bivariate
polynomial F(x, y) producing the invariant algebraic curve F(x, y) = 0 of differential sys-
tem (1.1). The following theorem was proved in articles [5, 10].

Theorem 2.2 ([5, 10]). Let F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C[x] be an irreducible invariant
algebraic curve of differential system (1.1). Then F(x, y) and its cofactor λ(x, y) take the form

F(x, y) =

{
µ(x)

N

∏
j=1

{
y− yj(x)

}}
+

,

λ(x, y) =

{
P(x, y)

∞

∑
m=0

L

∑
l=1

νlxm
l

xm+1 +
∞

∑
m=0

N

∑
j=1

{Q(x, y)− P(x, y)yj, x}ym
j

ym+1

}
+

,

(2.1)

where y1(x), . . . , yN(x) are pairwise distinct Puiseux series in a neighborhood of the point x = ∞
that satisfy equation (1.2), x1, . . . , xL are pairwise distinct zeros of the polynomial µ(x) ∈ C[x] with
multiplicities ν1, . . . , νL ∈N and L ∈N∪ {0}. The degree of F(x, y) with respect to y does not exceed
the number of distinct Puiseux series of the from (1.3) satisfying equation (1.2) whenever the latter is
finite. If µ(x) = µ0, where µ0 ∈ C, then we suppose that L = 0 and the first series is absent in the
expression for the cofactor λ(x, y).

Theorem 2.2 gives rise to the following algorithm of finding invariant algebraic curves
F(x, y) = 0 with F(x, y) ∈ C[x, y] \C[x].
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At the first step one should construct all the Puiseux series (near finite points and infinity)
that satisfy equation (1.2). Algorithms of classifying Puiseux series solving an algebraic ordi-
nary differential equation are available in the framework of the power geometry [1,2] and the
Painlevé methods [19], see Appendix.

At the second step one uses Theorem 2.2 in order to derive the structure of an irreducible
invariant algebraic curve and its cofactor, see relations (2.1). Possible zeros of the polynomial
µ(x) can be obtained using Puiseux series near finite points possessing certain properties. We
shall not discuss this problem here, for more details see [10]. Note that at this step all possible
combinations of Puiseux series near infinity found at the first step should be considered if
one wishes to classify irreducible invariant algebraic curves. Requiring that the following
condition {

µ(x)
N

∏
j=1

{
y− yj(x)

}}
−

= 0 (2.2)

is satisfied yields a system of algebraic equations.
At the third step one solves the algebraic system and makes the verification substituting the

resulting polynomial F(x, y) related to the invariant algebraic curve and its cofactor λ(x, y)
into equation

P(x, y)Fx + Q(x, y)Fy = λ(x, y)F. (2.3)

Interestingly, we do not need to consider the convergence of formal Puiseux series solving
equation (1.2). Indeed, we perform all the steps of the method working with formal series,
and finally, if some formal Puiseux series enters the factorization in the ring C∞{x}[y] of the
resulting polynomial F(x, y) giving the invariant algebraic curve F(x, y) = 0, then this series
is convergent in some domain by a Newton–Puiseux theorem.

The aim of the present article is to consider the problem of constructing and solving the
system arising at the third step of the method.

Let us leave for a while the x-dependence of the elements yj(x) from the field C∞{x}
and consider the ring Sym ⊂ C[y1, . . . , yN ] of symmetric polynomials in N variables. It is
a classical result that Sym is isomorphic to a polynomial ring with N generators. The most
commonly used generators include elementary symmetric polynomials given by

sk = ∑
1≤j1<j2<···<jk≤N

yj1 yj2 · · · yjk , 1 ≤ k ≤ N (2.4)

and power-sum symmetric polynomials

Sk =
N

∑
j=1

yk
j , 1 ≤ k ≤ N. (2.5)

These generators are related via the Newton’s identities of the form

ksk =
k

∑
j=1

(−1)j−1sk−jSj, 1 ≤ k ≤ N;

Sk = (−1)k−1ksk +
k−1

∑
j=1

(−1)k+j−1sk−jSj, 1 ≤ k ≤ N,

(2.6)

where additionally should be set s0 = 1. It is not an easy problem to find the coefficients of
the Puiseux series given by the elementary symmetric polynomials sk(y1(x), . . ., yN(x)) with
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k > 1 if N is not known in advance. This is due to the fact that the coefficients of Puiseux se-
ries satisfying an algebraic ordinary differential equation are defined via recurrence relations.
At the same time computing coefficients of symmetric polynomials Sk(y1(x), . . . , yN(x)) is
straightforward. The following theorem contains necessary and sufficient conditions enabling
the existence of invariant algebraic curves.

Theorem 2.3. The polynomial F(x, y) ∈ C[x, y] \ C[x] of degree N > 0 with respect to y gives an
invariant algebraic curve F(x, y) = 0 of differential system (1.1) if and only if there exist N Puiseux
series y1(x), . . . , yN(x) from the field C∞{x} that solve equation (1.2) and satisfy the conditions{

k

∑
j=1

(−1)j−1wk−j(x)Sj(y1(x), . . . , yN(x))

}
−

= 0, 1 ≤ k ≤ N, (2.7)

where wm(x) ∈ C[x] are defined as

wm(x) =

{
1
m

m

∑
j=1

(−1)j−1wm−j(x)Sj(y1(x), . . . , yN(x))

}
+

, 1 ≤ m ≤ N (2.8)

and w0(x) = µ(x) with µ(x) ∈ C[x] being the highest-order coefficient with respect to y of the
polynomial F(x, y).

Proof. Let us prove necessity of conditions (2.7). Factorizing the polynomial F(x, y) giving an
invariant algebraic curve F(x, y) = 0 of differential system (1.1) in the ring C∞{x}[y] yields

F(x, y) = µ(x)
N

∏
j=1

{
y− yj(x)

}
, (2.9)

where it follows from Lemma 2.1 that the Puiseux series y1(x), . . . , yN(x) satisfy equation (1.2).
It is straightforward to rewrite relation (2.9) in the form

F(x, y) = µ(x)
N

∑
j=0

(−1)jsj(y1(x), . . . , yN(x))yN−j. (2.10)

The non-polynomial part of this expression vanishes and the elements µ(x)sm(y1(x), . . . , yN(x))
should be polynomials coinciding with wm(x) given in (2.8). Considering the non-polynomial
coefficients at yN−k, we obtain the conditions

{µ(x)sk (y1(x), . . . , yN(x))}− = 0, 1 ≤ k ≤ N. (2.11)

Using relations (2.6), we see that conditions (2.11) are equivalent to (2.7).
In order to verify sufficiency of conditions (2.7), let us consider a formal expression (2.9)

and at first prove that it is a polynomial in C[x, y]. We need to establish that for each k from
1 to N the coefficient at yN−k in expression (2.9) is a polynomial. We shall use induction
on k. If k = 1, then condition (2.7) reads as {µ(x)S1(y1(x), . . . , yN(x))}− = 0 and we see
that the coefficient at yN−1 in relations (2.9) and (2.10) is a polynomial in x taking the form
−w1(x), where w1(x) = {µ(x)S1(y1(x), . . . , yN(x))}+. Let us suppose that the coefficients at
yN−k with 1 < k ≤ l are polynomials in x. These polynomials we denote as (−1)kwk(x). It is
straightforward to prove that they are given by relations (2.8) with 1 < k ≤ l.
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The coefficient at yN−(l+1) in relation (2.9) is equal to (−1)l+1µ(x)sl+1(y1(x), . . . , yN(x)).
Using expression (2.6), we find

µ(x)sl+1(y1(x), . . . , yN(x)) =
1

l + 1

l+1

∑
j=1

(−1)j−1µ(x)sl+1−jSj (2.12)

According to the induction hypothesis, we see that the elements µ(x)sl+1−j, 1 ≤ j ≤ l + 1
are polynomials in x coinciding with wl+1−j(x), 1 ≤ j ≤ l + 1 and consequently it follows
from condition (2.7) at k = l + 1 that the coefficient at yN−(l+1) is a polynomial in x. Thus we
conclude that expression (2.9) gives a bivariate polynomial F(x, y) from the ring C[x, y].

Finally, let us establish that the polynomial F(x, y) indeed gives an invariant algebraic
curve F(x, y) = 0 of differential system (1.1). Let f (x, y) ∈ C[x, y] \ C[x] be an irreducible
factor of the polynomial F(x, y). The element P fx +Q fy is also a polynomial, which we denote
as h(x, y), i.e. h(x, y) = P fx + Q fy. Let us take one of the Puiseux series near infinity yj(x) that
satisfies the equation f (x, yj(x)) = 0. Differentiating this equation, we obtain fx(x, yj(x)) +
fy(x, yj(x))yj, x = 0. Since f (x, y) divides F(x, y), we see that the series yj(x) solves equation
(1.2) and we get P(x, yj(x))yj, x − Q(x, yj(x)) = 0. Combining the equations fx(x, yj(x)) +
fy(x, yj(x))yj, x = 0 and P(x, yj(x))yj, x − Q(x, yj(x)) = 0 yields the relation h(x, yj(x)) = O,
where O is the zero element of the field C∞{x}. Note that P(x, yj(x)) 6= O. Indeed, assuming
the converse, we find from equation (1.2) that Q(x, yj(x)) = O. This fact contradicts the
assumption that the polynomials P(x, y) and Q(x, y) are coprime in the ring C[x, y]. It follows
from the relations f (x, yj(x)) = 0 and h(x, yj(x)) = 0, that two algebraic curves f (x, y) = 0
and h(x, y) = 0 intersect in an infinite number of points inside the domain of convergence
of the series yj(x). Using the Bézout’s theorem, we see that there exists a polynomial both
dividing f (x, y) and h(x, y). Since f (x, y) is irreducible, we find that h(x, y) = λ0(x, y) f (x, y)
with λ0(x, y) ∈ C[x, y]. Recalling the definition of h(x, y), we conclude that the polynomial
f (x, y) gives an invariant algebraic curve of differential system (1.1) and the same is true for
all other irreducible divisors of F(x, y). Thus, so does F(x, y). This completes the proof.

If the highest-order coefficient (with respect to y) of the polynomial F(x, y) is a constant,
then there is no loss of generality in setting µ(x) = 1. Repeating the reasoning of Theorem 2.3
for this particular case we obtain the following lemma.

Lemma 2.4. The polynomial F(x, y) ∈ C[x, y] \ C[x] of degree N > 0 with respect to y and with
µ(x) = 1 gives an invariant algebraic curve F(x, y) = 0 of differential system (1.1) if and only if
there exist N Puiseux series y1(x), . . . , yN(x) defined in a neighborhood of the point x = ∞ that solve
equation (1.2) and satisfy the conditions{

N

∑
j=1

yk
j (x)

}
−

= 0, 1 ≤ k ≤ N. (2.13)

Again we remark that an algorithm of finding Puiseux series solving a first-order algebraic
ordinary differential equation is presented in the Appendix. It follows from Theorem 2.2 that
the Puiseux series in Theorem 2.3 and in Lemma 2.4 should be pairwise distinct whenever
one wishes to find irreducible invariant algebraic curves.

If all the Puiseux series near the point x = ∞ satisfying equation (1.2) have uniquely
determined coefficients, then the degrees with respect to y of bivariate polynomials giving
irreducible invariant algebraic curves of differential system (1.1) are bounded by the num-
ber of distinct Puiseux series. This fact was established in Theorem 2.2. Consequently, the
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algebraic system produced by Theorem 2.3 involves only the parameters of the original sys-
tem and possibly the zeros of the polynomial µ(x), which are connected with the existence
of Puiseux series near finite points that solve equation (1.2) and have certain properties [10].
While if there exists a family of Puiseux series near the point x = ∞ solving equation (1.2)
such that these series possess arbitrary coefficients resulting from the presence of a ratio-
nal non-negative Fuchs index, then it is unknown in advance how many times this family
should be taken in representation (2.1) of the polynomial F(x, y) producing irreducible in-
variant algebraic curve F(x, y) = 0. Let us consider one of such families with an arbitrary
coefficient cm where m ∈ N0. The coefficient cm is arbitrary in the sense that it is not
provided by equation (1.2). Suppose that representation (2.1) involves this family of series
M times with M ∈ N. The coefficients c(1)m , . . . , c(M)

m will entre the algebraic system. The
problem is to find not only c(1)m , . . . , c(M)

m , but also the number M. Note that the coefficients
c(1)m , . . . , c(M)

m should be pairwise distinct whenever the resulting invariant algebraic curve is
irreducible. Due to the invariance of the polynomial F(x, y) with respect to permutations of
the Puiseux series y1(x), . . . , yN(x) and the structure of recurrence relations satisfied by coef-
ficients of a Puiseux series solving an algebraic first-order ordinary differential equation, we
conclude that the polynomial F(x, y) inherits the invariance with respect to the permutations
of c(1)m , . . . , c(M)

m . Consequently, the algebraic system with the exception for some degenerate
cases can be rewritten in terms of invariants

Ck =
M

∑
j=1

(
c(j)

m

)k
. (2.14)

The same result follows from Theorem 2.3. In relation (2.14) we should set k ∈N whenever the
family of Puiseux series under consideration corresponds to an edge of the Newton polygon
related to equation (1.2). While k ∈ Z provided that the family of Puiseux series in question
corresponds to a vertex of the Newton polygon. Thus, we conclude that the variables M and
{Ck} should be added to the list of variables. Further, one needs to study the structure of the
polynomial ideal generated by the algebraic system in the ring of polynomials in the variables
including the parameters of the original system, possible zeroes of the polynomial µ(x), {Ck},
and M. Solutions with M ∈ N should be selected. If several families of Puiseux series near
the point x = ∞ that have arbitrary coefficients take part in representation (2.1), then the
variables {Ck} and M should be introduced for each family of series.

It was proved in article [10] that there exists at most one irreducible invariant algebraic
curve F(x, y) = 0 of differential system (1.1) such that a Puiseux series near the point x = ∞
that solves equation (1.2) and possesses uniquely determined coefficients enters the represen-
tation of the polynomial F(x, y) in the field C∞{x}. Consequently, the most difficult problem is
finding irreducible invariant algebraic curves given by representation (2.1) with all the Puiseux
series possessing coefficients not provided by equation (1.2).

The following theorem is very important for practical solving the algebraic system in the
latter case.

Theorem 2.5. Let us consider the algebraic system of equations

M

∑
j=1

(
aj
)k

= Mgk, k ∈N, (2.15)

where a1, . . . , aM ∈ C and M ∈ N are unknown variables, {gk} are given complex numbers. If for
some M0 ∈ N this system has a solution (a1, . . . , aM0) with aj1 6= aj2 whenever j1 6= j2, then there are
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no other solutions of this system except for M = lM0, where l ∈N \ {1}. The latter solutions involve
l multiple roots for each element of the tuple (a1, . . . , aM0). Note that tuples obtained from each other
by permutations of their elements are supposed to be equivalent. We consider only one representative
from each equivalence class.

Proof. It is straightforward to verify that there exist "multiple" solutions for any solution
with pairwise distinct elements of the tuple (a1, . . . , aM0). Let us establish that there are no
other solutions. The proof is by contradiction. Suppose that system (2.15) possesses a solu-
tion (ã1, . . . , ãM1) with M = M1, where either M1 6= lM0 or M1 = lM0 and the tuple (ã1,
. . ., ãM1) does not coincide with that described in the statement of the theorem. We recall
that the left-hand side of relations (2.15) represent power-sum symmetric polynomials in the
ring C[a1, . . . , aM]:

pk =
M

∑
j=1

(
aj
)k . (2.16)

Let us introduce the elementary symmetric polynomials

ek = ∑
1≤j1<j2<···<jk≤M

aj1 aj2 · · · ajk , (2.17)

which are uniquely expressible via power-sum symmetric polynomials. Further, we consider
the following algebraic equation of degree M2 = M0M1

aM2 − e1 (a1, . . . , aM2) aM2−1 + e2 (a1, . . . , aM2) aM2−2

+ · · ·+ (−1)M2 eM2 (a1, . . . , aM2) = 0 (2.18)

It is straightforward to show that this equation possesses two distinct sets of solutions: M1

multiple roots for each element of the tuple (a1, . . . , aM0) and M0 multiple roots for each ele-
ment of the tuple (ã1, . . . , ãM1). The set of solutions of a polynomial equation in one variable
over the field C is unique up to the permutation of the roots. This contradiction completes the
proof.

If all the Puiseux series in representation (2.1) possess arbitrary coefficients, then the ele-
ments Ck given in (2.14) are of the form Ck = Mgk. It follows from the fact that Fl(x, y) = 0
with l ∈ N is an invariant algebraic curve whenever so does F(x, y) = 0. Consequently,
Theorem 2.5 can be used for establishing uniqueness of irreducible invariant algebraic curves.
Indeed, as soon as a solution (a1, . . . , aM0) with aj1 6= aj2 and M0 ∈N is found one should stop
calculations because other solutions will give reducible invariant algebraic curves. Examples
will be given in Section 4.

3 Invariant algebraic curves for Liénard differential systems

Now our aim is to apply the general results of the previous section to polynomial Liénard
differential systems (1.4). Supposing that the variable y is dependent and the variable x is in-
dependent, we see that the function y(x) satisfies the following first-order ordinary differential
equation

yyx + f (x)y + g(x) = 0. (3.1)

Let us begin with simple properties of invariant algebraic curves and their cofactors.
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Lemma 3.1. Suppose F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an invariant algebraic curve of a
Liénard differential system. The following statements are valid.

1. There are no invariant algebraic curves such that F(x, y) ∈ C[x].

2. The highest-order coefficient with respect to y of the polynomial F(x, y) is a constant.

3. The cofactors of invariant algebraic curves are independent of y.

Proof. Substituting λ(x, y) = λ0(x)yl , F(x, y) = µ(x)yN with l, N ∈ N ∪ {0} into the partial
differential equation

yFx − { f (x)y + g(x)}Fy = λ(x, y)F. (3.2)

and balancing the highest-order terms with respect to y, we conclude that µ(x) ∈ C, l = 0,
and N ∈ N. This means that cofactors of invariant algebraic curves do not depend on y and
there are no invariant algebraic curves independent of y. In addition, we observe that the
highest-order coefficient (with respect to y) of F(x, y) is a constant. Without loss of generality
we set µ(x) = 1. This result can be also obtained using the structure of Puiseux series near
finite points that satisfy equation (3.1), for more details see [10].

Our next step is to establish that the necessary and sufficient conditions of Theorem 2.3
and Lemma 2.4 become very easy in the case of Liénard differential systems.

Theorem 3.2. The polynomial F(x, y) ∈ C[x, y] \ C of degree N ∈ N with respect to y gives an
invariant algebraic curve of a Liénard differential system if and only if there exist N Puiseux series
y1(x), . . . , yN(x) defined in a neighborhood of the point x = ∞ that solve equation (3.1) and satisfy
the conditions {

N

∑
j=1

yj(x)

}
−

= 0. (3.3)

Proof. It follows from Lemma 3.1 that Liénard differential systems do not have invariant alge-
braic curves with generating polynomials independent of y. Let us suppose that F(x, y) = 0
is an invariant algebraic curve of a system (1.4) such that F(x, y) ∈ C[x, y] \C[x].

We shall use the results of Lemma 2.4. Let us show that if conditions (2.13) are satisfied
at k = 1, then they are also satisfied for all k ∈ N. Our proof is by induction on k. Suppose
that conditions (2.13) with k ≤ m hold. The Puiseux series appearing in these conditions solve
equation (3.1). Substituting y(x) = yj(x) into equation (3.1) and multiplying the result by
ym−1

j , we get
1

m + 1
d

d x

(
ym+1

j

)
= − f (x)ym

j − g(x)ym−1
j . (3.4)

Performing the summation, we obtain

1
m + 1

d
d x

(
N

∑
j=1

ym+1
j

)
= − f (x)

N

∑
j=1

ym
j − g(x)

N

∑
j=1

ym−1
j . (3.5)

It follows from the induction hypothesis that the right-hand side in (3.5) is a polynomial. This
yields

1
m + 1

{
d

d x

(
N

∑
j=1

ym+1
j

)}
−

= 0 (3.6)
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It is straightforward to see that for any element y(x) of the field C∞{x} the following relation
{y(x)}− = 0 is valid whenever {yx(x)}− = 0. Consequently, we get{

N

∑
j=1

ym+1
j

}
−

= 0. (3.7)

Finally, the necessity and sufficiency of condition (3.3) follows from the results of Lemma 2.4
and the calculations carried out above.

In Section 4 we shall use this lemma to perform the classification of irreducible invariant
cases for Liénard differential systems with n = 1 (deg f (x) = 1) and m = 5 (deg g(x) = 5).

Now let us present the general structure of invariant algebraic curves and their cofactors
for Liénard systems satisfying the condition n ≥ 2m + 1. Recall that systems (1.4) with n <

2m + 1 were considered in articles [5, 10]. We begin with the case n > 2m + 1.

Theorem 3.3. Let F(x, y) = 0 with F(x, y) ∈ C[x, y] \C be an irreducible invariant algebraic curve
of a Liénard differential system from the family (1.4) with n > 2m + 1. Then F(x, y) and its cofactor
take the form

F(x, y) =

{
N1

∏
j=1

{
y− y(1)j (x)

} N2

∏
j=1

{
y− y(2)j (x)

}}
+

, (3.8)

λ(x, y) = −(N1 + N2) f −
{

N1h(1)x + N2h(2)x

}
+

, (3.9)

where the Puiseux series y(1,2)
j (x) are given by the relations

y(1,2)
j (x) = h(1,2)(x) +

∞

∑
k=2(n+1)

c(1,2)
k, j x

n+1
2 −

k
2 , h(1,2)(x) =

2n+1

∑
k=0

c(1,2)
k x

n+1
2 −

k
2 (3.10)

and N1, N2 ∈ N ∪ {0}, N1 + N2 ≥ 1. The coefficients c(1,2)
2(n+1), j with the same upper index are

pairwise distinct and all the coefficients c(1,2)
m, j with m > 2(n + 1) are expressible via c(1,2)

2(n+1), j. If n is

an odd number, then the corresponding Puiseux series are Laurent series and c(1,2)
2l−1 = 0, c(1,2)

2l−1, j = 0
with l ∈ N. In addition, Nk = 1 whenever n is odd and Nl = 0, where k, l = 1, 2 and k 6= l. If n is
an even number, then N1 = N2.

Proof. It follows from Lemma 3.1 that we can set µ(x) = 1. By Theorem 2.2 Puiseux series
from the field C∞{x} that arise in representation (2.1) are those satisfying equation (3.1). Let
us perform the classification of Puiseux series near the point x = ∞ solving equation (3.1) with
the restriction n > 2m + 1. For this aim we shall use the algorithm presented in the Appendix.
There exists only one dominant balance that produce Puiseux series in a neighborhood of the
point x = ∞. The ordinary differential equation related to this balance and its solutions are
the following

yyx + g0xn = 0, y(1,2)(x) = c(1,2)
0 x

n+1
2 , c(1,2)

0 = ±
√
−2(n + 1)g0

(n + 1)
. (3.11)

Calculating the Gâteaux derivative of the balance at its power solutions yields the Fuchs index:
p = n + 1. Definitions of dominant balances and Fuchs indices can be found in [1,2,5,19], see
also Appendix. Thus, we conclude that the Puiseux series corresponding to asymptotics (3.11)
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exist and have arbitrary coefficients at x−(n+1)/2 provided that the compatibility conditions
related to the unique Fuchs are satisfied. If n is an odd number, then Puiseux series (3.10) are
Laurent series.

Finding the factorization of F(x, y) in the ring C∞{x}[y] and taking the polynomial part
of this representation, we obtain (3.8). Since the polynomial F(x, y) in (3.8) is irreducible, we
get the condition of the theorem on the coefficients c(1,2)

2(n+1), j with the same upper index.
Now let us suppose that n is an odd number and N2 = 0. Our aim is to show that N1 = 1.

All the Puiseux series near the point x = ∞ arising in expression (3.8) are Laurent series with
the same initial part of the series. Further, we introduce the new variable z by the rule

z = y−
n+1

2

∑
l=0

c(1)2l x
n+1

2 −l . (3.12)

Calculating the projection in expression (3.8) yields{
N1

∏
j=1

(
z− c(1)n+3x−1 − . . .− c(1)2(n+1),jx

− n+1
2 − . . .

)}
+

= zN1 . (3.13)

Requiring that the resulting invariant algebraic curve be given by an irreducible polynomial,
we get N1 = 1. The same can be done if N1 = 0 and n is odd.

Substituting L = 0 and series (3.10) into expression (2.1), we find the cofactor as given
in (3.9). Finally, if n is even, we calculate the coefficient at yN1+N2−1x(n+1)/2. The result is
(N1 − N2)c

(1)
0 . Since yN1+N2−1x(n+1)/2 is not an element of the ring C[x, y] and c(1)0 6= 0, we get

N1 = N2. The proof is completed.

Let us turn to Liénard differential systems satisfying the condition n = 2m+ 1. We shall see
that the Fuchs indices of the dominant balances near the point x = ∞ for equation (3.1) depend
on the parameters f0 and g0. It was proved in article [10] and in Theorem 3.3 that such a
situation cannot take place for other Liénard differential systems. This fact makes classification
of irreducible invariant algebraic curves sufficiently difficult in the case n = 2m + 1. The
method of Puiseux series can deal with each case of a fixed positive rational Fuchs index
separately.

We shall demonstrate that the structure of polynomials producing invariant algebraic
curves is in strong correlation with the properties of the following quadratic equation

p2 − $p + (m + 1)$ = 0, (3.14)

where we have introduced notation

$ = 4(m + 1)− f 2
0

g0
. (3.15)

The set of all positive rational numbers will be denoted as Q+. Let p1 and p2 be the roots of
equation (3.14).

Theorem 3.4. Suppose F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an irreducible invariant algebraic
curve of a Liénard differential system from family (1.4) with n = 2m + 1. One of the following
statements holds.



Necessary and sufficient conditions for the existence of invariant algebraic curves 13

1. If p1, p2 6∈ Q+ ∪ {0}, then the polynomial F(x, y) is of degree at most two with respect to y and

F(x, y) =
{{

y− y(1)(x)
}s1
{

y− y(2)(x)
}s2
}
+

,

λ(x, y) = −(s1 + s2) f (x)−
{

s1y(1)x + s2y(2)x

}
+

,

y(k)(x) =
∞

∑
l=0

c(k)l xm+1−l , c(k)0 =
f0

pk − 2(m + 1)
, k = 1, 2,

(3.16)

where s1 and s2 are either 0 or 1 independently, s1 + s2 > 0. The Puiseux series y(k)(x), k = 1,
2 are Laurent series and possess uniquely determined coefficients.

2. If pk ∈ Q+, pq 6∈ Q+, where either k = 1, q = 2 or k = 2, q = 1, then the polynomial F(x, y)
and the cofactor λ(x, y) take the form

F(x, y) =

{
Nk

∏
j=1

{
y− y(k)j (x)

}{
y− y(q)(x)

}sq

}
+

,

λ(x, y) = −(Nk + sq) f (x)−
{

Nk

∑
j=1

y(k)j, x + sqy(q)x

}
+

,

y(k)j (x) =
∞

∑
l=0

c(k)l, j xm+1− l
nk , y(q)(x) =

∞

∑
l=0

c(q)l xm+1−l ,

c(k)0, j =
f0

pk − 2(m + 1)
, c(q)0 =

f0

pq − 2(m + 1)
,

(3.17)

where Nk ∈ N ∪ {0}, sq is either 0 or 1, Nk + sq > 0. The Puiseux series y(q)(x) is a Laurent
series and possesses uniquely determined coefficients. The Puiseux series y(k)j (x) have pairwise
distinct coefficients c(k)nk pk , j. The number nk is defined as pk = lk/nk, where lk and nk are coprime
natural numbers.

3. If p1, p2 ∈ Q+, then the polynomial F(x, y) and the cofactor λ(x, y) take the form

F(x, y) =

{
N1

∏
j=1

{
y− y(1)j (x)

} N2

∏
j=1

{
y− y(2)j (x)

}}
+

,

λ(x, y) = −(N1 + N2) f (x)−
{

N1

∑
j=1

y(1)j, x +
N2

∑
j=1

y(2)j, x

}
+

,

y(k)j (x) =
∞

∑
l=0

c(k)l, j xm+1− l
nk , c(k)0, j =

f0

pk − 2(m + 1)
, k = 1, 2,

(3.18)

where N1, N2 ∈ N ∪ {0}, N1 + N2 > 0. The Puiseux series y(k)j (x) possess pairwise distinct
coefficients c(k)nk pk , j. The number nk is defined as pk = lk/nk, where lk and nk are coprime natural
numbers, k = 1, 2.

4. If p1 = p2 = 0, then the polynomial F(x, y) and the cofactor λ(x, y) take the form

F(x, y) = y +
f0

2(m + 1)
xm+1 −

m+1

∑
l=1

clxm+1−l ,

λ(x, y) = − f (x) +
f0

2
xm −

m

∑
l=1

(m + 1− l)clxm−l ,

(3.19)
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where the coefficients c1, . . . , cm+1 are uniquely determined. In addition, the following relation
4(m + 1)g0 − f 2

0 = 0 is valid.

There are no other irreducible invariant algebraic curves than those described above.

Proof. Again we use Theorem 2.2 and Lemma 3.1. Let us find Puiseux series near the point
x = ∞ that satisfy equation (3.1) with the restriction n = 2m + 1. There exists only one dom-
inant balance producing power asymptotics near the point x = ∞. The ordinary differential
equation related to this balance and its power solutions are of the form

yyx + f0xmy + g0x2m+1 = 0 : y(k)(x) = c(k)0 xm+1, k = 1, 2, (3.20)

where the coefficients c(1,2)
0 satisfy the following equation (m + 1)c2

0 + f0c0 + g0 = 0. Calculat-
ing the Gâteaux derivative of the balance at its power solutions yields the following equation
for the Fuchs indices p: (2(m + 1) − p)c0 + f0 = 0. Expressing c0 from this equation and
substituting the result into the equation (m+ 1)c2

0 + f0c0 + g0 = 0, we get relation (3.14). Start-
ing from power asymptotics we can derive asymptotic series possessing these asymptotics as
leading-order terms. We are interested in Puiseux asymptotic series.

If equation (3.14) does not have positive rational solutions, then both Puiseux series related
to asymptotics (3.20) possess uniquely determined coefficients. Since the number of distinct
Puiseux series near the point x = ∞ satisfying equation (3.1) is finite and equals 2, it follows
from Theorem 2.2 that the degree with respect to y of the polynomial F(x, y) is bounded
by 2. Constructing the factorization of the polynomial F(x, y) in the ring C∞{x}[y] yields
representation (3.16).

Further, if one of the solutions of equation (3.14) defining the Fuchs indices is a positive
rational number and another one is not, then the Puiseux series related to the former case
possesses an arbitrary coefficient provided that the compatibility condition for this Fuchs
index is satisfied. Another Puiseux series possesses uniquely determined coefficients. As
a result we obtain relation (3.17). Since the polynomial giving the invariant algebraic curve
under consideration is irreducible, the coefficients c(k)nk pk , j corresponding to the positive rational
Fuchs index should be pairwise distinct. The number nk can be obtained from the relation
pk = lk/nk, where lk and nk are coprime natural numbers. For more details see the Appendix.

If both solutions of equation (3.14) are positive rational numbers, then the Puiseux series
have arbitrary coefficients and exist whenever the corresponding compatibility conditions for
the Fuchs indices hold. We get expression (3.18). Since polynomials generating the invariant
algebraic curves in question are irreducible, we conclude that the coefficients with the same
upper index c(k)nk pk , j, k = 1, 2 should be pairwise distinct. The numbers nk, k = 1, 2 are found
similarly to the previous case.

Finally, we need to examine the situation, when two roots of the equation (m + 1)c2
0 +

f0c0 + g0 = 0 merge. This gives 4(m + 1)g0 − f 2
0 = 0 and c0 = − f0/(2{m + 1}). Substituting

this relation into the equation (2(m + 1) − p)c0 + f0 = 0 for the Fuchs index yields p = 0.
Consequently, we obtain the Puiseux series with integer exponents and uniquely determined
coefficients. This gives the unique irreducible invariant algebraic curve as given in (3.19).

The cofactors λ(x, y) we find from expression (2.1). Since we have considered all possible
combinations of the Puiseux series from the field C∞{x} that solve equation (3.1), we conclude
that other irreducible invariant algebraic curves cannot exist.

Proving the above theorem, we have also established that if the compatibility condition
for the Puiseux series y(k)j (x) to exist is not satisfied and pk ∈ N in the case of representa-
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tion (3.17), then the irreducible invariant algebraic curve, if exists, is given by the polynomial
F(x, y) = y− c(q)0 xm+1 − c(q)1 xm − . . .− c(q)m+1. If a similar situation occurs for representation
(3.18), then either N1 = 0 or N2 = 0 and the product in expression (3.18) involving the corre-
sponding series is absent. Moreover, if p1, p2 ∈ N and the compatibility conditions for both
Puiseux series are not satisfied, then there are no invariant algebraic curves.

Let us note that invariant algebraic curves of Theorems 3.3 and 3.4 exist under certain
restrictions on the parameters of the original differential systems.

4 Examples

The most interesting families of Liénard differential systems (1.4) satisfying the condition n ≥
2m+ 1 are those with the smallest degrees of the polynomial g(x). They include cubic, quartic,
and quintic systems with a constant or linear damping function. In addition, a quadratic
damping function is allowed if g(x) is a fifth degree polynomial. According to Theorem 3.4
the cases deg f (x) = 1, deg g(x) = 3 and deg f (x) = 2, deg g(x) = 5 are degenerate. Partial
results were obtained in articles [12, 13].

We have studied other Liénard differential systems from those listed above. All of them
with the exception for the family satisfying the conditions deg f (x) = 1 and deg g(x) = 5
have irreducible invariant algebraic curves given by bivariate polynomials of degrees at most
2 with respect to y. While in the case deg f (x) = 1 and deg g(x) = 5 there exist irreducible
invariant algebraic curves of higher degrees. The aim of the present section is to perform
a classification of irreducible invariant algebraic curves of Liénard differential systems (1.4)
satisfying the conditions deg f (x) = 1 and deg g(x) = 5. We shall prove that algebraic curves
of degree 3 with respect to y arise. It is sometimes supposed that Liénard systems satisfying
under the restriction deg g 6= 2 deg f + 1 (n 6= 2m + 1) do not have such invariant algebraic
curves.

Liénard differential systems with deg f (x) = 1 and deg g(x) = 5 are of the form

xt = y, yt = −(αx + β)y− (εx5 + rx4 + νx3 + ex2 + σx + δ), αε 6= 0. (4.1)

A change of variables x 7→ X(x + x0), y 7→ Yy, T 7→ Tt, XYT 6= 0 relates systems (4.1) with
their simplified version at α = 5, ε = −3, r = 0. Thus, without loss of generality, we obtain
the systems

xt = y, yt = −(5x + β)y + (3x5 − νx3 − ex2 − σx− δ) (4.2)

where all the parameters are from the field C.

Theorem 4.1. Differential systems (4.2) admit invariant algebraic curves if and only if restrictions
on the parameters given below are satisfied. Generating polynomials of irreducible algebraic invariants
and their cofactors are of the form:

invariant algebraic curves of the first degree with respect to y

1. e = σ +
1
8

ν− 15
16

+
15
8

β +
1
16

ν2 − 1
8

β ν− 3
16

β2,

δ =
1

192
(3β− ν + 3)

(
ν2 − 6ν− 2βν + 6 β− 3β2 + 9 + 16σ

)
,

F(x, y) = y− x3 + x2 +
1
4
(β + ν− 3)x +

1
3

σ +
1
48

(β + ν− 3)(−3β + ν− 3),

λ(x, y) = −3x2 − 3x +
1
4
(ν− 3β− 3);



16 M. V. Demina

2. e =
15
16

+
15
8

β− σ− 1
8

ν− 1
16

ν2 − 1
8

β ν +
3
16

β2,

δ =
1

192
(3β + ν− 3)

(
ν2 − 6ν + 2βν− 6 β− 3β2 + 9 + 16σ

)
,

F(x, y) = y + x3 + x2 +
1
4
(β− ν + 3)x +

1
3

σ +
1

48
(β− ν + 3)(3− 3β− ν),

λ(x, y) = 3x2 − 3x +
1
4
(3− ν− 3β);

invariant algebraic curves of the second degree with respect to y

3. e = 0, δ = 0, σ =
1
12

(9− ν2), β = 0,

F(x, y) = y2 +

(
2x2 + 1− 1

3
ν

)
y− x6 +

1
2
(ν− 1) x4 − 1

12
(ν + 1) (ν− 3) x2

+
1

216
(ν + 3)(ν− 3)2, λ(x, y) = −6x;

4. e =
3

1024
β
(
512− 5β2), δ = − 3

262144
β3 (β2 + 1280

)
,

σ =
3

65536
β2 (2816 + 15β2), ν =

15
128

β2 + 3,

F(x, y) = y2 +

(
2x2 +

1
2

βx− 5
128

β2
)

y− x6 +

(
15
256

β2 + 1
)

x4 − 1
512

β
(
5β2 − 256

)
x3

+
3

65536
β2 (512 + 15β2) x2 − 1

131072
β3 (1280 + 3β2) x +

5
16777216

β4 (β2 + 1280
)
,

λ(x, y) = −6x− 3
2

β;

invariant algebraic curves of the third degree with respect to y

5. e =
28511847

62500
, δ = −94714508889

19531250
, σ = −8628822111

1562500
, ν =

133188
625

, β =
91
5

,

F(x, y) = y3 +

(
x3 + 3x2 − 24297

625
x− 15500849

62500

)
y2 +

(
2x5 − x6 +

73219
625

x4 +
4316949
31250

x3

−11403548611
1562500

x2− 7670383903
19531250

x+
109912617846031

976562500

)
y− x9− x8+

96266
625

x7+
36191047

62500
x6

−17544478133
1562500

x5 − 812450830009
19531250

x4 +
138358719104879

390625000
x3 +

131625246607012067
97656250000

x2

−925725907851168424
152587890625

x− 356383541131462914069
61035156250000

, λ(x, y) = 3x2 − 9x− 58422
625

;

6. e = −28511847
62500

, δ =
94714508889

19531250
, σ = −8628822111

1562500
, ν =

133188
625

, β = −91
5

,

F(x, y) = y3 +

(
3x2 − x3 +

24297
625

x− 15500849
62500

)
y2−

(
x6 + 2x5 − 73219

625
x4 +

4316949
31250

x3

+
11403548611

1562500
x2− 7670383903

19531250
x −109912617846031

976562500

)
y+ x9− x8−96266

625
x7+

36191047
62500

x6

+
17544478133

1562500
x5 − 812450830009

19531250
x4 − 138358719104879

390625000
x3 +

131625246607012067
97656250000

x2

+
925725907851168424

152587890625
x− 356383541131462914069

61035156250000
, λ(x, y) = −3x2 − 9x +

58422
625

.
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Proof. The structure of the polynomials F(x, y) producing irreducible invariant algebraic
curves has been presented in Theorem 3.3. The Puiseux series of Theorem 3.3 take the follow-
ing form

y(1)(x) = x3 − x2 +
1
4
(3− β− ν)x +

1
6
(ν + 3β− 3− 2e) +

∞

∑
l=4

c(1)l x3−l ;

y(2)(x) = −x3 − x2 +
1
4
(ν− β− 3)x +

1
6
(ν− 3β− 3 + 2e) +

∞

∑
l=4

c(2)l x3−l .
(4.3)

These Puiseux series have arbitrary coefficients c(1,2)
6 and exist whenever the following condi-

tions are satisfied

y(1)(x) : δ =
3

160
β3 +

(
1
80

ν− 15
16

)
β2 +

(
123
32
− 21

80
ν− 1

160
ν2
)

β

+

(
2− 1

10
β

)
σ +

(
7
20

β− 7
4
− 1

12
ν

)
e +

1
6
(ν− 3) (ν + 3) ;

y(2)(x) : δ =
3

160
β3 +

(
15
16
− 1

80
ν

)
β2 +

(
123
32
− 21

80
ν− 1

160
ν2
)

β

−
(

2 +
1
10

β

)
σ−

(
7
4
+

1
12

ν +
7

20
β

)
e− 1

6
(ν− 3) (ν + 3)

(4.4)

Further, we suppose that the series y(1)(x) enters the factorization of the polynomial F(x, y)
N1 times with pairwise distinct values of c(1)6, j . Analogously, we suppose that the series y(2)(x)
enters the factorization of the polynomial F(x, y) N2 times with pairwise distinct values of c(2)6, j .
If N2 = 0, then it follows from Theorem 3.3 that N1 = 1. The resulting irreducible invariant
algebraic curve exists whenever the series y(1)(x) terminates at the zero term. This gives the
restriction

e = σ− 3
16

β2 +
1
8
(15− ν) β +

1
16

(ν + 5) (ν− 3) . (4.5)

Further, we do the same for the case N1 = 0. In such a way we construct irreducible invariant
algebraic curves of the first degree with respect to y.

Now let us suppose that N1 > 0 and N2 > 0. We introduce the following variables

C(1)
k =

N1

∑
j=1

(
c(1)6, j

)k
; C(2)

k =
N1

∑
j=1

(
c(2)6, j

)k
. (4.6)

According to the results of Theorem 3.2 we need to consider the algebraic system

N1

∑
j=1

c(1)l, j +
N2

∑
j=1

c(2)l, j = 0, l ≥ 4. (4.7)

We take the first eleven equations from this system. In addition, the compatibility conditions
for both series to exist should be considered. Solving the algebraic sub-system, we obtain
three possibilities: N1 = N2, N1 = 2N2, and N2 = 2N1. If the first possibility takes place, then
we find

C(1)
1 = $1N1, C(1)

2 = $2
1N1, C(2)

1 = $2N2, C(2)
2 = $2

2N2 (4.8)

and restrictions on the parameters as given in items 3 and 4. There exist two families of
irreducible invariant algebraic curves F(x, y) = 0 with N1 = 1 and N2 = 1. The irreducible
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invariant algebraic curves are presented in items 3 and 4. This fact proves the validity of the
following conditions

C(1)
k = $k

1N1, C(2)
k = $k

2N2, k ∈N. (4.9)

According to Theorem 2.5, we see that the algebraic system in question has no other solutions.

If N1 = 2N2, then we get C(2)
1 = $2N2 and C(2)

2 = $2
2N2. Arguing as above, we find N2 = 1.

Analogously the case N2 = 2N1 can be studied. In expressions (4.8) and (4.9) the values $1

and $2 either are constants or depend on the parameters of the original differential systems,
but not on N1 and N2.

The cofactors can be obtained with the help of expression (3.9).

Note that it is a difficult computational problem to find invariant algebraic curves of items
5 and 6 using the method of undetermined coefficients, the method of extactic polynomial
or an algorithm of decomposing the vector field related to the original system into weight-
homogenous components. It seems that the classification of irreducible invariant algebraic
curves for quintic Liénard differential systems with a linear damping function is presented
here for the first time.

5 Conclusion

In this article we have derived necessary and sufficient conditions enabling a planar polyno-
mial differential system (1.1) to have invariant algebraic curves. Our conditions give rise to an
algorithm, which is able to perform a classification of irreducible invariant algebraic curves
for a given differential system. The algorithm can be easily implemented with the help of
computer systems of symbolic computations.

We have presented the general structure in the ring C∞{x}[y] for the bivariate polynomi-
als generating irreducible invariant algebraic curves of Liénard differential systems (1.4) with
deg g ≥ 2 deg f + 1. Their cofactors have been calculated in an explicit form. Let us empha-
size that the method of Puiseux series is also applicable in the case of systems (1.1) with the
parameters affecting degrees of the polynomials P(x, y) and Q(x, y). Some examples are given
in articles [9, 11]. In addition, the method enables one to find algebraic first-order ordinary
differential equations compatible with a higher-order autonomous ordinary differential equa-
tion [8]. Moreover, the method of Puiseux series admits a non-autonomous generalization, for
more details see [7]. We conclude that the method presented in works [5,6,10] and developed
in this article is a powerful tool of finding invariants for ordinary differential equations and
systems of ordinary differential equations.

Another way to derive an algebraic system similar to that presented in expression (2.7) is to
require that the non-polynomial part in the expression of the cofactor λ(x, y) in (2.1) vanishes.
This algebraic system coincides with that arising from Theorems 2.3 and 3.2 in the case of
Liénard differential systems. For other polynomial differential systems this approach may
lead to finding generalized (non-polynomial in x) invariant curves possessing polynomial
cofactors. It seems that this topic is also worth studying. Some results concerning non-
algebraic invariant curves with polynomial cofactors were obtained in article [18].
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7 Appendix

Let us describe a method, which can be used to perform the classification of Puiseux series
satisfying an algebraic first-order ordinary differential equation E(x, y, yx) = 0. The left-hand
side of this expression can be regarded as a sum of differential monomials given by

M[y(x), x] = Cxlyj0
{

dy
dx

}j1
, C ∈ C \ {0}, l, j0, j1 ∈N0. (7.1)

The set of all the differential monomials of the form (7.1) will be denoted as M. In order to
simplify notation the expression W[x, y(x)] will stand for a polynomial in x, y(x), and yx(x)
with coefficients from the field C.

Let us define the map q : M→ R2 by the following rules

Cxq1 yq2 7→ q = (q1, q2),
dky
dxk 7→ q = (−k, 1), q(M1M2) = q(M1) + q(M2),

where C ∈ C \ {0} is a constant, M1 and M2 are differential monomials. We denote the set
of all points q ∈ R2 corresponding to the differential monomials of equation E(x, y, yx) = 0
as S(E). The convex hull of S(E) is known as the Newton polygon of the equation under
consideration.

The boundary of the Newton polygon consists of vertices and edges. Selecting all the
differential monomials of the original equation that generate the vertices and the edges of the
Newton polygon, we obtain a number of balances. The balance for a vertex is defined as the
sum of those differential monomials in E(x, y, yx) that are mapped into the vertex. The balance
for an edge is defined as the sum of differential monomials in E(x, y, yx) whose images belong
to the edge. If solutions of the equation E(x, y, yx) = 0 possess an asymptotics of the form
y(x) = c0xr with x → 0 or x → ∞, then there exists a balance W[x, y(x)] such that the function
y(x) = c0xr satisfies the equation W[x, y(x)] = 0. Conversely, the function y(x) = c0xr solving
equation W[x, y(x)] = 0, where W[x, y(x)] is a balance, is an asymptotics at x → 0 (or x → ∞)
for solutions of equation (1.2) whenever for all the differential monomials M[x, y(x)] of the
original equation not involved into W[x, y(x)] we have Reκ > Reκ0 (or Reκ < Reκ0), where
M[x, c0xr] = Bxκ and M0[x, c0xr] = B0xκ0 with M0[x, y(x)] being a differential monomial of
the balance W[x, y(x)].

Thus, having found all the power solutions y(x) = c0xr for all the balances, one needs to
select those that give asymptotics at x → 0 or x → ∞. Using power asymptotics it is possible
to derive asymptotic series possessing these asymptotics as leading-order terms [1, 2]. In this
article we are interested in Puiseux series near x = ∞ that satisfy equation (1.2), therefore we
shall focus at the case r ∈ Q and x → ∞. Let us suppose that a balance W[y(x), x] of the
equation E(x, y, yx) = 0 has a solution y(x) = c0xr, which is an asymptotics at x → ∞ and
r ∈ Q.
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In order to obtain the structure of the corresponding series one should find the Gâteaux
derivative of the balance W[y(x), x] at the solution y(x) = c0xr:

δW
δy

[c0xr] = lim
s→0

W[c0xr + sxr−p, x]−W[c0xr, x]
s

= V(p)xr̃, r̃ ∈ Q.

In this expression V(p) is a first-degree polynomial with respect to p. The coefficients of this
polynomial depend on c0 and on the parameters (if any) of the original equation involved into
the balance W[y(x), x]. The zero p0 of V(p) is called the Fuchs index (or the resonance) of the
balance W[y(x), x] and its power solution y(x) = c0xr. Let lcm(n, m) be the lowest common
multiple of two integer numbers n and m. If the Fuchs index p0 is not a positive rational
number, then the number n0 in expression (1.3) is given by n0 = r2 where r2 is defined as
r = r1/r2 with r1 and r2 being coprime numbers, r1 ∈ Z and r2 ∈ N. Otherwise we obtain
n0 = lcm(g2, r2), where r2 was defined previously and g2 is given by p0 = g1/g2 with coprime
natural numbers g1 and g2.

Finally, it is important to verify the existence of the Puiseux series of the form (1.3) with
l0 = rn0. If the balance W[y(x), x] corresponds to a vertex of the Newton polygon, then the
Puiseux series always exists and possesses an arbitrary coefficient c0. In this case the Fuchs
index is equal to zero. Now let us suppose that the balance W[y(x), x] corresponds to an edge
of the Newton polygon. Substituting series (1.3) into the equation E(x, y, yx) = 0 one can find
the recurrence relation for its coefficients. This relation takes the form

V
(

k
n0

)
ck = Uk(c0, . . . , ck−1), k ∈N,

where Uk is a polynomial of its arguments. Note that Uk can also depend on the parameters (if
any) of the original equation. The equation Un0 p0 = 0 is called the compatibility condition. If the
compatibility condition is not satisfied, then the Puiseux series under consideration does not
exist. Otherwise the corresponding Puiseux series exists and possesses an arbitrary coefficient
cn0 p0 . Consequently, we conclude that the Puiseux series in question has uniquely determined
coefficients provided that there are no non-negative rational Fuchs indices.

We note that if one wishes to find all the Puiseux series of the form (1.3) that satisfy the
original equation, then it is necessary to implement the procedure described above for all the
dominant balances and for all their power solutions y(x) = c0xr with r ∈ Q and x → ∞.

Asymptotic Puiseux series near the point x0 ∈ C can be found introducing the change of
variables w(s) = y(s+ x0), s = x− x0 and considering the case s→ 0 in the resulting ordinary
differential equations.

We also observe that there may exist balances and their power solutions such that the
following condition V(p) ≡ 0 is valid. If V(p) is identically zero, then one should make the
substitution y(x) = c0xr + w(x) in equation E(x, y, yx) = 0 and find all the Puiseux series
w(x) = c1xr1 + . . . of the latter such that r1 < r, r1 ∈ Q and x → ∞. More details and some
generalizations can be found in the works by A. D. Bruno [1, 2].
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