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Abstract. We consider a scalar parabolic equation in one spatial dimension. The equa-
tion is constituted by a convective term, a reaction term with one or two equilibria, and
a positive diffusivity which can however vanish. We prove the existence and several
properties of traveling-wave solutions to such an equation. In particular, we provide a
sharp estimate for the minimal speed of the profiles and improve previous results about
the regularity of wavefronts. Moreover, we show the existence of an infinite number of
semi-wavefronts with the same speed.
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1 Introduction

We study the existence and qualitative properties of traveling-wave solutions to the scalar
diffusion-convection-reaction equation

ρt + f (ρ)x = (D(ρ)ρx)x + g(ρ), t ≥ 0, x ∈ R. (1.1)

Here ρ = ρ(t, x) is the unknown variable and takes values in the interval [0, 1]. The convective
term f satisfies the condition

(f) f ∈ C1[0, 1], f (0) = 0.

The requirement f (0) = 0 is not a real assumption, since f is defined up to an additive
constant; we denote h(ρ) = ḟ (ρ), where with a dot we intend the derivative with respect to
the variable ρ (or ϕ later on). About the diffusivity D and the reaction term g we consider two
different scenarios, where the assumptions are made on the pair D, g; we assume either

(D1) D ∈ C1[0, 1], D > 0 in (0, 1) and D(1) = 0,
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(g0) g ∈ C0[0, 1], g > 0 in (0, 1], g(0) = 0,

or else

(D0) D ∈ C1[0, 1], D > 0 in (0, 1) and D(0) = 0,

(g01) g ∈ C0[0, 1], g > 0 in (0, 1), g(0) = g(1) = 0.

In the above notation, the numbers suggest where it is mandatory that the corresponding
function vanishes. Notice that (D1) leaves open the possibility for D to vanish or not at 0, and
(D0) for D at 1. We refer to Figure 1.1 for a graphical illustration of these assumptions. Notice
that the product Dg always vanishes at both 0 and 1 under both set of assumptions.
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Figure 1.1: Typical plots of the functions f , D and g. In the plots of D and
g, solid or dashed lines depict pairs of functions D and g that are considered
together in the following. The possibility that D vanishes at the other extremum
is left open.

We also require the following condition on the product of D and g:

lim sup
ϕ→0+

D(ϕ)g(ϕ)

ϕ
< +∞, (1.2)

which is equivalent to D(ϕ)g(ϕ) ≤ Lϕ, for some L > 0 and ϕ in a right neighborhood of 0.

In (1.1), the notation ρ = ρ(t, x) suggests a density; this is indeed the case. Recently,
the modeling of collective movements has attracted the interest of several mathematicians
[9,10,22]. This paper is partly motivated by such a research stream and carries on the analysis
of a scalar parabolic model begun in [5–7]. Indeed, if f (ρ) = ρv(ρ), where the velocity v is an
assigned function, then equation (1.1) can be understood as a simplified model for a crowd
walking with velocity v along a straight path with side entries for other pedestrians, which
are modeled by g; here ρ is understood as the crowd normalized density. Assumption (g01),
for instance, means that pedestrians do not enter if the road is empty (g(0) = 0, modeling
an aggregative behavior) or if it is fully occupied (g(1) = 0, because of lack of space). If
the diffusivity is small, then the diffusion term accounts for some “chaotic” behavior, which
is common in crowds movements. In this framework, D may degenerate at the extrema of
the interval where it is defined [2, 4, 20]; for more details we refer to [6]. The assumption
(g0) is better motivated by population dynamics. In this case g is a growth term which, for
instance, increases with the population density ρ. We refer to [19] for analogous modelings in
biology. Anyhow, apart from the above possible applications, equation (1.1) is a quite general
diffusion-convection-reaction equation that deserves to be fully understood.
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A traveling-wave solution is, roughly speaking, a solution to (1.1) of the form ρ(t, x) =

ϕ(x− ct), for some profile ϕ = ϕ(ξ) and constant wave speed c, see [11] for general informa-
tion. In this case the profile must satisfy, in some sense, the equation(

D(ϕ)ϕ′
)′
+ (c− h(ϕ)) ϕ′ + g(ϕ) = 0, (1.3)

where ′ denotes the derivative with respect to ξ. We consider in this paper non-constant,
monotone profiles, and focus on the case they are decreasing. As a consequence, we aim at
determining solutions to (1.3) whose values at ±∞ are the zeroes of the function g and then
satisfy either

ϕ(−∞) = 1, ϕ(+∞) = 0, (1.4)

or simply
ϕ(+∞) = 0, (1.5)

according to we make assumption (g01) or (g0). The former profiles are called wavefronts, the
latter are semi-wavefronts; precise definitions are provided in Definition 2.1. Notice that in both
cases the equilibria may be reached for a finite value of the variable ξ as a consequence of the
degeneracy of D at those points. These solutions represent single-shape smooth transitions
between the two constant densities 0 and 1. The interest of wavefronts lies in the fact that
they are viscous approximations of shock waves to the inviscid version of equation (1.1), i.e.,
when D = 0. Semi-wavefronts lack of this motivation but are nevertheless meaningful for ap-
plications [6]; moreover, wavefronts connecting “nonstandard” end states can be constructed
by pasting semi-wavefronts [7]. At last, we point out that assumption (1.2) is usual in this
framework, when looking for decreasing profiles, see e.g. [1].

If D(ρ) ≥ 0, the existence of solutions to the initial-value problem for (1.1) is more or
less classical [24]; however, the fine structure of traveling waves reveals a variety of different
patterns. We refer to [15,16], respectively, for the cases where D is non degenerate, i.e., D > 0,
and for the degenerate case, where D can vanish at either 0 or 1. The main results of those
papers is that there is a critical threshold c∗, depending on both f and the product Dg, such
that traveling waves satisfying (1.4) exist if and only if c ≥ c∗. The smoothness of the profiles
depend on f , D and c but not on g. In both papers the source term satisfies (g01); see [5,6] for
the case when g has only one zero.

The case when D changes sign, which is not studied in this paper, also has strong motiva-
tions: we quote [13,21] for biological models and [7] for applications to collective movements.
Several results about traveling waves have been obtained in [7, 8, 12–14].

In this paper we study semi-wavefronts and wavefronts for (1.1), thus completing the
analysis of [5, 6]. We prove that in both cases there is a threshold c∗ such that profiles only
exists for c ≥ c∗; we also study their regularity and strict monotonicity, namely whether they
are classical (i.e., C1) or sharp (and then reach an equilibrium at a finite ξ in a no more than
continuous way). We strongly rely on [15, 16] and exploit some recent results obtained in
[18]. Several examples are scattered throughout the paper to show that our assumptions are
necessary in most cases.

This research has some important novelties. First, we give a refined estimate for c∗, which
allows to better understand the meaning of this threshold. Second, we improve a result
obtained in [16] about the appearance of wavefronts with a sharp profile. Third, in the case
of semi-wavefronts, we show that for any speed c ≥ c∗ there exists a family of profiles with
speed c. This phenomenon does not show up in [5, 6].
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The main tool to investigate (1.3) is the analysis of singular first-order problems as
ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = 0.

(1.6)

Problem (1.6) is deduced by problem (1.3)–(1.5) by the singular change of variables z(ϕ) :=
D(ϕ)ϕ′, where the right-hand side is understood to be computed at ϕ−1(ϕ), see e.g. [6, 15].
Notice that ϕ−1 exists by the assumption of monotony of ϕ.

On the other hand, the analysis of problem (1.6) is fully exploited in the forthcoming paper
[3], which deals with the case in which D changes sign. In that paper we show that there still
exist wavefronts joining 1 with 0, which travel across the region where D is negative; they are
constructed by pasting two semi-wavefronts obtained in the current paper. Similar results in
the case g = 0 are proved in [7].

Here is an account of the paper. In Section 2 we provide some basic definitions and
state our main results. The analysis of problem (1.6) and of other related singular problems
occupies Sections 3 to 8. Then, in Sections 9 and 10 we exploit such results to construct
semi-wavefronts and wavefronts, respectively; there, we prove our main results.

2 Main results

We give some definitions on traveling waves and their profiles. Let I ⊆ R be an open interval.

Definition 2.1. Assume f , D, g ∈ C[0, 1]. Consider a function ϕ ∈ C(I) with values in [0, 1],
which is differentiable a.e. and such that D(ϕ)ϕ ′ ∈ L1

loc(I); let c be a real constant. The
function ρ(x, t) := ϕ(x− ct), for (x, t) with x− ct ∈ I, is a traveling-wave solution of equation
(1.1) with wave speed c and wave profile ϕ if, for every ψ ∈ C∞

0 (I),∫
I

(
D (ϕ(ξ)) ϕ′(ξ)− f (ϕ(ξ)) + cϕ(ξ)

)
ψ′(ξ)− g (ϕ(ξ))ψ(ξ) dξ = 0. (2.1)

Definition 2.1 can be made more precise. Below, monotonic means that ϕ(ξ1) ≤ ϕ(ξ2) (or
ϕ(ξ1) ≥ ϕ(ξ2)) for every ξ1 < ξ2 in the domain of ϕ; in (iii) we assume g(0) = g(1) = 0, while
in (iv) we only require that g vanishes at the point which is specified by the semi-wavefront.
A traveling-wave solution is

(i) global if I = R and strict if I 6= R and ϕ is not extendible to R;

(ii) classical if ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous and (1.3) holds a.e.; sharp
at ` if there exists ξ` ∈ I such that ϕ(ξ`) = `, with ϕ classical in I \ {ξ`} and not
differentiable at ξ`;

(iii) a wavefront if it is global, with a monotonic, non-constant profile ϕ satisfying either (1.4)
or the converse condition;

(iv) a semi-wavefront to 1 (or to 0) if I = (a, ∞) for a ∈ R, the profile ϕ is monotonic, non-
constant and ϕ(ξ) → 1 (respectively, ϕ(ξ) → 0) as ξ → ∞; a semi-wavefront from 1 (or
from 0) if I = (−∞, b) for b ∈ R, the profile ϕ is monotonic, non-constant and ϕ(ξ) → 1
(respectively, ϕ(ξ)→ 0) as ξ → −∞.
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In (iv) we say that ϕ connects ϕ(a+) (1 or 0) with 1 or 0 (resp., with ϕ(b−)).
The smoothness of a profile depends on the degeneracy of D, see [11]. More precisely,

assume (f), and either (D1), (g0) or (D0), (g01); let ρ be any traveling-wave solution of (1.1)
with profile ϕ defined in I and speed c. Then ϕ is classical in each interval J ⊂ I where
D (ϕ(ξ)) > 0 for ξ ∈ J, and ϕ ∈ C2 (J). Profiles are determined up to a space shift.

Our first main result concerns semi-wavefronts.

Theorem 2.2. Assume (f), (D1), (g0) and (1.2). Then, there exists c∗ ∈ R, which satisfies

max

{
sup

ϕ∈(0,1]

f (ϕ)

ϕ
, h(0) + 2

√
lim inf

ϕ→0+

D(ϕ)g(ϕ)

ϕ

}

≤ c∗ ≤ 2

√
sup

ϕ∈(0,1]

D(ϕ)g(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
, (2.2)

such that (1.1) has strict semi-wavefronts to 0, connecting 1 to 0, if and only if c ≥ c∗.
Moreover, if ϕ is the profile of one of such semi-wavefronts, then it holds that

ϕ′(ξ) < 0 for any 0 < ϕ(ξ) < 1. (2.3)

For a fixed c > c∗, the profiles of Theorem 2.2 are not unique. This lack of uniqueness
is not due only to the action of space shifts but, more intimately, to the non-uniqueness of
solutions to problem (1.6) that is proved in Proposition 5.1 below. Roughly speaking, these
profiles depend on a parameter b ranging in the interval [β(c), 0], for a suitable threshold
β(c) ≤ 0. As a conclusion, the family of profiles can be precisely written as

ϕb = ϕb(ξ), for b ∈ [β(c), 0]. (2.4)

Moreover, β(c) < 0 if c > c∗ and β(c) → −∞ as c → +∞. The threshold β(c) essentially
corresponds to the minimum value that the quantity D(ϕb)ϕ′b achieves when ϕb reaches 1, for
b ∈ [β(c), 0]. This loss of uniqueness is a novelty if we compare Theorem 2.2 with analogous
results in [5, 6]. In particular, in [6, Theorem 2.7] the assumptions on the functions D and g
are reversed: both of them are positive in (0, 1) with D(0) = 0 < g(0), D(1) > 0 = g(1); in
[5, Theorem 2.3] D and g are still positive in (0, 1) but the vanishing conditions are D(1) =

0 = g(1). In both cases the profiles exist for every c ∈ R and are unique. The different results
are due to the nature of the equilibria of the dynamical systems of (1.3).

The estimates (2.2) deserve some comments. The left estimate improves analogous bounds
(see [18] for a comprehensive list) by including the term supϕ∈(0,1] f (ϕ)/ϕ ≥ h(0) on the left-

hand side. This improvement looks more significative if we also assume ˙(Dg)(0) = 0, as we
do in the Theorem 2.3. In this case (2.2) reduces to

sup
ϕ∈(0,1]

f (ϕ)

ϕ
≤ c∗ ≤ 2

√
sup

ϕ∈(0,1]

D(ϕ)g(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
. (2.5)

which can be written with obvious notation as

ccon ≤ c∗ ≤ cdr + ccon,

where the indexes label velocities related to the convection or diffusion-reaction components.
In (2.5) the same term, accounting for the dependence on f , occurs in both the lower and upper
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bound. This symmetry, which shows the shift of the critical threshold as a consequence of the
convective term f , occurs in none of the previous estimates.

The meaning of cdr is known since [1]; we comment on ccon. In the diffusion-convection
case (i.e., when g = 0), there exist profiles connecting ` ∈ (0, 1] to 0 if and only if

s`(ϕ) :=
f (`)
`

ϕ > f (ϕ), for ϕ ∈ (0, `), (2.6)

see [11, Theorem 9.1]. The quantity ccon then represents the maximal speed that can be reached
by the profiles connecting ` to 0, for ` ∈ (0, 1]. Condition (2.6) is also necessary and sufficient
in the purely hyperbolic case (i.e., when also D = 0) in order that the equation ut + f (u)x = 0
admits a shock wave of speed f (`)/` with ` as left state and 0 as right state. This is not
surprising since the viscous profiles approximate the shock wave and converge to it in the
vanishing viscosity limit. Indeed, condition (2.6) does not depend on D.

The presence of the positive reaction term g satisfying (g01) (if (g0) holds we only have
semi-wavefronts, but the same bounds still hold) does not allow profile speeds to be less than
ccon: assuming that z satisfies (1.6), by the positivity of both D and g we deduce

c ≥ sup
ϕ∈(0,1]

(
f (ϕ)

ϕ
− z(ϕ)

ϕ

)
≥ ccon. (2.7)

Then, ccon now becomes a bound for the minimal speed of the profiles. The bound (2.7) is strict
(i.e., there is a gap between ccon and c∗) if ˙(Dg)(0) > 0; this occurs for instance if D(0) > 0
and ġ(0) > 0 and follows by integrating (1.6)1 from 0 to ϕ and (2.2), see Remark 5.6. If f = 0,
then the corresponding strict bound c∗ > 0 occurs for any positive and continuous D and g:
if c∗ = 0 then z should be an increasing function by (3.11), a contradiction.

In some cases, semi-wavefronts are sharp at 0. We refer to Corollary 9.4 for a detailed
account of the behavior of the profiles when they reach the equilibrium.

We now present our result on wavefronts; we assume that D and g satisfiy (D0) and (g01).
The goal is to extend results contained in [16, Theorems 2.1 and 6.1] regarding the existence
and, more importantly, the regularity of wavefronts of Equation (1.1). In particular, the next
theorem has the merit to derive the classification of wavefronts under (D0), merely, without
additional assumptions (which were instead required in [16, Theorems 2.1 and 6.1]). Notice
that in the following result we require that D vanishes at 0; this assumption leads to improve
not only the left-hand bound (2.2) on c∗ by (2.5), but also the right-hand bound, by means of
a recent integral estimate provided in [18].

Theorem 2.3. Assume (f), (D0) and (g01) and (1.2). Then there exists c∗, satisfying

sup
ϕ∈(0,1]

f (ϕ)

ϕ
≤ c∗ ≤ sup

ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√
sup

ϕ∈(0,1]

1
ϕ

∫ ϕ

0

D(σ)g(σ)
σ

dσ, (2.8)

such that Equation (1.1) admits a (unique up to space shifts) wavefront, whose wave profile ϕ satisfies
(1.4), if and only if c ≥ c∗. Moreover, we have ϕ′(ξ) < 0, for 0 < ϕ(ξ) < 1, and

(i) if c > c∗, then ϕ is classical at 0;

(ii) if c = c∗ and c∗ > h(0), then ϕ is sharp at 0 and if it reaches 0 at ξ0 ∈ R then

lim
ξ→ξ−0

ϕ′(ξ) =


h(0)−c∗

Ḋ(0) < 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0.
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As in analogous cases [6], Theorem 2.3 provides no information about the smoothness of
the profiles when c = c∗ = h(0). We show in Remark 10.1 that in such a case profiles may be
either sharp or classical.

3 Singular first-order problems

Here we begin the analysis of problem (1.6). First, we consider, for c ∈ R, the problem{
ż(ϕ) = h(ϕ)− c− q(ϕ)

z(ϕ)
, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),
(3.1)

where we assume
q ∈ C0[0, 1] and q > 0 in (0, 1). (3.2)

We point out that the differential equation (3.1)1 generalizes (1.6)1 since the assumptions on
q are a bit less strict than the ones on Dg, under (D1)–(g0) or (D1)–(g01). In the following
lemma we prove that a solution of (3.1) can be extended continuously up to the boundary.

Lemma 3.1. Assume (3.2). If z ∈ C1(0, 1) is a solution of (3.1), then it can be extended continuously
to the interval [0, 1].

Proof. Since q/z < 0 in (0, 1), then for any 0 < ϕ < ϕ1 < 1 the function

ϕ→
∫ ϕ1

ϕ

q(σ)
z(σ)

dσ

is strictly increasing. Hence, we can pass to the limit as ϕ→ 0+ in the expression

z(ϕ) = z(ϕ1)−
∫ ϕ1

ϕ
(h(σ)− c) dσ +

∫ ϕ1

ϕ

q(σ)
z(σ)

dσ, (3.3)

which is obtained by integrating (3.1)1 in (ϕ, ϕ1). Then z(0+) exists and necessarily lies in
[−∞, 0] because of (3.1)2. If z(0+) = −∞, then by passing to the limit for ϕ → 0+ in (3.3) we
find a contradiction, since the last integral converges as ϕ→ 0+. Hence, z(0+) ∈ (−∞, 0].

For z(1−) the proof is even simpler: by integrating (3.1)1 in (ϕ2, ϕ), for 0 < ϕ2 < ϕ < 1, we
obtain (3.3) with ϕ2 replacing ϕ1. As before, we deduce that z(1−) exists. Also, since the last
integral in (3.3) is now positive, we get z(ϕ) > z(ϕ2) +

∫ ϕ
ϕ2
(h(σ)− c) dσ, for any ϕ ∈ (ϕ2, 1).

This directly rules out the alternative z(1−) = −∞ and concludes the proof.

We now summarize [6, Lemmas 4.1 and 4.3] in a version for our purposes, by also exploit-
ing Lemma 3.1. These tools were obtained in [6] under stricter assumptions on q, but it is easy
to verify that they also apply to the current case, in virtue of (3.2). For µ < 0 and σ ∈ (0, 1] or
σ ∈ [0, 1), they deal with the systems{

ż(ϕ) = h(ϕ)− c− q(ϕ)
z(ϕ)

, ϕ < σ,

z(σ) = µ,

{
ż(ϕ) = h(ϕ)− c− q(ϕ)

z(ϕ)
, ϕ > σ,

z(σ) = µ.
(3.4)

A function η ∈ C1(σ1, σ2), for 0 ≤ σ1 < σ2 ≤ 1, is an upper-solution of (3.1)1 in (σ1, σ2) if

η̇(ϕ) ≥ h(ϕ)− c− q(ϕ)

η(ϕ)
for any σ1 < ϕ < σ2. (3.5)

The upper-solution η is said strict if the inequality in (3.5) is strict. A function ω ∈ C1(σ1, σ2)

is a (strict) lower-solution of (3.1)1 in (σ1, σ2) if the (strict) inequality in (3.5) is reversed.
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Lemma 3.2. Assume (3.2) and consider equation (3.1)1; the following results hold.

1. Set µ < 0. Then,

(a) let σ ∈ (0, 1]; then problem (3.4)1 admits a unique solution z ∈ C0[0, σ] ∩ C1(0, σ);

(b) let σ ∈ [0, 1); then problem (3.4)2 admits a unique solution z ∈ C0[σ, δ] ∩ C1(σ, δ), for
some maximal σ < δ ≤ 1. Moreover, either δ = 1 or z(δ) = 0.

2. Set 0 ≤ σ1 < σ2 ≤ 1; let z be a solution of (3.1) in (σ1, σ2). It holds that:

(a) if η is a strict upper-solution of (3.1)1 in (σ1, σ2), then

(i) if η(σ2) ≤ z(σ2) < 0, then η < z in (σ1, σ2);
(ii) if 0 > η(σ1) ≥ z(σ1) then η > z in (σ1, σ2); moreover, if η is defined in [0, 1], then z

must be defined in [σ1, 1] and η > z in (σ1, 1);

(b) if ω is a strict lower-solution of (3.1)1 in (σ1, σ2), then

(i) if 0 > ω(σ2) ≥ z(σ2), then ω > z in (σ1, σ2); moreover, if ω is defined in [0, 1], then
z must be defined in [0, σ2] and ω > z in (0, σ2);

(ii) if ω(σ1) ≤ z(σ1) < 0 then ω < z in (σ1, σ2).

ϕ

z 1σ1 σ2

z
η

η

ϕ

z 1σ1 σ2

z

ω

ω

Figure 3.1: An illustration of Lemma 3.2 (2). Left: supersolutions η; right:
subsolutions ω.

In the context of equations as (3.1)1, proper limit arguments are often needed.

Lemma 3.3. Assume (3.2). Let {cn}n be a sequence of real numbers and c ∈ R such that cn → c as
n→ ∞. Let zn ∈ C0[0, 1]∩C1(0, 1) satisfy (3.1) corresponding to cn. If {zn}n is increasing and there
exists v ∈ C0[0, 1] such that

zn(ϕ) ≤ v(ϕ) < 0 for any n ∈N and ϕ ∈ (0, 1), (3.6)

then zn converges (uniformly on [0, 1]) to a solution z̄ ∈ C0[0, 1] ∩ C1(0, 1) of (3.1).
The same conclusion holds if {zn}n is decreasing and there exists w ∈ C0[0, 1] such that

zn(ϕ) ≥ w(ϕ) for any n ∈N and ϕ ∈ (0, 1).

Proof. Take first {zn}n increasing. From (3.6), we can define z̄ = z̄(ϕ) as

lim
n→∞

zn(ϕ) =: z̄(ϕ), ϕ ∈ (0, 1).

It is obvious that z1 ≤ z̄ ≤ v < 0 in (0, 1). By integrating (3.1)1, we have

zn(ϕ)− zn(ϕ0) =
∫ ϕ

ϕ0

{
h(σ)− cn +

q(σ)
−zn(σ)

}
dσ for any ϕ0, ϕ ∈ (0, 1).
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Since, for every σ ∈ (0, 1), the sequence {q(σ)/(−zn(σ))}n is increasing, then the Monotone
Convergence Theorem implies that

z̄(ϕ)− z̄(ϕ0) =
∫ ϕ

ϕ0

{
h(σ)− c− q(σ)

z̄(σ)

}
dσ for any ϕ0, ϕ ∈ (0, 1),

where all the involved quantities are finite. This tells us that z̄ is absolutely continuous in
every compact interval [a, b] ⊂ (0, 1). By differentiating, we then obtain that z̄ ∈ C1(0, 1)
satisfies (3.1). From Lemma 3.1, we also have that z̄ ∈ C0[0, 1]. To conclude that zn converges
to z̄ uniformly on [0, 1], it only remains to prove that

z̄(0+) = lim
n→∞

zn(0) and z̄(1−) = lim
n→∞

zn(1). (3.7)

Indeed, if (3.7) holds, then {zn}n turns out to be a monotone sequence of continuous functions
converging pointwise to z̄ ∈ C0[0, 1] on a compact set. Then, by Dini’s monotone convergence
theorem (see [23, Theorem 7.13]), zn must converge uniformly to z̄ on [0, 1]. We prove only
(3.7)1 since (3.7)2 follows as well. If zn(0) → 0, as n → ∞, then z̄(0+) = 0, because zn ≤ z̄ < 0
in (0, 1). Hence (3.7)1 is verified. If instead zn(0) → µ < 0, we argue as follows. Consider
δ ∈ R such that cn > δ, for any n ∈N, and let η = η(ϕ) satisfy{

η̇(ϕ) = h(ϕ)− δ− q(ϕ)
η(ϕ)

, ϕ > 0,

η(0) = µ.
(3.8)

By Lemma 3.2 (1.b) such an η exists, in its maximal-existence interval [0, σ), for some σ ∈ (0, 1].
Moreover, we have

η̇(ϕ) > h(ϕ)− cn −
q(ϕ)

η(ϕ)
, ϕ ∈ (0, σ).

Hence, in (0, σ), η is a strict upper-solution of (3.1)1 with c = cn and zn(0) ≤ η(0) < 0. Thus,
Lemma 3.2 (2.a.ii) implies that zn ≤ η in (0, σ). By passing to the pointwise limit, for n → ∞,
it is clear that z̄ ≤ η in (0, σ). Since z̄, η are continuous up to ϕ = 0, then z̄(0+) ≤ µ. On the
other hand we have z̄(0+) ≥ µ because zn ≤ z̄ in (0, 1) and zn, z̄ ∈ C0[0, 1]. Then z̄(0+) = µ

and this concludes the proof of (3.7)1.
Consider {zn}n decreasing. By adapting the arguments used in the first part of this proof,

we can show that zn converges pointwise in (0, 1) to z̄ ∈ C0[0, 1] ∩ C1(0, 1) satisfying (3.1). As
before we need (3.7) to conclude. To this end, we again observe that similarly to the case of
{zn}n increasing, we have (3.7) if both zn(0) → µ < 0 and zn(1) → ν < 0. Instead, the proofs
of either (3.7)1 when zn(0) → 0 and (3.7)2 when zn(0) → 0 are now more subtle. We provide
them both. First, since zn < 0 in (0, 1), observe that requiring that zn(0) → 0 (or zn(1) → 0)
corresponds to have zn(0) = 0 (or zn(1) = 0), for every n ∈N.

Take zn(0) = 0, for n ∈N. Let n ∈N and for ϕ ∈ (0, 1), let σϕ ∈ (0, ϕ) be defined by

żn(σϕ) =
zn(ϕ)

ϕ
.

Take δ1 ∈ R such that δ1 > cn, for each n ∈ N. By using (3.1)1 and the fact that q/zn < 0 in
(0, 1), we deduce, for any ϕ ∈ (0, 1),

zn(ϕ)

ϕ
= żn(σϕ) > h(σϕ)− cn > inf

ϕ∈(0,1)
h(ϕ)− δ1 =: C < 0. (3.9)
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The sign of C is due to cn ≥ h(0), for n ∈ N; otherwise, it would not be possible to have zn

satisfying (3.1) and zn(0) = 0. Inequality (3.9) implies that zn(ϕ) > Cϕ for ϕ ∈ (0, 1). Hence,
letting n → ∞, this leads to z̄(ϕ) ≥ Cϕ, for ϕ ∈ (0, 1). Passing to the limit as ϕ → 0+ gives
z̄(0+) ≥ 0, which in turn implies that z̄(0+) = 0. Thus, (3.7)1 is verified.

Lastly, let zn(1) = 0, for any n ∈N. Fix ε > 0 and consider η2 = η2(ϕ) such that{
η̇2(ϕ) = h(ϕ)− δ− q(ϕ)

η2(ϕ)
, ϕ > 0,

η2(1) = −ε < 0,
(3.10)

where δ ∈ R is such that δ < cn, for any n ∈ N. Such an η2 exists and is defined and
continuous in [0, 1], because of Lemma 3.2 (1.a) and Lemma 3.1. Take an arbitrary n ∈ N.
From 0 = zn(1) > η2(1), it follows that η2 < zn in [σn, 1], for some σn > 0, with zn(σn) < 0.
Thus, since

η̇2(ϕ) > h(ϕ)− cn −
q(ϕ)

η2(ϕ)
, ϕ ∈ (0, 1),

then η2 is a strict upper-solution of (3.1)1 with c = cn in (0, σn) and η2(σn) < zn(σn) < 0. An
application of Lemma 3.2 (2.a.i) implies that η2 < zn in (0, σn). Thus, zn > η2 in (0, 1), for
any n ∈ N. By passing to the pointwise limit, as n → ∞, we then have z̄(ϕ) ≥ η2(ϕ), for
ϕ ∈ (0, 1). By the continuity of both z̄ and η2 at ϕ = 1, we obtain 0 ≥ z̄(1−) ≥ −ε. Since ε > 0
is arbitrary, we deduce that necessarily z̄(1−) = 0.

Because of Lemmas 3.1 and 3.3, in the following we always mean solutions z to problem
(3.1), and analogous ones, in the class C[0, 1] ∩ C1(0, 1), without any further mention.

Motivated by Lemma 3.1, in the next sections we focus the following problem, where the
boundary condition is given on the left extremum of the interval of definition:

ż(ϕ) = h(ϕ)− c− q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = 0.

(3.11)

Problem (3.11) is exploited for semi-wavefronts. The value of z(1) is not prescribed; from (3.11)2,
we have z(1) ≤ 0. The extremal case z(1) = 0 is needed in the study of wavefronts:

ż(ϕ) = h(ϕ)− c− q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = z(1) = 0.

(3.12)

4 The singular problem with two boundary conditions

Problems (3.11) and (3.12) have solutions only when c is larger than a critical threshold c∗. In
this section we first give a new estimate to c∗ under mild conditions on q; then, we obtain a
result of existence and uniqueness of solutions to (3.12) if c ≥ c∗. Recalling (D1), (g0) and (1.2)
and (D0)–(g01), throughout the next sections we need to strengthen the assumptions (3.2) of
Section 3; for commodity we gather them all here below. We assume

(q) q ∈ C0[0, 1], q > 0 in (0, 1), q(0) = q(1) = 0 and lim sup
ϕ→0+

q(ϕ)

ϕ
< +∞.
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We improve, as in [18, Theorem 3.1], a well-known result [1, 11, 15]. If q is differentiable at
0, in [18, Theorem 3.1] it is proved that Problem (3.11) has a solution if

c > sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√
sup

ϕ∈(0,1]

1
ϕ

∫ ϕ

0

q(σ)
σ

dσ. (4.1)

The last assumption in (q) is weaker than the differentiability of q at 0 and our result below is
less stronger than the one in [18]. It is an open problem whether the existence of solutions to
Problem (3.12) under (4.1) can be achieved by only assuming lim supϕ→0+ q(ϕ)/ϕ < +∞.

Lemma 4.1. Assume (q). Then Problem (3.12) admits a solution if

c > sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√
sup

ϕ∈(0,1]

q(ϕ)

ϕ
. (4.2)

Proof. We follow [18, Theorem 3.1]. By (4.2) we see that there exists K > 0, ε > 0 so that

K2 +

(
sup

ϕ∈(0,1]

f (ϕ)

ϕ
− c

)
K + sup

ϕ∈(0,1]

q(ϕ)

ϕ
< −εK < 0 for ϕ ∈ (0, 1].

For every τ > 0, we get, for any ϕ > τ,

1
ϕ− τ

∫ ϕ

τ

q(s)
s

ds =
q(sϕ,τ)

sϕ,τ
≤ sup

ϕ∈(0,1]

q(ϕ)

ϕ
,

where sϕ,τ ∈ (τ, ϕ) is given by the Mean Value Theorem. As a consequence, for any τ > 0,

K2 +

(
sup

ϕ∈(0,1]

f (ϕ)

ϕ
+ ε− c

)
K +

1
ϕ− τ

∫ ϕ

τ

q(s)
s

ds < 0 for every ϕ ∈ (τ, 1].

A continuity argument in [18] implies that there exists τ such that for any τ < τ we have

f (ϕ)− f (τ)
ϕ− τ

≤ f (ϕ)

ϕ
+ ε ≤ sup

ϕ∈(0,1]

f (ϕ)

ϕ
+ ε, ϕ ∈ (τ, 1],

and thus, for such values of τ, it must hold

K2 +

(
f (ϕ)− f (τ)

ϕ− τ
− c
)

K +
1

ϕ− τ

∫ ϕ

τ

q(s)
s

ds < 0 for every ϕ ∈ (τ, 1].

This implies that the function ητ = ητ(ϕ), defined for ϕ ∈ [τ, 1] by

ητ(ϕ) := −Kτ +
∫ ϕ

τ

{
h(σ)− c− q(σ)

−Kσ

}
dσ,

is an upper-solution of (3.11)1 such that ητ(ϕ) < −Kϕ, for ϕ ∈ (τ, 1], and ητ(τ) = −Kτ < 0.
Arguments based on Lemma 3.2 (2.a.ii) imply that it results defined in [τ, 1] a function zτ

which solves (3.4)2 with µ = −Kτ; we extend continuously zτ to [0, τ] by zτ(ϕ) = −Kϕ, for
ϕ ∈ [0, τ]. This gives a family {zτ}τ>0 of decreasing functions as τ → 0+ (in the sense that
zτ1 ≤ zτ2 in [0, 1] for 0 < τ1 < τ2). After some manipulations of the differential equation in
(3.4)2, based on the sign of q/zτ and on ητ(ϕ) < −Kϕ, for ϕ ∈ (τ, 1], we deduce that

f (ϕ)− cϕ ≤ zτ(ϕ) ≤ −Kϕ, ϕ ∈ [0, 1].

Hence, applying Lemma 3.3 in each interval (a, b) ⊂ [0, 1] we finally deduce that z̄, the limit
of zτ for τ → 0+, solves (3.11)1, z̄ < 0 in (0, 1) and z̄(0) = 0. Hence, z̄ is a solution of (3.11).
Finally, as observed in [18], an application of [17, Lemma 2.1] implies the conclusion.
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We now give a result about solutions to (3.12); see Figure 5.1 on the left.

Proposition 4.2. Assume (q). Then, there exists c∗ satisfying

h(0) + 2

√
lim inf

ϕ→0+

q(ϕ)

ϕ
≤ c∗ ≤ 2

√
sup

ϕ∈(0,1]

q(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
, (4.3)

such that there exists a unique z satisfying (3.12) if and only if c ≥ c∗.

Proof. The result, apart from the refined estimate (4.3) is proved in [17, Proposition 1]. Estimate
(4.3) follows from Lemma 4.1 and supϕ∈(0,1] f (ϕ)/ϕ ≤ maxϕ∈[0,1] h(ϕ).

5 The singular problem with left boundary condition

Now we face problem (3.11). We always assume (q) and refer to the threshold c∗ introduced
in Proposition 4.2; we denote by z∗ the corresponding unique solution to (3.12). See Figure 5.1
on the left for an illustration of Proposition 5.1.

ϕ

z
z0

zb b

zβ(c) β(c)

1 z

z∗

ẑϕ0

1ϕ0

ẑϕ0(1)

Figure 5.1: Left: an illustration of Propositions 4.2 and 5.1, for fixed c > c∗.
Solutions to (3.11) are labelled according to their right-hand limit: z0 occurs in
the former proposition, zb in the latter. Right: the functions ẑϕ0 and z∗ in Step
(i) of Proposition 5.1.

Proposition 5.1. Assume (q). For every c > c∗, there exists β = β(c) < 0 satisfying

β ≥ f (1)− c, (5.1)

such that problem (3.11) with the additional condition z(1) = b < 0 admits a unique solution z if and
only if b ≥ β.

In the above proposition, the threshold case c = c∗ is a bit more technical; we shall prove
in Proposition 6.3 that β(c∗) = 0 under some further assumptions.

Proof of Proposition 5.1. For any c > c∗, we define the set Ac as

Ac := {b < 0 : (3.11) admits a solution with z(1) = b}.

We show that Ac = [β, 0), for some β = β(c) < 0, by dividing the proof into four steps.

Step (i): Ac 6= ∅. We claim that there exists ẑ which satisfies (3.11) and ẑ(1) < 0. Take
ϕ0 ∈ (0, 1) and consider the following problem, see Figure 5.1 on the right,{

ż(ϕ) = h(ϕ)− c− q(ϕ)
z(ϕ)

,

z(ϕ0) = z∗(ϕ0).
(5.2)
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Lemma 3.2 (1) implies the existence of a solution ẑϕ0 of (5.2) defined in its maximal-existence
interval (0, δ), for some ϕ0 < δ ≤ 1. Since ẑϕ0 satisfies (5.2)1 and c > c∗, then

˙̂zϕ0(ϕ) = h(ϕ)− c∗ − q(ϕ)

ẑϕ0(ϕ)
+ (c∗ − c) < h(ϕ)− c∗ − q(ϕ)

ẑϕ0(ϕ)
, ϕ ∈ (0, δ).

This implies that ẑϕ0 is a strict lower-solution of (3.11)1 with c = c∗. From Lemma 3.2 (2.b),
this and ẑϕ0(ϕ0) = z∗(ϕ0) < 0 imply that

z∗ < ẑϕ0 in (0, ϕ0) and ẑϕ0 < z∗ in (ϕ0, δ). (5.3)

Since z∗ < ẑϕ0 < 0 in (0, ϕ0), we get ẑϕ0(0
+) = 0. Since ẑϕ0 < z∗ in (ϕ0, δ), we obtain that

ẑϕ0(δ
−) ≤ z∗(δ−). Thus δ = 1, otherwise ẑϕ0(δ) < 0, in contradiction with the fact that (0, δ)

is the maximal-existence interval of ẑϕ0 .
From Lemma 3.1, ẑϕ0(1) ∈ R. It remains to prove that ẑϕ0(1) < 0. From what we observed

above, it follows that z∗ > ẑϕ0 in (ϕ0, 1). Hence, for any ϕ ∈ (ϕ0, 1), we have

ż∗(ϕ)− ˙̂zϕ0(ϕ) = c− c∗ +
q(ϕ)

z∗(ϕ)ẑϕ0(ϕ)

(
z∗ − ẑϕ0

)
(ϕ) >

q(ϕ)

z∗(ϕ)ẑϕ0(ϕ)

(
z∗ − ẑϕ0

)
(ϕ) > 0.

This implies that (z∗ − ẑϕ0) is strictly increasing in (ϕ0, 1) and hence

−ẑϕ0(1) = z∗(1)− ẑϕ0(1) > z∗(ϕ0)− ẑϕ0(ϕ0) = 0,

which means ẑϕ0(1) < 0. Thus, ẑϕ0(1) ∈ Ac.

Step (ii): if b ∈ Ac then [b, 0) ⊂ Ac. Suppose that there exists b ∈ Ac and let zb be the solution
of (3.11) and zb(1) = b. Take b < b1 < 0. For Lemma 3.2 (1.a) there exists zb1 defined in (0, 1)
satisfying (3.11)1 and zb1(1) = b1 < 0.

We claim that zb < zb1 in (0, 1). If not, then zb(ϕ0) = zb1(ϕ0) =: y0 < 0, for some
ϕ0 ∈ (0, 1). Without loss of generality we can assume zb < zb1 in (ϕ0, 1]. We denote by
fc(ϕ, y) = h(ϕ) − c − q(ϕ)/y the right-hand side of the differential equation in (3.11); the
function fc is continuous in [0, 1]× (−∞, 0) and locally Lipschitz-continuous in y. Hence, zb
and zb1 are two different solutions of{

y′ = fc(ϕ, y), ϕ ∈ (ϕ0, 1),

y(ϕ0) = y0,

which contradicts the uniqueness of the Cauchy problem. Thus, zb < zb1 < 0 in (0, 1). Since
zb satisfies (3.11)3 then zb1(0

+) = 0 and hence b1 ∈ Ac.

Step (iii): infAc ∈ R. Suppose that z satisfies Equation (3.11)1. As already observed, this
implies ż(ϕ) > h(ϕ)− c, ϕ ∈ (0, 1). Thus, for any ϕ ∈ (0, 1),

z(ϕ) = z(ϕ)− z(0) ≥
∫ ϕ

0
h(σ)− c dσ = f (ϕ)− cϕ. (5.4)

This implies that z(1) ≥ f (1)− c. Define β = β(c) by

β := infAc.

Thus, β ≥ f (1)− c > −∞, which also proves (5.1).
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z

y

zn
z̄

1

bn

β
y(1)

z

z1

z2

ẑc2

1ϕ0

ẑc2 (1)

β(c1)

Figure 5.2: Left: the functions zn, y and z̄ in Step (iv) of Proposition 5.1. Right:
the functions z1, z2 and ẑc2 in the proof of (i) of Corollary 5.3.

Step (iv): β ∈ Ac. Let {bn}n ⊂ Ac be a strictly decreasing sequence such that bn → β+.
Since bn ∈ Ac, each bn is associated with a solution zn of (3.11) and zn(1) = bn. From the
uniqueness of the solution of Cauchy problem for (3.11)1, the sequence zn is decreasing.

For any given δ < β, let y be defined by{
ẏ(ϕ) = h(ϕ)− c− q(ϕ)

y(ϕ)
, ϕ < 1

y(1) = δ < β.

Such a y exists and is defined in [0, 1] from Lemma 3.2 (1.a). Also, bn > δ, for any n ∈ N.
Thus, for any n ∈ N, zn ≥ y in [0, 1]. Lemma 3.3 implies that there exists z̄ satisfying (3.1)
such that zn → z̄ uniformly in [0, 1] (see Figure 5.2 on the left). In particular, we deduce that
z̄(0) = 0 and z̄(1) = β. Hence, we conclude that β ∈ Ac.

Putting together Steps (i)–(iv), we conclude that Ac = [β, 0). �

The monotonicity of solutions of (3.11) now follows. We omit the proof since it is quite
standard, once that Lemma 3.2 (2) is given. (See [6, Lemma 5.1].)

Corollary 5.2 (Monotonicity of solutions). Assume (q). Let c2 > c1 ≥ c∗ and assume that z1 and
z2 satisfy (3.11) with c = c1 and c = c2, respectively. Then, if z1(1) ≤ z2(1) it occurs that z1 < z2 in
(0, 1).

A monotony property of β(c) now follows.

Corollary 5.3. Under (q) we have:

(i) β(c2) < β(c1) for every c2 > c1 > c∗;

(ii) β(c)→ −∞ as c→ +∞.

Proof. To prove (i), let z1 be a solution of (3.11) corresponding to c = c1 and such that z1(1) =
b1 ∈ Ac1 . As a consequence of Lemma 3.2 (1.a), the problem{

ż(ϕ) = h(ϕ)− c2 − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(1) = b1 < 0,

admits a (unique) solution z2 defined in [0, 1]. From the monotonicity of solutions given by
Corollary 5.2, we have z1 < z2 < 0 in (0, 1). Since z1(0) = 0, then we have z2(0) = 0. Thus,
Ac1 ⊆ Ac2 and hence β(c1) ≥ β(c2). To prove β(c1) > β(c2) we argue as follows.
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For any ϕ0 ∈ (0, 1) we can repeat the same arguments as in Step (i) of Proposition 5.1, by
replacing c with c2 and z∗ with z1 in (5.2). Thus, the problem{

ż(ϕ) = h(ϕ)− c2 − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ0) = z1(ϕ0) < 0,

admits a unique solution ẑc2 defined in [0, 1], because necessarily any solution of the last
problem must be bounded from above by z2, see Figure 5.2 on the right. Moreover, by applying
Lemma 3.2 (2.b.ii), ẑc2 < z1 in (ϕ0, 1), which implies that ẑc2(1) < z1(1), since

˙̂zc2(ϕ)− ż1(ϕ) = c1 − c2 +
q(ϕ)

z1(ϕ)ẑc2(ϕ)
(ẑc2(ϕ)− z1(ϕ)) < 0 for any ϕ ∈ (ϕ0, 1).

Since β(c2) ≤ ẑc2(1) < z1(1) = b1 then we proved (i) since b1 is arbitrary in Ac1 .
Finally, we prove (ii). For c > c∗, let zc be the solution of (3.11) such that zc(1) = β(c). For

any fixed c1 > c∗, we have zc < zc1 in (0, 1), if c > c1. Thus, for any c > c1,

żc(ϕ) = h(ϕ)− c +
q(ϕ)

−zc(ϕ)
< h(ϕ)− c +

q(ϕ)

−zc1(ϕ)
, ϕ ∈ (0, 1).

In particular, since zc1 < 0 in (0, 1], then, for any 0 < δ < 1, there exists M > 0 such that
q(ϕ)/(−zc1(ϕ)) ≤ M for any ϕ ∈ (δ, 1]. Thus, for any ϕ ∈ (δ, 1),

zc(ϕ) ≤ zc(δ) + f (ϕ)− f (δ) + (M− c) (ϕ− δ) < f (ϕ)− f (δ) + (M− c) (ϕ− δ),

which implies β(c) = zc(1) ≤ f (1)− f (δ) + (M− c)(1− δ). This proves (ii).

We now collect some consequences of (5.4) and Lemma 4.1, concerning a sharper estimate
to c∗. To the best of our knowledge these estimates are new and we provide some comments.

Corollary 5.4. Assume (q). It holds that

c∗ ≥ max

{
sup

ϕ∈(0,1]

f (ϕ)

ϕ
, h(0) + 2

√
lim inf

ϕ→0+

q(ϕ)

ϕ

}
. (5.5)

Proof. Formula (5.4) in Step (iii) implies that f (ϕ) < cϕ, for ϕ ∈ (0, 1). Thus, f (ϕ) ≤ c∗ϕ, for
ϕ ∈ (0, 1). This implies c∗ ≥ supϕ∈(0,1]

f (ϕ)
ϕ , which, together with (4.3) implies (5.5).

Remark 5.5. Lemma 4.1 and Corollary 5.4 imply that, under (q), the threshold c∗ verifies
(2.2). Moreover, make the assumption q̇(0) = 0, which is valid if q = Dg under (D1), with
D(0) = 0, (g0) or under (D0) and (g01). In this case, the estimates in (2.8) hold true. Indeed,
the assumptions on q are covered by [18, Theorem 3.1] and hence it follows that

c∗ ≤ sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√
sup

ϕ∈(0,1]

1
ϕ

∫ ϕ

0

q(σ)
σ

dσ.

The bound from above in (2.8) is then proved. The bound from below in (2.8) is instead due
directly to (5.5), because of q̇(0) = 0.

Remark 5.6. We can now make precise the statement following formula (2.7) about the gap
between ccon and c∗. If ccon is obtained at some ϕ ∈ (0, 1], then the sup in the right-hand
side of (2.7) is strictly larger than ccon because z < 0 in (0, 1). Then c∗ > ccon. Otherwise, if
supϕ∈(0,1] f (ϕ)(ϕ) = h(0), then ccon = h(0) and by (5.5) we still deduce c∗ > ccon.
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6 Further existence and non-existence results

Propositions 4.2 and 5.1 completely treat the existence of solutions of (3.12) and (3.11), respec-
tively, in the cases c ≥ c∗ and c > c∗. In this section, we investigate the remaining cases and
show that such propositions are somehow optimal.

We now deal with the following problem, where c ∈ R but, differently from (3.11), the
boundary condition is imposed on the right extremum of the interval of definition:

ζ̇(ϕ) = h(ϕ)− c− q(ϕ)
ζ(ϕ)

, ϕ ∈ (0, 1),

ζ(ϕ) < 0, ϕ ∈ (0, 1),

ζ(1) = 0.

(6.1)

The differential equation in (3.11) and (6.1) is the same; it inherits the properties of the dy-
namical system underlying (1.3). For slightly more regular functions g, the dynamical system
has a center or a node at (0, 0) and a saddle at (1, 0). The corresponding results, Proposition
5.1 and Lemma 6.1, differ as in Lemma 3.2 (1).

Moreover, while in problem (3.11) the threshold c∗ discriminated the existence of solutions,
for problem (6.1) solutions will be proved to exist for every c ∈ R; instead, the threshold c∗

enters into the problem to discriminate whether solutions reach 0 or not (see Figure 6.1).
A related behavior was pointed out in [6, Theorem 2.6]. On the contrary, the monotonicity
properties stated in Corollary 5.2 and in Lemma 6.1 are the same.

ϕ

ζ

ζc1

ζc2(0)
ζc2

1

Figure 6.1: An illustration of Lemma 6.1. Here, c1 ≥ c∗ while c2 < c∗ and
ζc2(0) < 0.

Lemma 6.1. Assume (q). For any c ∈ R, Problem (6.1) admits a unique solution ζc. If c ≥ c∗ then
ζc(0) = 0 and if c < c∗ then ζc(0) < 0. Moreover, we have:

(i) if c2 > c1 then ζc2 > ζc1 in (0, 1);

(ii) it holds that z∗(ϕ) = limc→c∗ ζc(ϕ) for any ϕ ∈ [0, 1].

Proof. The existence and uniqueness was proved in [6, Theorem 2.6], while the monotonicity
as stated in (i) was given in [6, Lemma 5.1]. It remains to prove (ii). We show that

lim
δ→0+

ζc∗−δ(ϕ) = lim
δ→0+

ζc∗+δ(ϕ) = z∗(ϕ) for ϕ ∈ [0, 1].

For any ϕ ∈ [0, 1], by (i) we have

ζc∗−δ2(ϕ) < ζc∗−δ1(ϕ) < z∗(ϕ) < ζc∗+δ1(ϕ) < ζc∗+δ2(ϕ) for any 0 < δ1 < δ2. (6.2)

Lemma 3.3 and (6.2) imply that there exist two functions w, w ∈ C0[0, 1] ∩ C1 (0, 1) so that
w(ϕ) = limδ→0+ ζc∗+δ(ϕ) and w(ϕ) = limδ→0+ ζc∗−δ(ϕ), ϕ ∈ [0, 1], and that both w and w
satisfy (3.1) with c = c∗. Since w(1) = w(1) = 0, both of them then solve (6.1). By the
uniqueness of solutions of (6.1) it follows that w = w = z∗.
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Remark 6.2. Note that, because of the uniqueness stated in Lemma 6.1, it follows that, for any
c ≥ c∗, the solution z given by Proposition 4.2 corresponds to ζc of Lemma 6.1. Moreover, for
c < c∗ fixed, there exists a bound from below for ζc(0) < 0. We have

ζc(0) ≥ −1− Ac, for Ac := max
{

max
ϕ∈[0,1]

h(ϕ)− c, 0
}
+ max

ϕ∈[0,1]
q(ϕ) > 0.

Indeed, the function η(ϕ) := Ac (ϕ− 1)− 1, for ϕ ∈ [0, 1], is a strict upper-solution of (6.1)1.
Therefore, if ζc(ϕ0) ≤ η(ϕ0), for some ϕ0 ∈ (0, 1), then ζc < η in (ϕ0, 1) by Lemma 3.2 (2.a.ii),
which is in contradiction with ζc(1) = 0 > η(1). Thus, ζc(0) ≥ η(0) = −Ac − 1. Notice that,
for c ≥ max h, Ac = max q does not depend on c, while Ac → ∞, as c→ −∞.

We now show that β(c∗) = 0 under some additional conditions. First, we assume (also for
future reference) that q̇(0) exists:

q̇(0) = lim
ϕ→0+

q(ϕ)

ϕ
∈ [0, ∞). (6.3)

Proposition 6.3. Assume (q), (6.3) and also∫
0

q(σ)
σ2 dσ < +∞ and c∗ > h(0). (6.4)

Then Problem (3.11) with c = c∗ admits a unique solution z, which satisfies z(1) = 0.

Notice that (6.4)1 above strengthens the last condition in (q) and is satisfied if q̇(ϕ) = O(ϕα)

for ϕ→ 0+, for some α > 0; in any case it implies q̇(0) = 0 by (6.3).

ϕ

z
z∗

ζc(0)

ζcy∗

z∗c

1

Figure 6.2: The functions z∗, ζc, y∗ and z∗c , for c < c∗.

Proof of Proposition 6.3. Suppose, by contradiction, that there exists y∗ which solves (3.11) with
c = c∗ and y∗(1) < 0; observe that

z∗ > y∗ in (0, 1]. (6.5)

We show that y∗ is an upper bound for the family of functions {z∗c}c<c∗ defined as follows,
see Figure 6.2. For any c < c∗, let ζc be the solution of (6.1), given in Lemma 6.1. Consider the
initial-value problem {

ż(ϕ) = h(ϕ)− c∗ − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(0) = ζc(0) < 0.
(6.6)

By Lemma 3.2 (1.b), problem (6.6) admits a unique solution z∗c in [0, δ] for some δ ≤ 1. More-
over, since z∗c (0) < 0 and z∗c satisfies (6.6), then z∗c < y∗ in [0, δ). Thus, if δ < 1 then we have
−∞ < z∗c (δ) < y∗(δ) < 0; again by Lemma 3.2 (1.b) we deduce δ = 1. Then

y∗ > z∗c in [0, 1). (6.7)
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By both Lemma 6.1 (ii) and (6.7) we now find a contradiction, which implies that such a
y∗ cannot exist. For this, for any c < c∗, define ηc by

ηc(ϕ) = ζc(ϕ)− z∗c (ϕ), ϕ ∈ [0, 1].

Since z∗c is a strict lower-solution of (3.11)1, then Lemma 3.2 (2.b.ii) implies ηc > 0 in (0, 1). We
claim that, for any fixed ϕ0 ∈ (0, 1], ηc(ϕ0) is uniformly bounded from below for c close to c∗.
Indeed, for any 0 < δ < (z∗ − y∗)(ϕ0), we clearly have, by (6.7) and (6.5),

ηc(ϕ0) > ζc(ϕ0)− y∗(ϕ0) = (ζc − z∗) (ϕ0) + (z∗ − y∗) (ϕ0) > (ζc − z∗) (ϕ0) + δ.

Thus, in virtue of Lemma 6.1 (ii), for any c sufficiently close to c∗, we have

ηc(ϕ0) ≥
δ

2
> 0, (6.8)

which proves our claim. On the other hand, define k = k(ϕ) > 0 by

k(ϕ) :=
q(ϕ)

(z∗y∗) (ϕ)
, ϕ ∈ (0, 1).

From assumptions (6.3) and (6.4)2 we deduce ż∗(0) = h(0)− c∗ < 0 because of [6, Proposi-
tion 5.2]. Also, by (6.5) we deduce that y∗z∗ > z∗2 in (0, 1]. Thus,

k(ϕ) <
q(ϕ)

ϕ2

(
ϕ

z∗(ϕ)

)2

=
q(ϕ)

ϕ2

{
1

(c∗ − h(0))2 + o(1)

}
for ϕ→ 0+.

This leads to ∫ ϕ0

0
k(σ) dσ =: M < +∞

by means of (6.4)1. Since ζc and z∗c satisfy (3.11)1 with c < c∗ and c = c∗, respectively, and
since ζcz∗c > z∗y∗ by the monotonicity stated in Lemma 6.1 and (6.7), then

η̇c(ϕ) = c∗ − c− q(ϕ)

ζc(ϕ)z∗c (ϕ)
(z∗c (ϕ)− ζc(ϕ)) < c∗ − c + k(ϕ)ηc(ϕ),

for ϕ ∈ (0, 1). After some straightforward manipulations, this gives

d
dϕ

(
ηc(ϕ)e−

∫ ϕ
0 k(σ) dσ

)
≤ (c∗ − c) e−

∫ ϕ
0 k(σ) dσ, ϕ ∈ (0, 1).

By integrating in (0, ϕ0) (where ϕ0 is the point for which (6.8) holds) we obtain

0 < ηc(ϕ0) ≤ (c∗ − c) e
∫ ϕ0

0 k(σ) dσ
∫ ϕ0

0
e−
∫ σ

0 k(s) ds dσ ≤ (c∗ − c) eM ϕ0, (6.9)

since e−
∫ σ

0 k(s) ds ≤ 1, for any 0 < σ < ϕ0, because of k > 0. Since M does not depend on c,
from (6.9), we conclude that ηc(ϕ0)→ 0, for c→ c∗. This contradicts (6.8). �
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We notice that if q = Dg, with D ∈ C1[0, 1], then (6.4)1 follows if we have both D(0) = 0
and there exists L ≥ 0 such that g(ϕ) ≤ Lϕα for any ϕ in a right neighborhood of 0 and some
α > 0. The next remark deals with (6.4)2.

Remark 6.4. First, from (4.3), we have c∗ ≥ supϕ∈(0,1]
f (ϕ)

ϕ ≥ h(0). We show that the case
c∗ = h(0) can indeed occur and then (6.4)2 is a real assumption. Set, for ϕ ∈ (0, 1),

q(ϕ) = ϕ3 (1− ϕ) , h(ϕ) = 3ϕ (ϕ− 1) , (6.10)

and z(ϕ) = ϕ2 (ϕ− 1). Direct computations show that z satisfies (3.11) with c = 0 = h(0).
Hence, c∗ = h(0), because of c∗ ≥ h(0).

Second, in the spirit of [16, Theorems 1.2 and 1.3], which concerns a similar case, we claim
that (6.4)2 occurs if there exists δ > 0 such that h(ϕ) ≥ h(0) for all ϕ ∈ [0, δ]. Indeed, if z is
a solution of (3.11) with c = c∗, then from (3.11)1 we have ż(ϕ) > h(ϕ)− c∗ ≥ h(0)− c∗, for
ϕ ∈ (0, δ). This implies h(0)− c∗ ≤ infϕ∈(0,δ) ż(ϕ) < 0, because of (3.11)2 and (3.11)3, which
proves our claim.

Lastly, we show by a counter-example that the conclusion of Proposition 6.3 fails when
(6.4)1 holds but (6.4)2 does not. Consider, for ϕ ∈ [0, 1], q(ϕ) = ϕ4 (1− ϕ) and y∗(ϕ) = −ϕ2.
Clearly, y∗ < 0 in (0, 1) and y∗(0) = 0. Furthermore, we have

ẏ∗(ϕ) +
q(ϕ)

y∗(ϕ)
= −2ϕ− ϕ2 (1− ϕ) , ϕ ∈ (0, 1).

This implies that y∗ satisfies (3.11)1 with h(ϕ) = −2ϕ − ϕ2 (1− ϕ) and c = 0. As a conse-
quence, by c∗ ≥ h(0) = 0, we deduce c∗ = h(0) = 0. Thus, we proved that there exists q
satisfying (6.4)1 such that (3.11) with c = c∗ = h(0) admits a solution y∗ 6= z∗.

Proposition 6.5. Assume (q). For no c < c∗ problem (3.11) admits solutions.

Proof. Take c < c∗ and assume by contradiction that problem (3.11) has a solution z. If ζ = ζc

is the solution to (6.1) given by Lemma 6.1, then ζ(0) < 0, by Proposition 4.2. Then ζ(ϕ0) =

z(ϕ0) =: y0 < 0, for some ϕ0 ∈ (0, 1); see Figure 6.3. This contradicts the uniqueness of the
Cauchy problem associated to (6.1)1. The proof is concluded.

ϕ

z

z

ζ(0)

ζ

z(1)

1ϕ0

Figure 6.3: The functions z and ζ.

7 The behavior of z near 1

In this section and in the next one we investigate the behavior of the solutions z to (3.11) at 1
and 0. We now deal with the former case. We suppose that, analogously to (6.3),

q̇(1) ∈ (−∞, 0]. (7.1)
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Proposition 7.1. Assume (q) and (7.1); consider c ≥ c∗ and let z be a solution of (3.11). Then, ż(1)
exists and it holds that

(i) if z(1) ∈ [β, 0), then ż(1) = h(1)− c;

(ii) if z(1) = 0, then

ż(1) =

 1
2

[
h(1)− c +

√
(h(1)− c)2 − 4q̇(1)

]
if q̇(1) < 0,

max {0, h(1)− c} if q̇(1) = 0.
(7.2)

Proof. In case (i), we only need to take the limit for ϕ→ 1− in (3.11)1.
In case (ii), the proof of the existence of ż(1) is analogous to the proof of [16, Lemma 2.1],

even if in that paper there is the further assumption q̇(1) = 0. In the current case, ż(1) must
coincide with one of the roots of the equation γ2 − (h(1)− c) γ + q̇(1) = 0, which are

r± :=
h(1)− c±

√
(h(1)− c)2 − 4q̇(1)

2
.

A direct check shows that the right-hand side of (7.2) corresponds exactly to r+. Thus, if we
prove that ż(1) = r+ then we conclude the proof.

If q̇(1) < 0, the fact that r− < 0 implies necessarily that µ = r+, because of ż(1) ≥ 0.
Let q̇(1) = 0. Since we do not yet know whether ż is continuous at 1 (see Remark 9.2),

we argue as follows. For any ϕ ∈ (0, 1), by the Mean Value Theorem there exists σϕ ∈ (ϕ, 1)
satisfying ż(σϕ) =

z(ϕ)
ϕ−1 . By the definition of ż(1) it then follows that

lim
ϕ→1−

ż(σϕ) = ż(1) and lim
ϕ→1−

z(σϕ)

σϕ − 1
= ż(1). (7.3)

From (3.11)1, the sign conditions in (3.2)2 and (3.11)2 imply that

ż(σϕ) > h(σϕ)− c, ϕ ∈ (0, 1). (7.4)

By (7.3), passing to the limit as ϕ → 1− gives ż(1) ≥ h(1)− c, because of the continuity of h
at 1. Moreover, since ż(1) ≥ 0 it holds that ż(1) ≥ max {0, h(1)− c} = r+. This concludes the
proof, since it necessarily follows that ż(1) = r+ also in this case.

Remark 7.2. We prove in Remark 9.2 that z ∈ C1(0, 1] under the assumptions of Proposition
7.1. We now show that (7.1) is necessary for the existence of ż(1). We define

q(ϕ) = ϕ3 (1− ϕ)

[
(sin (log (1− ϕ)) + 2)2 + 2 cos (log (1− ϕ)) +

1
2

sin (2 log (1− ϕ))

]
,

for ϕ ∈ [0, 1]. The function q satisfies (q), while q̇(1) does not exist. Direct computations show
that the function z = z(ϕ) defined by z(ϕ) = − (2 + sin(log(1− ϕ))) (1− ϕ) ϕ2 satisfies (3.11)
with c = 0 and h(ϕ) = ϕ(ϕ− 1) [cos(log(1− ϕ)) + 3 sin(log(1− ϕ)) + 6]. It is easy to verify
that ż(1) does not exist.
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8 The behavior of z near 0

For ϕ0 ∈ (0, 1) we consider the problem, see Figure 8.1 on the left,{
ż(ϕ) = h(ϕ)− c− q(ϕ)

z(ϕ)
, ϕ ∈ (0, 1),

z(ϕ0) = z∗(ϕ0).
(8.1)

Lemma 8.1. Assume (q). Fix c > c∗. For every ϕ0 ∈ (0, 1) there is a unique solution ẑϕ0 ∈
C[0, 1] ∩ C1 (0, 1) to problem (8.1). We have ẑϕ0(0) = 0, and also

ẑϕ0 < z∗ in (ϕ0, 1] and ẑϕ0 ≥ zβ in (0, 1], (8.2)

where zβ is the solution to (3.11) with zβ(1) = β. If 0 < ϕ1 < ϕ0 then ẑϕ1 < ẑϕ0 in (0, 1].

Proof. The existence and uniqueness of solutions is proved by Step (i) in the proof of Propo-
sition 5.1. Inequality (8.2)1 follows from the arguments contained in Step (i) of the proof of
Proposition 5.1, while (8.2)2 is obvious.

If 0 < ϕ1 < ϕ0 then ẑϕ1(ϕ0) < ẑϕ0(ϕ0), because ẑϕ1 < z∗ in (ϕ1, 1] and ϕ0 ∈ (ϕ1, 1]. The
monotony follows by the uniqueness of solutions to the Cauchy problem associated to (3.11)1.
The regularity of ẑϕ0 follows from both (8.1)1 and Lemma 3.1; directly from (8.2)2, we deduce
ẑϕ0(0) = 0.

ϕ

z

z∗

1

ẑϕ0

ϕ0

ẑϕ1

ϕ1

ẑ β̂

zβ β

ϕ

z

zb
bs+

s∗+

s∗−

s−

z∗
zβ̂

β̂
zβ β(c)

1

Figure 8.1: Left: the functions ẑϕ0 , ẑ and zβ in Lemma 8.1. Right: an illustration
of Proposition 8.2 for fixed c > c∗. Solutions are labelled according to their
right-hand limit; s± denote the slope of the tangent of z at 0. The dashed curve
is the plot of z∗.

For every c > c∗, by the monotonicity of {ẑϕ0}ϕ0 and (8.2)2, Lemma 3.3 implies that there
exists ẑ ∈ C0[0, 1] ∩ C1 (0, 1) which solves (3.1) such that

ẑ(ϕ) = lim
ϕ0→0+

ẑϕ0(ϕ), ϕ ∈ [0, 1] . (8.3)

Such a ẑ satisfies zβ ≤ ẑ ≤ z∗ in (0, 1) by (8.2) and then (3.11). Define β̂ ∈ [β, 0) by

β̂ := ẑ(1). (8.4)

In the following result we assume again (6.3). We shall prove in Remark 8.3 that such a
condition is necessary for the existence of ż(0). From (4.3) and (6.3) we deduce (h(0)− c)2 −
4q̇(0) ≥ 0 for any c ≥ c∗; we can then denote

s±(c) :=
h(0)− c

2
±

√
(h(0)− c)2 − 4q̇(0)

2
, for c ≥ c∗.
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The next proposition generalizes [6, Proposition 5.2] to the case of a more generic q, and,
more deeply, to the case z(1) < 0. It is worth noting that this latter case reveals the behavior
detected by (8.6), and shown in Figure 8.1 on the right, which was not contained in [6].

Proposition 8.2. Assume (q) and (6.3). If c ≥ c∗ and z is a solution of (3.11), then, ż(0) exists.
Moreover, it holds that

ż(0) =

{
s+(c) if c > c∗ and z(1) > β̂,

s−(c∗) if c = c∗,
(8.5)

and, if c∗ > h(0),
ż(0) = s−(c) if c > c∗ and z(1) ∈ [β, β̂]. (8.6)

Proof. Arguing as in the proof of [6, Proposition 5.2], we deduce that ż(0) exists for c ≥ c∗ and
is one of the root of the equation γ2 − (h(0)− c) γ + q̇(0) = 0. Then ż(0) ∈ {s−(c), s+(c)} for
every c ≥ c∗. Straightforward computations give

s−(c) < s−(c∗) ≤ s+(c∗) ≤ s+(c) ≤ 0 for any c > c∗ (8.7)

and h(0)− c ≤ s−(c), for any c ≥ c∗. We denote s∗± := s±(c∗).
Take c > c∗. Let ẑϕ0 and ẑ be defined as in the beginning of Section 8, see Figure 8.1 on

the left. If z(1) > β̂ then z(1) > ẑϕ1(1), for some ϕ1 ∈ (0, 1), because of (8.3). Thus, z > ẑϕ1

in (0, 1]. We observed in (5.3) that ẑϕ1 > z∗ in (0, ϕ1). Thus, z > z∗ in (0, ϕ1) and hence
ż(0) ≥ ż∗(0). Since s−(c) < s∗− ≤ 0 by (8.7), we deduce ż(0) = s+(c). This proves (8.5)1.

Now, we prove (8.5)2. If z = z∗, then (8.5)2 was obtained in [6, Proposition 5.2] under some
specific assumptions on q. Since the relevant ones were (3.2) and (6.3), we deduce that (8.5)2
occurs also in the current case. If z = y∗ is a solution of (3.11), different from z∗ (such a y∗

can exist, as we proved in Remark 6.4, since (6.4) does not necessarily follow), then y∗ < z∗

in (0, 1] by Proposition 4.2. Since ẏ∗(0) ∈ {s∗−, s∗+} and ż∗(0) = s∗− then we have ẏ∗(0) = s∗−.
Hence, (8.5)2 holds.

It remains to prove (8.6) under the additional condition h(0)− c∗ < 0. By β ≤ z(1) ≤ β̂

we have z ≤ ẑ and hence z < z∗, which implies ż(0) ≤ ż∗(0). Since, under the additional
condition h(0)− c∗ < 0, we have s∗− < s∗+ and since we proved that ż∗(0) = s∗−, we conclude
that ż(0) = s−(c), which is (8.6). This concludes the proof.

Remark 8.3. Now, we prove that (6.3) is necessary for the existence of ż(0). For ϕ ∈ [0, 1]
define q(ϕ) = ϕ(1− ϕ)4 (2 + sin (log ϕ)) (3− cos (log ϕ)− sin (log ϕ)). The function q satis-
fies (q), while q̇(0) does not exist, since lim infϕ→0+ q(ϕ)/ϕ < lim supϕ→0+ q(ϕ)/ϕ. Direct

computations show that the function z(ϕ) = − (2 + sin (log ϕ)) (1− ϕ)2 ϕ solves (3.11) with
c = 0 and h(ϕ) = 2 (2 + sin (log ϕ)) (1− ϕ) ϕ− 5 (1− ϕ)2. Clearly, ż(0) does not exists.

We now show that, under the assumptions of Proposition 6.3, the threshold β̂(c) defined in
(8.4) and occurring in Proposition 8.2 coincides with the threshold β(c) introduced in Propo-
sition 5.1. It is an open problem whether the two thresholds differ without assuming (6.3) and
(6.4).

Proposition 8.4. Assume (q), (6.3), (6.4) and c > c∗. Then β(c) = β̂(c).

Proof. Consider ε > 0 and let zε be the solution of{
żε(ϕ) = h(ϕ)− c− q(ϕ)

zε(ϕ)
, ϕ > 0,

zε(0) = −ε < 0.
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Lemma 3.2 (1.b) implies that zε exists and it is defined in its maximal-existence interval [0, δ],
for some 0 < δ ≤ 1. By the uniqueness of solutions of the Cauchy problem associated to
(3.1)1, we have necessarily zε < zβ in [0, δ], where zβ was defined in the statement of Lemma
8.1. Since zβ(δ) < 0 then δ = 1.

We claim that zε converges for ε → 0+ to both ẑ and zβ, where ẑ is defined in (8.3), see
Figure 8.1 on the left. From the uniqueness of the limit, it follows that ẑ and zβ coincides and
hence that β = β̂. To prove the claim, consider

ηε(ϕ) := ẑ(ϕ)− zε(ϕ), ϕ ∈ [0, 1].

Since ẑ ≥ zβ > zε in [0, 1], then ηε > 0 in [0, 1]. Moreover, ηε(0) = ε. We have

η̇ε(ϕ) =
q(ϕ)

zε(ϕ)ẑ(ϕ)
ηε(ϕ), ϕ ∈ (0, 1).

Thus,
η̇ε(ϕ)

ηε(ϕ)
=

q(ϕ)

zε(ϕ)ẑ(ϕ)
, ϕ ∈ (0, 1)

and hence, for any 0 < τ < ϕ,

log (ηε(ϕ))− log (ηε(τ)) =
∫ ϕ

τ

q(s)
zε(s)ẑ(s)

ds ≤
∫ 1

τ

q(s)
zβ(s)ẑ(s)

ds. (8.8)

Notice, from (6.4)2 it follows that we can apply (8.6) with q̇(0) = 0 (because of (6.3)) and obtain
zβ(s)ẑ(s) = (h(0)− c)2 s2 + o(s2), as s→ 0+. Hence, from (6.4)1,

sup
τ>0

∫ 1

τ

q(s)
zβ(s)ẑ(s)

ds =: C < +∞.

From (8.8), by taking the limit as τ → 0+ we deduce ηε(ϕ) ≤ εeC, ϕ ∈ [0, 1), and then

lim
ε→0+

zε(ϕ) = ẑ(ϕ), ϕ ∈ [0, 1). (8.9)

We now apply Lemma 3.3 to deduce that zε converges (uniformly on [0, 1]) to a solution z̄ of
(3.1)1 in (0, 1) such that z̄ < 0 in (0, 1) and z̄(0) = 0. Since zε < zβ and zβ lies below every
solution of (3.1), by the very definition of zβ, we conclude that z̄ coincides with zβ, that is
limε→0+ zε(ϕ) = zβ(ϕ), ϕ ∈ [0, 1]. From this formula and (8.9) we clearly have zβ = ẑ.

9 Strongly non-unique strict semi-wavefronts

We now apply the previous results to study semi-wavefronts of Equation (1.1) when D and g
satisfy (D1), (g0) and (1.2); in particular, we prove Theorem 2.2 and Corollary 9.4. Indeed, all
the results obtained in Sections 4–8 apply when we set

q := Dg, (9.1)

since such q fulfills (q). Throughout this section, by c∗ we always intend the threshold given
by Proposition 4.2 for q as in (9.1), for which it holds (2.2), as observed in Remark 5.5.
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Lemma 9.1. Assume (D1), (g0) and (1.2). Consider c ≥ c∗ and let z be the solution of (3.12) when
(9.1) occurs. Then, it holds that

lim
ϕ→1−

D(ϕ)

z(ϕ)
=


h(1)−c−

√
(h(1)−c)2−4Ḋ(1)g(1)

2g(1) if Ḋ(1) < 0,

min
{

0, h(1)−c
g(1)

}
if Ḋ(1) = 0.

(9.2)

Proof. First, observe that Proposition 7.1 applies to the current case.
If either Ḋ(1) < 0 or Ḋ(1) = 0 and c < h(1), then ż(1) > 0, by (7.2), because q̇(1) =

Ḋ(1)g(1). As a consequence, we have

lim
ϕ→1−

D(ϕ)

z(ϕ)
= lim

ϕ→1−

D(ϕ)
ϕ−1
z(ϕ)
ϕ−1

=
Ḋ(1)
ż(1)

,

which, together with (7.2), implies both (9.2)1 and the first half of (9.2)2.

If Ḋ(1) = 0 and c ≥ h(1), we need a refined argument based on strict upper- and lower-
solutions of (3.11)1. We split the proof in two subcases.

(i) Assume first Ḋ(1) = 0 and c > h(1). Fix ε > 0 and define ω = ω(ϕ) by

ω(ϕ) := − g(1)
c− h(1) + εg(1)

D(ϕ), for ϕ ∈ (0, 1). (9.3)

First, we observe that ω < 0 in (0, 1). Moreover, we get

ω̇(ϕ) = − g(1)
c− h(1) + εg(1)

Ḋ(ϕ),

which in turn implies ω̇(1) = 0, since Ḋ(1) = 0. Now, if we compute the right-hand side of
(3.11)1 applied to ω, we obtain

h(ϕ)− c− D(ϕ)g(ϕ)

ω(ϕ)
= h(ϕ)− c +

g(ϕ) [c− h(1) + εg(1)]
g(1)

, for ϕ ∈ (0, 1),

which tends to εg(1) > 0 as ϕ→ 1−. Hence, there exists σ ∈ (0, 1) such that

ω̇(ϕ) < h(ϕ)− c− D(ϕ)g(ϕ)

ω(ϕ)
, ϕ ∈ [σ, 1), (9.4)

that is, ω is a (strict) lower-solution of (3.11)1 in [σ, 1).
Since ż(1) = 0, we can take a sequence {ϕn}n ⊂ (σ, 1), with ϕn → 1 as n → ∞, such that

ż(ϕn)→ 0 as follows. Let {σn}n ⊂ (σ, 1) be such that σn → 1. For any n ∈N, the Mean Value
Theorem implies that there exists ϕn ∈ (σn, 1) for which it holds ż(ϕn) = z(σn)

σn−1 . Since the
sequence in the right-hand side of this last identity tends to ż(1) = 0, as n → ∞, we obtained
the desired {ϕn}n. With this in mind, from (3.11)1, we obtain

lim
n→∞

D(ϕn)g(ϕn)

z(ϕn)
= h(1)− c, (9.5)

and then

lim
n→∞

ω(ϕn)

z(ϕn)
=

c− h(1)
c− h(1) + εg(1)

= 1− εg(1)
c− h(1) + εg(1)

< 1.
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Hence, there exists n such that ω(ϕn) > z(ϕn) for n ≥ n. Without loss of generality we assume
that n = 1. We claim that

ω(ϕ) > z(ϕ), for ϕ ∈ (ϕ1, 1). (9.6)

We reason by contradiction, see Figure 9.1. Suppose that there exists ϕ̃ ∈ (ϕ1, 1) such
that ω(ϕ̃) ≤ z(ϕ̃). There exists n ∈ N for which ϕ̃ ∈ (ϕn, ϕn+1). Since ω(ϕn) > z(ϕn) and
ω(ϕn+1) > z(ϕn+1), the existence of such a ϕ̃ implies that the function (ω− z) in (ϕn, ϕn+1)

admits a non-positive minimum at ϕ̃2 ∈ (ϕn, ϕn+1), that is ω̇(ϕ̃2) = ż(ϕ̃2) and ω(ϕ̃2) ≤ z(ϕ̃2).
Thus, from (3.11)1 and (9.4) we have that

h(ϕ̃2)− c− (Dg)(ϕ̃2)

z(ϕ̃2)
= ż(ϕ̃2) = ω̇(ϕ̃2) < h(ϕ̃2)− c− (Dg)(ϕ̃2)

ω(ϕ̃2)
,

which in turn implies 1/z(ϕ̃2) > 1/ω(ϕ̃2) because of (Dg)(ϕ̃2) > 0. Hence, z(ϕ̃2) < ω(ϕ̃2)

which contradicts the existence of ϕ̃2. Then (9.6) is proved. At last, we have

D(ϕ)

z(ϕ)
>

D(ϕ)

ω(ϕ)
= − c− h(1)

g(1)
− ε, ϕ ∈ (ϕ1, 1). (9.7)

ϕ

z

z

ω

ϕn ϕn+1 1ϕ1 ϕ̃2ϕ̃

Figure 9.1: A detail of the plots of functions ω and z in case (i).

Analogously, for ε > 0 small enough to satisfy c > h(1) + εg(1), we define η = η(ϕ) by

η(ϕ) := − g(1)
c− h(1)− εg(1)

D(ϕ), ϕ ∈ (0, 1).

By arguing as above when we considered ω in (9.3), we deduce that η is a (strict) upper-
solution of (3.11)1 in [σ2, 1) for some σ2 ∈ (0, 1). Proceeding as we did to obtain (9.7), we now
get η(ϕ) < z(ϕ) for ϕ ∈ (ϕ1, 1), for some ϕ1 > σ2. Thus,

D(ϕ)

z(ϕ)
<

D(ϕ)

η(ϕ)
= − c− h(1)

g(1)
+ ε, ϕ ∈ (ϕ1, 1). (9.8)

Finally, putting together (9.7) and (9.8), since ε > 0 is arbitrary, we deduce

lim
ϕ→1−

D(ϕ)

z(ϕ)
=

h(1)− c
g(1)

. (9.9)

Thus, we proved (9.2)2 with c > h(1).

(ii) Now, we consider the case Ḋ(1) = 0 and c = h(1). Fix ε > 0. Set

ω(ϕ) := −D(ϕ)

ε
, ϕ ∈ (0, 1), (9.10)
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which coincides with (9.3) in the current case. By proceeding exactly as in the case (ii), we
obtain (9.3) for ω defined as in (9.10), namely 0 > ω(ϕ) > z(ϕ), for ϕ ∈ (ϕ1, 1), for some
ϕ1 ∈ (0, 1). This implies, as in (9.7),

0 >
D(ϕ)

z(ϕ)
>

D(ϕ)

ω(ϕ)
= −ε, ϕ ∈ (ϕ1, 1). (9.11)

Then (9.11) implies D(ϕ)/z(ϕ)→ 0− as ϕ→ 1−, which is (9.2)2 in the case c = h(1).

Remark 9.2. Let c ≥ c∗ and z be any solution of (3.11). We infer that z ∈ C1(0, 1]. In fact, if
z(1) = b < 0, in the proof of case (i) of Proposition 7.1 we already checked that this is true,
since limϕ→1− ż(ϕ) = ż(1). If z(1) = 0, from (9.2) it follows that the right-hand side of (3.11)1
still has a finite limit, as ϕ→ 1−. As observed, this means that z ∈ C1(0, 1].

We now prove Theorem 2.2.

Proof of Theorem 2.2. We first prove that there exists a semi-wavefront to 0 of (1.1) if c ≥ c∗.
For q = Dg, consider one of the solutions z = z(ϕ) of (3.11), provided by Propositions 4.2 and
5.1. Consider the Cauchy problem {

ϕ′ = z(ϕ)
D(ϕ)

,

ϕ(0) = 1
2 .

(9.12)

The right-hand side of (9.12)1 is of class C1 in a neighborhood of 1
2 , and then there exists a

unique solution ϕ in its maximal-existence interval (a, ξ0), for −∞ ≤ a < ξ0 ≤ ∞. Since
z(ϕ)/D(ϕ) < 0 for ϕ ∈ (0, 1), we deduce that ϕ is decreasing and then limξ→a+ ϕ(ξ) = 1,
limξ→ξ−0

ϕ(ξ) = 0. By (9.12)1, the profile ϕ satisfies (1.3) in (a, ξ0). We show that, if ξ0 ∈ R,
we can extend ϕ and obtain a solution of (1.3), in the sense of Definition 2.1, defined in the
half-line (a,+∞).

Assume ξ0 ∈ R and set ϕ(ξ) = 0, for any ξ ≥ ξ0. The new function (which without any
ambiguity we still call ϕ) is clearly of class C0(a,+∞) ∩ C2 ((a,+∞) \ {ξ0}) and is a classical
solution of (1.3) in (a,+∞) \ {ξ0}. Moreover, observe that, as a consequence of both the fact
that z satisfies (3.11)3, and (9.12)1, we have

lim
ξ→ξ−0

D (ϕ(ξ)) ϕ′(ξ) = 0. (9.13)

This implies that D(ϕ)ϕ′ ∈ L1
loc(a,+∞).

To show that ϕ is a solution of (1.3) according to Definition 2.1, it remains to prove (2.1).
For this purpose, consider ψ ∈ C∞

0 (a,+∞), and let a < ξ1 < ξ2 < ∞ be such that ψ(ξ) = 0, for
any ξ ≥ ξ2 or ξ ≤ ξ1. Our goal is then to prove the following:

∫ ξ2

ξ1

(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g(ϕ)ψ dξ = 0. (9.14)

Identity (9.14) is obvious if ξ2 < ξ0, since ϕ solves (1.3) in (a, ξ0). Assume ξ2 ≥ ξ0. In the
interval (ξ0, ξ2) we have ϕ = 0, and since g(0) = f (0) = 0 we deduce

∫ ξ2

ξ0

(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g(ϕ)ψ dξ = 0. (9.15)



Fronts for degenerate diffusion-convection reaction equations 27

In the interval (ξ1, ξ0) we have, by (9.13),

∫ ξ0

ξ1

(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g(ϕ)ψ dξ

= lim
ε→0+

∫ ξ0−ε

ξ1

(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g(ϕ)ψ dξ

= lim
ε→0+

((
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ
)
(ξ0 − ε) = 0.

(9.16)

Thus, identities (9.15) and (9.16) imply (9.14).

At last, we claim that a ∈ R, i.e., that ϕ is strict. For this, it is sufficient to prove

lim
ξ→a+

ϕ′(ξ) < 0. (9.17)

We stress that the case limξ→a+ ϕ′(ξ) → −∞, for short ϕ′(a+) = −∞, is included in (9.17). To
prove (9.17), we notice that, from (9.12),

lim
ξ→a+

ϕ′(ξ) = lim
ϕ→1−

z(ϕ)

D(ϕ)
.

Thus, (9.17) easily follows from either a direct check, in the case z(1) < 0, or the application
of Lemma 9.1, in the case z(1) = 0. This concludes the first part of the proof.

Conversely, we prove that if there exists a semi-wavefront ϕ to 0 defined in (a,+∞), then
c ≥ c∗. Let b̄ be defined by

b̄ := sup {ξ > a : ϕ(ξ) > 0} ∈ (a,+∞]. (9.18)

We have 0 < ϕ < 1 in
(
a, b̄
)

and so ϕ is a classical solution of (1.3) in
(
a, b̄
)
. We claim that

lim
ξ→b̄−

D (ϕ(ξ)) ϕ′(ξ) = 0. (9.19)

Suppose b̄ ∈ R. Take ξ1 > a and ξ2 > b̄. By choosing, in Definition 2.1, ψ ∈ C∞
0 (a,+∞) with

support in (ξ1, ξ2) such that ψ(b̄) 6= 0, (2.1) reads as (passing to the limit in the integral as in
(9.16))

0 =
∫ ξ2

ξ1

(
D (ϕ) ϕ′ + cϕ− f (ϕ)

)
ψ′ − g (ϕ)ψ dξ

=
∫ b̄

ξ1

(
D (ϕ) ϕ′ + cϕ− f (ϕ)

)
ψ′ − g (ϕ)ψ dξ =

(
D(ϕ)ϕ′

)
(b̄−)ψ(b̄).

Then we got (9.19) in this case. If b̄ = +∞, by integrating (1.3) in [η, ξ] ⊂ (ā,+∞), we have

D (ϕ(ξ)) ϕ′(ξ)

= D (ϕ(η)) ϕ′(η)− c (ϕ(ξ)− ϕ(η)) + ( f (ϕ(ξ))− f (ϕ(η)))−
∫ ξ

η
g (ϕ(σ)) dσ. (9.20)

Since the function

ξ 7→
∫ ξ

η
g(ϕ(σ)) dσ
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is increasing (because g > 0 in (0, 1)), then limξ→∞ D (ϕ(ξ)) ϕ′(ξ) = ` for some ` ∈ [−∞, 0].
If ` < 0, then, ϕ′(ξ) tends either to some negative value or to −∞ as ξ → +∞. In both cases,
this contradicts the boundedness of ϕ, and so (9.19) is proved.

We show now (2.3). Suppose by contradiction that (2.3) does not occur, there exists
ξ0 ∈ (a, b̄), with 0 < ϕ(ξ0) < 1, such that ϕ′(ξ0) = 0. Then (1.3) implies ϕ′ ′(ξ0) =

−g (ϕ(ξ0)) /D (ϕ(ξ0)) < 0 and hence ξ0 is a local maximum point of ϕ. It is plain to see
that, in turn, this implies that there exists a < ξ1 < ξ0 which is a local minimum point of ϕ.
From what we said about ξ0, we necessarily have ϕ(ξ1) = ϕ′(ξ1) = 0.

Take ξ ∈ (ξ1, b̄). Integrating (1.3) in [ξ1, ξ] gives (9.20) with ξ1 replacing η. By passing to
the limit for ξ → b̄−, from (9.19) we obtain the contradiction 0 < 0. This proves (2.3).

From (2.3), we can define the function z = z(ϕ), for ϕ ∈ (0, 1), by

z(ϕ) := D(ϕ)ϕ′ (ξ(ϕ)) , (9.21)

where ξ = ξ(ϕ) is the inverse function of ϕ. Again by (2.3), it follows also that z < 0 in (0, 1).
From (9.19), we clearly have z(0+) = 0; furthermore, a direct computation shows that z solves
equation (1.6)1. Thus, z solves problem (1.6), which is (3.11) with q = Dg. At last, Proposition
6.5 implies c ≥ c∗.

Remark 9.3. The proof of Theorem 2.2 provides a formula for ϕ′(a+). If z(1) < 0, then
ϕ′(a+) = −∞. If z(1) = 0, Lemma 9.1 leads to

lim
ξ→a+

ϕ′(ξ) =


2g(1)

h(1)−c−
√

(h(1)−c)2−4Ḋ(1)g(1)
if Ḋ(1) < 0,

g(1)
h(1)−c if Ḋ(1) = 0 and c > h(1),

−∞ if Ḋ(1) = 0 and c ≤ h(1).

(9.22)

We now investigate the qualitative properties of the profiles when they reach the equi-
librium 0. The classification is complete, apart from some cases corresponding to c∗ =

h(0), when further assumptions are needed, see Remark 10.1. Below the existence of the
limξ→a+ D (ϕ(ξ)) ϕ′(ξ) is a consequence of the definition (9.21) and Lemma 3.1.

Corollary 9.4. Under the assumptions of Theorem 2.2, let c ≥ c∗ and ϕ be a strict semi-wavefront to
0 of (1.1), connecting 1 to 0, defined in its maximal-existence interval (a,+∞). Then, for c > c∗, there
exists β̂(c) ∈ [β(c), 0] such that the following results hold.

(i) D(0) > 0 implies that ϕ is classical and strictly decreasing.

(ii) D(0) = 0, c > c∗ and
lim

ξ→a+
D (ϕ(ξ)) ϕ′(ξ) > β̂(c), (9.23)

imply that ϕ is classical; moreover, ϕ reaches 0 at some ξ0 > a if

c > h(0) + lim sup
ϕ→0+

g(ϕ)

ϕ
. (9.24)

(iii) D(0) = 0, c∗ > h(0) and

either c = c∗ or lim
ξ→a+

D (ϕ(ξ)) ϕ′(ξ) ≤ β̂(c) (9.25)



Fronts for degenerate diffusion-convection reaction equations 29

imply that ϕ is sharp at 0 (reached at some ξ0 > a) with

lim
ξ→ξ−0

ϕ′(ξ) =


h(0)−c
Ḋ(0) < 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0.
(9.26)

Notice that β is related to the existence of the semi-wavefronts while β̂ deals with their
smoothness (see Figure 9.2). The two thresholds coincide under the assumptions of Proposi-
tion 8.4.

ρ

ϕ
1

a ρ

ϕ
1

ξ0a ρ

ϕ
1

ξ0a

Figure 9.2: Examples of profiles occurring in Corollary 9.4. From the left to the
right, they depict, respectively, what stated in Parts (i), (ii) and (iii).

Proof of Corollary 9.4. Define ξ0 := sup {ξ > a : ϕ(ξ) > 0} ∈ (a,+∞]. We assume without loss
of generality that a < 0 < ξ0 and ϕ(0) = 1/2. Let z be the function defined in (9.21). Notice,
1 = D(ϕ)ϕ′/z(ϕ) if ϕ ∈ (0, 1). Thus, for any ξ > 0, it follows that

ξ =
∫ ξ

0

D (ϕ(s))
z (ϕ(s))

ϕ′(s)ds =
∫ ϕ(ξ)

1/2

D(σ)

z(σ)
dσ =

∫ 1/2

ϕ(ξ)

D(σ)

−z(σ)
dσ.

Therefore, ξ0 ∈ R if and only if it holds that∫ 1/2

0

D(σ)

−z(σ)
dσ := lim

ϕ→0+

∫ 1/2

ϕ

D(σ)

−z(σ)
dσ < +∞. (9.27)

For c > c∗, let β̂(c) be given by (8.4).
We prove (i). By Proposition 8.2 we know that ż(0) exists and it is finite; since D(0) > 0

we deduce that (9.27) does not hold. Then, ξ0 = +∞ and so ϕ is strictly decreasing. This, and
the fact that ϕ is of class C2 when ϕ ∈ (0, 1), imply ϕ ∈ C2(a,+∞), hence ϕ is classical. Part
(i) is hence showed.

Assume D(0) = 0. In this case, Formula (6.3) holds with q̇(0) = 0 and ż(0) exists by
Proposition 8.2.

We show (ii). Since (9.23) holds then (8.5) reads as ż(0) = 0. We treat separately the cases
Ḋ(0) > 0 or Ḋ(0) = 0. Suppose that Ḋ(0) > 0. Therefore,

lim
ξ→ξ−0

ϕ′(ξ) =
ż(0)
Ḋ(0)

= 0 (9.28)

and hence ϕ (not necessarily strictly monotone) is classical. Suppose then D(0) = Ḋ(0) = 0.
Fix ε > 0 and define η(ϕ) := −εD(ϕ), ϕ ∈ (0, 1). We have

η̇(ϕ)− h(ϕ) + c +
D(ϕ)g(ϕ)

η(ϕ)
→ −h(0) + c > 0, as ϕ→ 0+.
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Therefore η is a strict upper-solution of (1.6)1 in (0, δ], for some δ > 0. Also, since ż(0) = 0,
there exists a sequence {ϕn}n, with δ ≥ ϕn → 0+, such that ż(ϕn) → 0. From (1.6)1, this
implies that

lim
n→∞

εD(ϕn)

−z(ϕn)
= ε lim

n→∞

ż(ϕn) + c− h(ϕn)

g(ϕn)
= ∞.

Hence, −η(δ1) = εD(δ1) > −z(δ1), for some 0 < δ1 ≤ δ small enough. An application of
Lemma 3.2 (2.a.i) then gives

z(ϕ) > −εD(ϕ), ϕ ∈ (0, δ1]. (9.29)

This clearly implies that

0 >
z(ϕ)

D(ϕ)
> −ε, ϕ ∈ (0, δ1].

Since ε > 0 is arbitrary, then we have ϕ′(ξ)→ 0 for ξ → ξ−0 and hence ϕ is classical, that is we
showed the first part of (ii). Define η(ϕ) := −ϕD(ϕ). We have, for any ϕ ∈ (0, 1),

η̇(ϕ)− h(ϕ) + c +
D(ϕ)g(ϕ)

η(ϕ)
= −Ḋ(ϕ)ϕ− D(ϕ)− h(ϕ) + c− g(ϕ)

ϕ
.

Thus, by means of (9.24), we get

lim inf
ϕ→0+

[
η̇(ϕ)− h(ϕ) + c +

D(ϕ)g(ϕ)

η(ϕ)

]
= c− h(0)− lim sup

ϕ→0+

g(ϕ)

ϕ
> 0.

Therefore, η is a strict upper-solution of (1.6)1 in (0, δ], for some δ > 0. Furthermore, taking
the same sequence ϕn → 0+ as above such that ż(ϕn)→ 0, as n→ ∞, then we have

lim inf
n→∞

D(ϕn)ϕn

−z(ϕn)
= lim inf

n→∞

ż(ϕn) + c− h(ϕn)

g(ϕn)/ϕn
=

c− h(0)
lim supn→∞ g(ϕn)/ϕn

> 1,

since (9.24) holds. Thus, as in (9.29), we deduce that D(ϕ)ϕ > −z(ϕ) in (0, δ], after choosing
0 < δ ≤ 1/2 small enough. Hence,

∫ 1/2

0

D(σ)

−z(σ)
dσ >

∫ δ

0

dσ

σ
= +∞,

which concludes the proof of (ii), by means of (9.27).

We show (iii). By (8.5), (8.6), c∗ > h(0) and (9.25) we obtain ż(0) = h(0)− c < 0. Then,

D(σ)

−z(σ)
=

Ḋ(0) + o(1)
c− h(0) + o(1)

as σ→ 0+,

and consequently (9.27) is verified. Thus, ξ0 ∈ R. Furthermore, from (9.21),

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)/ϕ

D(ϕ)/ϕ
=

h(0)− c
Ḋ(0)

∈ [−∞, 0),

which implies that ϕ is sharp at 0 and that (9.26) holds. �
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10 New regularity classification of wavefronts

In this section we prove Theorem 2.3. Analogously to Section 9, but now thanks to assump-
tions (D0)–(g01), we apply results of Sections 4–8 to the case q = Dg.

Proof of Theorem 2.3. We first show that wavefronts are allowed if and only if c ≥ c∗ for c∗

satisfying (2.8); the proof is mostly contained in the proof of Theorem 2.2. Then, we prove (i)
and (ii), by exploiting some of the arguments in the proof of Corollary 9.4.

Set q = Dg. Clearly, q satisfies (q), with in particular q̇(0) = 0. By Proposition 4.2, Problem
(3.12) admits a unique solution z if and only if c ≥ c∗ where for c∗ it holds (4.3). As observed
in Remark 5.5, since (D0) and (g01) hold true, in this case c∗ satisfies (2.8).

To the solution z there is associated the solution ϕ = ϕ(ξ) of the problem{
ϕ′ = z(ϕ)

D(ϕ)
,

ϕ(0) = 1
2 .

(10.1)

Such a ϕ exists and satisfies (10.1)1 in some maximal interval (ξ1, ξ0), so that

lim
ξ→ξ+1

ϕ(ξ) = 1 and lim
ξ→ξ−0

ϕ(ξ) = 0.

Also, ϕ satisfies (1.3) in (ξ1, ξ0). As discussed in the proof of Theorem 2.2, if ξ0 ∈ R, then
ϕ can be extended continuously to a solution of (1.3) in (ξ0,+∞), by setting ϕ(ξ) = 0, for
ξ ≥ ξ0. Since g(1) = 0, it also holds that if ξ1 ∈ R then we can extend ϕ to a solution of (1.3)
in (−∞, ξ1), by setting ϕ(ξ) = 1 for ξ ≤ ξ1. Thus, we can always consider ϕ satisfying weakly
(1.3) in R; moreover ϕ solves (10.1)1 in (ξ1, ξ0) with

ξ1 = inf {ξ ∈ R : ϕ(ξ) < 1} ∈ [−∞, 0), ξ0 = sup {ξ ∈ R : ϕ(ξ) > 0} ∈ (0,+∞],

and it is constant in R \ (ξ1, ξ0). Thus, we showed that if c ≥ c∗ then there exists a wavefront
ϕ whose profile satisfies (1.4).

By reasoning as in the proof of Theorem 2.2, also the converse implication holds. In-
deed, if ϕ is a profile of a wavefront satisfying (1.4), then the function z defined by z(ϕ) :=
D(ϕ)ϕ′

(
ϕ−1(ϕ)

)
, 0 < ϕ < 1, is a solution of (3.12). Thus, c ≥ c∗.

We prove (i). Assume c > c∗. From (8.5) in Proposition 8.2, we have ż(0) = 0. Hence, if
Ḋ(0) 6= 0 then it holds

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
= 0. (10.2)

If Ḋ(0) = 0, then we argue as in the proof of Corollary 9.4, see (9.29), to show that, for any
ε > 0 there exists δ ∈ (0, 1) such that z(ϕ) > −εD(ϕ), ϕ ∈ (0, δ]. Hence,

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
≥ −ε.

Since ϕ′ < 0 in (ξ1, ξ0) and ε is arbitrarily small, it follows again (10.2).
We prove now (ii). By (8.5)2, from c = c∗ > h(0) we have ż(0) = h(0)− c∗ < 0. Then,

D(σ)

−z(σ)
=

Ḋ(0) + o(1)
c− h(0) + o(1)

as σ→ 0+,
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and consequently (9.27) is verified. Thus, ξ0 ∈ R. Furthermore, from (9.21),

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)/ϕ

D(ϕ)/ϕ
=

h(0)− c∗

Ḋ(0)
∈ [−∞, 0),

and thus the conclusions hold. �

Remark 10.1 (Case c = c∗ = h(0)). Part (i) and (ii) of Theorem 2.3 do not cover the case
c = c∗ = h(0). The following discussion shows that, to classify the behavior in that case,
further assumptions are needed. More precisely, either a classical and a sharp wavefront can
indeed occur under (D0) and (g01). Take q and h as in (6.10) in Remark 6.4. There, we proved
that in this case it holds c∗ = h(0) = 0. Consider{

D1(ϕ) = ϕ2,

g1(ϕ) = ϕ(1− ϕ),

{
D2(ϕ) = ϕ,

g2(ϕ) = ϕ2(1− ϕ).

Clearly, D1 and g1 satisfy (D0) and (g01) and so D2 and g2. Also, since D1g1 = q = D2g2, then
c∗1 = c∗2 = h(0) = 0, where c∗1 and c∗2 are the thresholds given by Proposition 4.2 associated
with D1g1 and D2g2, respectively. Define, for ξ ∈ R,

ϕ1(ξ) :=

{
1− eξ

2 , ξ < log(2),

0, otherwise,
and ϕ2(ξ) :=

1
1 + eξ

.

Direct computations show that ϕ1 and ϕ2 are two wave profiles defining two wavefronts, both
of them associated with c = h(0). Plainly, ϕ1 is sharp at ξ = log(2) while ϕ2 is classical.
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