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1 Introduction

We investigate the global solvability and blow-up in finite time for semilinear heat equation

ut = ∆u + α(t) f (u) for x ∈ Ω, t > 0, (1.1)

with nonlinear boundary condition

∂u(x, t)
∂ν

= β(t)g(u) for x ∈ ∂Ω, t > 0, (1.2)

and initial datum
u(x, 0) = u0(x) for x ∈ Ω, (1.3)

where Ω is a bounded domain in Rn for n ≥ 1 with smooth boundary ∂Ω, ν is the unit exterior
normal vector on the boundary ∂Ω. Here f (u) and g(u) are nonnegative continuous functions
for u ≥ 0, α(t) and β(t) are nonnegative continuous functions for t ≥ 0, u0(x) ∈ C1(Ω),
u0(x) ≥ 0 in Ω and satisfies boundary condition (1.2) as t = 0. We will consider nonnegative
classical solutions of (1.1)–(1.3).
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Blow-up problem for parabolic equations with reaction term in general form were consid-
ered in many papers (see, for example, [1, 2, 8, 9, 14, 21, 27] and the references therein). For the
global existence and blow-up of solutions for linear parabolic equations with β(t) ≡ 1 in (1.2),
we refer to previous studies [16,17,22,24–26]. In particular, Walter [24] proved that if g(s) and
g′(s) are continuous, positive and increasing for large s, a necessary and sufficient condition
for global existence is ∫ +∞ ds

g(s)g′(s)
= +∞.

Some papers are devoted to blow-up phenomena in parabolic problems with time-
dependent coefficients (see, for example, [4–6, 18–20, 28]). So, it follows from results of Payne
and Philippin [20] blow-up of all nontrivial solutions for (1.1)–(1.3) with β(t) ≡ 0 under the
conditions (2.15) and

f (s) ≥ z(s) > 0, s > 0,

where z satisfies ∫ +∞

a

ds
z(s)

< +∞ for any a > 0

and Jensen’s inequality
1
|Ω|

∫
Ω

z(u) dx ≥ z
(

1
|Ω|

∫
Ω

u dx
)

. (1.4)

In (1.4), |Ω| is the volume of Ω.
The aim of our paper is study the influence of variable coefficients α(t) and β(t) on the

global existence and blow-up of classical solutions of (1.1)–(1.3).
This paper is organized as follows. Finite time blow-up of all nontrivial solutions is proved

in Section 2. In Section 3, we present the global existence of solutions for small initial data.

2 Finite time blow-up

In this section, we give conditions for blow-up in finite time of all nontrivial solutions of
(1.1)–(1.3).

Before giving our main results, we state a comparison principle which has been proved in
[7,23] for more general problems. Let QT = Ω× (0, T), ST = ∂Ω× (0, T), ΓT = ST ∪Ω× {0},
T > 0.

Theorem 2.1. Let v(x, t), w(x, t) ∈ C2,1(QT) ∩ C1,0(QT ∪ ΓT) satisfy the inequalities:

vt − ∆v− α(t) f (v) < wt − ∆w− α(t) f (w) in QT,

∂v(x, t)
∂ν

− β(t)g(v) <
∂w(x, t)

∂ν
− β(t)g(w) on ST,

v(x, 0) < w(x, 0) in Ω.

Then
v(x, t) < w(x, t) in QT.

The first our blow-up result is the following.

Theorem 2.2. Let g(s) be a nondecreasing positive function for s > 0 such that∫ +∞ ds
g(s)

< +∞ (2.1)
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and ∫ +∞

0
β(t) dt = +∞. (2.2)

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x, t) is a nontrivial nonnegative solution which exists in QT for
any positive T. Then for some T > 0 there exists (x, t) ∈ QT such that u(x, t) > 0. Since
ut−∆u = α(t) f (u) ≥ 0, by strong maximum principle u(x, t) > 0 in QT \Qt. Let u(x?, t?) = 0
in some point (x?, t?) ∈ ST \ St. According to Theorem 3.6 of [11] it yields ∂u(x?, t?)/∂ν < 0,
which contradicts the boundary condition (1.2). Thus, u(x, t) > 0 in QT ∪ ST \Qt. Then there
exists t0 > t such that β(t0) > 0 and

min
Ω

u(x, t0) > 2σ, (2.3)

where σ is a positive constant.
Let GN(x, y; t− τ) denote the Green’s function for the heat equation given by

ut − ∆u = 0 for x ∈ Ω, t > 0

with homogeneous Neumann boundary condition. We note that the Green’s function has the
following properties (see, for example, [12, 13]:

GN(x, y; t− τ) ≥ 0, x, y ∈ Ω, 0 ≤ τ < t, (2.4)∫
Ω

GN(x, y; t− τ) dy = 1, x ∈ Ω, 0 ≤ τ < t, (2.5)

GN(x, y; t− τ) ≥ c1, x, y ∈ Ω, t− τ ≥ ε, (2.6)

|GN(x, y; t− τ)− 1/|Ω|| ≤ c2 exp[−c3(t− τ)], x, y ∈ Ω, t− τ ≥ ε,∫
∂Ω

GN(x, y; t− τ) dSy ≤
c4√
t− τ

, x ∈ Ω, 0 < t− τ ≤ ε,

for some small ε > 0. Here by ci (i ∈N) we denote positive constants.
Now we introduce conditions on several auxiliary comparison functions. We suppose that

h(s) ∈ C1((0,+∞)) ∩ C([0,+∞)), h(s) > 0 for s > 0, h′(s) ≥ 0 for s > 0, g(s) ≥ h(s) and∫ +∞ ds
h(s)

< +∞.

Let ξ(t) be a positive continuous function for t ≥ t0 such that∫ +∞

t0

ξ(t) dt <
σ

2
(2.7)

and γ(t) be a positive continuous function for t ≥ t0 such that γ(t0) = β(t0)h(2σ) and∫ t

t0

γ(τ)
∫

∂Ω
GN(x, y; t− τ) dSy dτ <

σ

2
for x ∈ Ω, t ≥ t0. (2.8)

We consider the following problem
vt = ∆v− ξ(t) for x ∈ Ω, t > t0,

∂v(x, t)
∂ν

= β(t)h(v)− γ(t) for x ∈ ∂Ω, t > t0,

v(x, t0) = 2σ for x ∈ Ω.

(2.9)
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To find lower bound for v(x, t) we represent (2.9) in equivalent form

v(x, t) = 2σ
∫

Ω
GN(x, y; t) dy−

∫ t

t0

∫
Ω

GN(x, y; t− τ)ξ(τ) dy dτ

+
∫ t

t0

∫
∂Ω

GN(x, y; t− τ) (β(τ)h(v)− γ(τ)) dSy dτ.
(2.10)

Using (2.7), (2.8) and the properties of the Green’s function (2.4), (2.5), we obtain from (2.10)

v(x, t) ≥ 2σ−
∫ t

t0

ξ(τ) dτ −
∫ t

t0

γ(τ)
∫

∂Ω
GN(x, y; t− τ)dSy dτ > σ. (2.11)

As in [22] we put

m(t) =
∫

Ω

∫ +∞

v(x,t)

ds
h(s)

dx.

We observe that m(t) is well defined and positive for t ≥ t0. Since v(x, t) is the solution of
(2.9), we get

m′(t) = −
∫

Ω

vt

h(v)
dx = −

∫
Ω

∆v
h(v)

dx + ξ(t)
∫

Ω

dx
h(v)

= −
∫

Ω
div

(
∇v
h(v)

)
dx−

∫
Ω

h′(v)‖∇v‖2

h2(v)
dx + ξ(t)

∫
Ω

dx
h(v)

.

Applying the inequality h′(v) ≥ 0, Gauss theorem, the boundary condition in (2.9) and (2.11),
we obtain for t ≥ t0

m′(t) ≤ −
∫

∂Ω

1
h(v)

∂v
∂ν

dS + ξ(t)
|Ω|
h(σ)

≤ −|∂Ω|β(t) + |Ω|ξ(t) + |∂Ω|γ(t)
h(σ)

. (2.12)

Due to (2.2), (2.6)–(2.8) m(t) is negative for large values of t. Hence v(x, t) blows up in finite
time T0. Applying Theorem 2.1 to v(x, t) and u(x, t) in QT \Qt0 for any T ∈ (t0, T0), we prove
the theorem.

Remark 2.3. If u0(x) is positive in Ω we can obtain an upper bound for blow-up time of the
solution. We put t0 = 0 and v(x, 0) = u0(x)− ε in (2.9) for ε ∈ (0, minΩ u0(x)). Integrating
(2.12) over [0, T], we have

m(t) ≤ m(0)− |∂Ω|
∫ T

0
β(t) dt +

∫ T

0

|Ω|ξ(t) + |∂Ω|γ(t)
h(σ)

dt.

Since m(t) > 0 and ε, ξ(t), γ(t) are arbitrary we conclude that the solution of (1.1)–(1.3) blows
up in finite time Tb, where Tb ≤ T and∫

Ω

∫ +∞

u0(x)

ds
h(s)

dx = |∂Ω|
∫ T

0
β(t) dt.

Remark 2.4. We note that (1.1)–(1.3) with u0(x) ≡ 0 may have trivial and blow-up solutions
under the assumptions of Theorem 2.2. Indeed, let the conditions of Theorem 2.2 hold, α(t) ≡
0, β(t) ≡ 1 and g(u) = up, u ∈ [0, γ] for some γ > 0 and 0 < p < 1. As it was proved in [3],
problem (1.1)–(1.3) has trivial and positive for t > 0 solutions and last one blows up in finite
time by Theorem 2.2.
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To prove next blow-up result for (1.1)–(1.3) we need a comparison principle with unstrict
inequality in the boundary condition.

Theorem 2.5. Let δ > 0 and v(x, t), w(x, t) ∈ C2,1(QT) ∩ C1,0(QT ∪ ΓT) satisfy the inequalities:

vt − ∆v− α(t) f (v) + δ < wt − ∆w− α(t) f (w) in QT,

∂v(x, t)
∂ν

≤ ∂w(x, t)
∂ν

on ST,

v(x, 0) < w(x, 0) in Ω.

Then
v(x, t) ≤ w(x, t) in QT.

Proof. Let τ be any positive constant such that τ < T and a positive function γ(x) ∈ C2(Ω)

satisfy the following inequality
∂γ(x)

∂ν
> 0 on ∂Ω.

For positive ε we introduce
wε(x, t) = w(x, t) + εγ(x). (2.13)

Obviously,

v(x, 0) < wε(x, 0) in Ω,
∂v(x, t)

∂ν
<

∂wε(x, t)
∂ν

on Sτ.

Moreover,
vt − ∆v− α(t) f (v) < wεt − ∆wε − α(t) f (wε) in Qτ,

if we take ε so small that

δ > ε∆γ + α(t)[ f (w + εγ)− f (w)] in Qτ.

Applying Theorem 2.1 with β(t) ≡ 0, we obtain

v(x, t) < wε(x, t) in Qτ.

Passing to the limit as ε→ 0 and τ → T, we prove the theorem.

Theorem 2.6. Let f (s) > 0 for s > 0, ∫ +∞ ds
f (s)

< +∞ (2.14)

and ∫ +∞

0
α(t) dt = +∞. (2.15)

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x, t) is a nontrivial nonnegative solution which exists in QT for any
positive T. In Theorem 2.2 we proved (2.3). Let ξ(t) be a positive continuous function for
t ≥ t0 such that

max
[σ,2σ]

f (s)
∫ +∞

t0

ξ(t) dt < σ. (2.16)
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We consider the following auxiliary problem{
v′(t) = α(t) f (v)− ξ(t) f (v), t > t0,

v(t0) = 2σ.
(2.17)

We prove at first that
v(t) > σ for t ≥ t0. (2.18)

Suppose there exist t1 and t2 such that

t2 > t1 ≥ t0, v(t1) = 2σ, v(t2) = σ,

and
v(t) > σ for t ∈ [t0, t2) and v(t) ≤ 2σ for t ∈ [t1, t2].

Integrating the equation in (2.17) over [t1, t2], we have due to (2.16)

v(t2) ≥ −max
[σ,2σ]

f (s)
∫ t2

t1

ξ(t) dt + v(t1) > σ.

A contradiction proves (2.18).
From (2.17) we obtain ∫ v(t)

2σ

ds
f (s)

=
∫ t

t0

[α(τ)− ξ(τ)] dτ. (2.19)

By (2.14)–(2.16) the left side of (2.19) is finite and the right side of (2.19) tends to infinity as
t → ∞. Hence the solution of (2.17) blows up in finite time T0. Applying Theorem 2.5 to v(t)
and u(x, t) in QT \Qt0 for any T ∈ (t0, T0), we prove the theorem.

Remark 2.7. If u0(x) is positive in Ω we can obtain an upper bound for blow-up time of the
solution. Taking t0 = 0, we conclude from (2.19) that the solution of (1.1)–(1.3) blows up in
finite time Tb, where Tb ≤ T and∫ +∞

minΩ u0(x)

ds
f (s)

=
∫ T

0
α(t) dt.

Remark 2.8. Theorem 2.6 does not hold if f (s) is not positive for s > 0. To show this we
suppose that f (u1) = 0 for some u1 > 0, β(t) ≡ 0, u0(x) = u1. Then problem (1.1)–(1.3) has
the solution u(x, t) = u1.

Remark 2.9. We note that (2.14) is necessary condition for blow-up of solutions of (1.1)–(1.3)
with β(t) ≡ 0. Let f (s) > 0 for s > 0 and∫ +∞ ds

f (s)
= +∞.

Then any solution of (1.1)–(1.3) is global. Indeed, let u(x, t) be a nontrivial solution of (1.1)–
(1.3). Then there exist t0 ≥ 0 and x ∈ Ω such that u(x, t0) > 0.

We consider the following problemv′(t) = (α(t) + ξ(t)) f (v), t > t0,

v(t0) > max
Ω

u(x, t0) > 0, (2.20)

where ξ(t) is some positive continuous function for t ≥ t0. Obviously, v(t) is global solution
of (2.20). Applying Theorem 2.5 to u(x, t) and v(t) in QT \ Qt0 for any T > t0, we prove the
theorem.
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Remark 2.10. Problem (1.1)–(1.3) with u0(x) ≡ 0 may have trivial and blow-up solutions under
the assumptions of Theorem 2.6. Indeed, let the conditions of Theorem 2.6 hold, β(t) ≡ 0,
f (s) be a nondecreasing Hölder continuous function on [0, ε] for some ε > 0 and∫ ε

0

ds
f (s)

< +∞.

As it was proved in [15], problem (1.1)–(1.3) has trivial and positive for t > 0 solutions and
last one blows up in finite time by Theorem 2.6.

3 Global existence

To formulate global existence result for problem (1.1)–(1.3) we suppose:

f (s) is a nonnegative locally Hölder continuous function for s ≥ 0, (3.1)

there exists p > 0 such that f (s) is a positive nondecreasing function for s ∈ (0, p), (3.2)∫
0

ds
f (s)

= +∞, lim
s→0

g(s)
s

= 0, (3.3)

∫ +∞

0
(α(t) + β(t)) dt < +∞ (3.4)

and there exist positive constants γ, t0 and K such that γ > t0 and∫ t

t−t0

β(τ)dτ√
t− τ

≤ K for t ≥ γ. (3.5)

Theorem 3.1. Let (3.1)–(3.5) hold. Then problem (1.1)–(1.3) has bounded global solution for small
initial datum.

Proof. It is well known that problem (1.1)–(1.3) has a local nonnegative classical solution
u(x, t). Let y(x, t) be a solution of the following problem

yt = ∆y, x ∈ Ω, t > 0,

∂y(x, t)
∂ν

= ξ(t) + β(t), x ∈ ∂Ω, t > 0,

y(x, 0) = 1, x ∈ Ω,

(3.6)

where ξ(t) is a positive continuous function that satisfies (3.4), (3.5) with β(t) = ξ(t). Accord-
ing to Lemma 3.3 of [10] there exists a positive constant Y such that

1 ≤ y(x, t) ≤ Y, x ∈ Ω, t > 0.

Due to (3.2), (3.3) for any a ∈ (0, p), there exist ε(a) and a positive continuous function η(t)
such that

0 < ε(a) <
a
Y

,
∫ ∞

0
η(t) dt < ∞ and

∫ a

εY

ds
f (s)

> Y
∫ ∞

0
(α(t) + η(t)) dt

for any ε ∈ (0, ε(a)). Now for any T > 0 we construct a positive supersolution of (1.1)–(1.3) in
QT in such a form that

u(x, t) = εz(t)y(x, t),



8 A. Gladkov and M. Guedda

where function z(t) is defined in the following way

∫ εYz(t)

εY

ds
f (s)

= Y
∫ t

0
(α(τ) + η(τ)) dτ.

It is easy to see that εYz(t) < a and z(t) is the solution of the following Cauchy problem

z′(t)− 1
ε
(α(t) + η(t)) f (εYz(t)) = 0, z(0) = 1.

After simple computations it follows that

ut − ∆u− α(t) f (u) = εz′y + εzyt − εz∆y− α(t) f (εzy)

≥ α(t)( f (εYz(t))− f (εzy)) + η(t) f (εYz(t)) > 0, x ∈ Ω, t > 0,

and

∂u(x, t)
∂ν

− β(t)g(u) = εz(t)(ξ(t) + β(t))− β(t)g(εz(t)y(x, t))

> εz(t)β(t)
[

1− g(εz(t)y(x, t))
εz(t)y(x, t)

y(x, t)
]
≥ 0

for small values of a. Thus, by Theorem 2.1 there exists bounded global solution of (1.1)–(1.3)
for any initial datum satisfying the inequality

u0(x) < ε.

Remark 3.2. We suppose that g(s) is a nondecreasing positive function for s > 0, f (s) > 0 for
s > 0 and (2.1), (2.14) hold. Then by Theorem 2.2 and Theorem 2.6 (3.4) is necessary for global
existence of solutions of (1.1)–(1.3).

Let for any a > 0 g(s) > δ(a) > 0 if s > a. Then arguing in the same way as in the proof
of Lemma 3.3 of [10] it is easy to show that (3.5) is necessary for the existence of nontrivial
bounded global solutions of (1.1)–(1.3).
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