

Influence of variable coefficients on global existence of solutions of semilinear heat equations with nonlinear boundary conditions

Alexander Gladkov $\bowtie^{1,2}$ and Mohammed Guedda³

¹Belarusian State University, 4 Nezavisimosti Avenue, Minsk, 220030, Belarus
 ²Peoples' Friendship University of Russia (RUDN University),
 6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation
 ³Université de Picardie, LAMFA, CNRS, UMR 7352, 33 rue Saint-Leu, Amiens, F-80039, France

Received 3 June 2020, appeared 5 November 2020 Communicated by Vilmos Komornik

Abstract. We consider semilinear parabolic equations with nonlinear boundary conditions. We give conditions which guarantee global existence of solutions as well as blow-up in finite time of all solutions with nontrivial initial data. The results depend on the behavior of variable coefficients as $t \to \infty$.

Keywords: semilinear parabolic equation, nonlinear boundary condition, finite time blow-up.

2020 Mathematics Subject Classification: 35B44, 35K58, 35K61.

1 Introduction

We investigate the global solvability and blow-up in finite time for semilinear heat equation

$$u_t = \Delta u + \alpha(t)f(u) \quad \text{for } x \in \Omega, \ t > 0, \tag{1.1}$$

with nonlinear boundary condition

$$\frac{\partial u(x,t)}{\partial \nu} = \beta(t)g(u) \quad \text{for } x \in \partial\Omega, \ t > 0,$$
(1.2)

and initial datum

$$u(x,0) = u_0(x) \quad \text{for } x \in \Omega, \tag{1.3}$$

where Ω is a bounded domain in \mathbb{R}^n for $n \ge 1$ with smooth boundary $\partial\Omega$, ν is the unit exterior normal vector on the boundary $\partial\Omega$. Here f(u) and g(u) are nonnegative continuous functions for $u \ge 0$, $\alpha(t)$ and $\beta(t)$ are nonnegative continuous functions for $t \ge 0$, $u_0(x) \in C^1(\overline{\Omega})$, $u_0(x) \ge 0$ in $\overline{\Omega}$ and satisfies boundary condition (1.2) as t = 0. We will consider nonnegative classical solutions of (1.1)–(1.3).

[™]Corresponding author. Email: gladkoval@mail.ru

A. Gladkov and M. Guedda

Blow-up problem for parabolic equations with reaction term in general form were considered in many papers (see, for example, [1,2,8,9,14,21,27] and the references therein). For the global existence and blow-up of solutions for linear parabolic equations with $\beta(t) \equiv 1$ in (1.2), we refer to previous studies [16,17,22,24–26]. In particular, Walter [24] proved that if g(s) and g'(s) are continuous, positive and increasing for large *s*, a necessary and sufficient condition for global existence is

$$\int^{+\infty} \frac{ds}{g(s)g'(s)} = +\infty.$$

Some papers are devoted to blow-up phenomena in parabolic problems with timedependent coefficients (see, for example, [4–6, 18–20, 28]). So, it follows from results of Payne and Philippin [20] blow-up of all nontrivial solutions for (1.1)–(1.3) with $\beta(t) \equiv 0$ under the conditions (2.15) and

$$f(s) \ge z(s) > 0, \qquad s > 0,$$

where z satisfies

$$\int_{a}^{+\infty} \frac{ds}{z(s)} < +\infty \quad \text{for any } a > 0$$

and Jensen's inequality

$$\frac{1}{|\Omega|} \int_{\Omega} z(u) \, dx \ge z \left(\frac{1}{|\Omega|} \int_{\Omega} u \, dx \right). \tag{1.4}$$

In (1.4), $|\Omega|$ is the volume of Ω .

The aim of our paper is study the influence of variable coefficients $\alpha(t)$ and $\beta(t)$ on the global existence and blow-up of classical solutions of (1.1)–(1.3).

This paper is organized as follows. Finite time blow-up of all nontrivial solutions is proved in Section 2. In Section 3, we present the global existence of solutions for small initial data.

2 Finite time blow-up

In this section, we give conditions for blow-up in finite time of all nontrivial solutions of (1.1)–(1.3).

Before giving our main results, we state a comparison principle which has been proved in [7,23] for more general problems. Let $Q_T = \Omega \times (0,T)$, $S_T = \partial \Omega \times (0,T)$, $\Gamma_T = S_T \cup \overline{\Omega} \times \{0\}$, T > 0.

Theorem 2.1. Let $v(x,t), w(x,t) \in C^{2,1}(Q_T) \cap C^{1,0}(Q_T \cup \Gamma_T)$ satisfy the inequalities:

$$\begin{split} v_t - \Delta v - \alpha(t) f(v) &< w_t - \Delta w - \alpha(t) f(w) \quad \text{in } Q_T, \\ \frac{\partial v(x,t)}{\partial v} - \beta(t) g(v) &< \frac{\partial w(x,t)}{\partial v} - \beta(t) g(w) \quad \text{on } S_T, \\ v(x,0) &< w(x,0) \quad \text{in } \overline{\Omega}. \end{split}$$

Then

v(x,t) < w(x,t) in Q_T .

The first our blow-up result is the following.

Theorem 2.2. Let g(s) be a nondecreasing positive function for s > 0 such that

$$\int^{+\infty} \frac{ds}{g(s)} < +\infty \tag{2.1}$$

and

$$\int_0^{+\infty} \beta(t) \, dt = +\infty. \tag{2.2}$$

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x,t) is a nontrivial nonnegative solution which exists in Q_T for any positive T. Then for some T > 0 there exists $(\overline{x}, \overline{t}) \in Q_T$ such that $u(\overline{x}, \overline{t}) > 0$. Since $u_t - \Delta u = \alpha(t)f(u) \ge 0$, by strong maximum principle u(x,t) > 0 in $Q_T \setminus \overline{Q_t}$. Let $u(x_*, t_*) = 0$ in some point $(x_*, t_*) \in S_T \setminus \overline{S_t}$. According to Theorem 3.6 of [11] it yields $\partial u(x_*, t_*)/\partial v < 0$, which contradicts the boundary condition (1.2). Thus, u(x,t) > 0 in $Q_T \cup S_T \setminus \overline{Q_t}$. Then there exists $t_0 > \overline{t}$ such that $\beta(t_0) > 0$ and

$$\min_{\overline{\Omega}} u(x, t_0) > 2\sigma, \tag{2.3}$$

where σ is a positive constant.

Let $G_N(x, y; t - \tau)$ denote the Green's function for the heat equation given by

 $u_t - \Delta u = 0$ for $x \in \Omega$, t > 0

with homogeneous Neumann boundary condition. We note that the Green's function has the following properties (see, for example, [12, 13]:

$$G_N(x,y;t-\tau) \ge 0, \qquad x,y \in \Omega, \ 0 \le \tau < t, \qquad (2.4)$$

$$\int_{\Omega} G_N(x,y;t-\tau) \, dy = 1, \qquad x \in \Omega, \ 0 \le \tau < t, \tag{2.5}$$

$$G_N(x,y;t-\tau) \ge c_1, \qquad x, y \in \overline{\Omega}, \ t-\tau \ge \varepsilon, \qquad (2.6)$$
$$|G_N(x,y;t-\tau) - 1/|\Omega|| \le c_2 \exp[-c_3(t-\tau)], \qquad x, y \in \overline{\Omega}, \ t-\tau \ge \varepsilon,$$

$$\int_{\partial\Omega} G_N(x,y;t-\tau) \, dS_y \leq \frac{c_4}{\sqrt{t-\tau}}, \qquad \qquad x \in \overline{\Omega}, \ 0 < t-\tau \leq \varepsilon,$$

for some small $\varepsilon > 0$. Here by c_i ($i \in \mathbb{N}$) we denote positive constants.

Now we introduce conditions on several auxiliary comparison functions. We suppose that $h(s) \in C^1((0, +\infty)) \cap C([0, +\infty))$, h(s) > 0 for s > 0, $h'(s) \ge 0$ for s > 0, $g(s) \ge h(s)$ and

$$\int^{+\infty} \frac{ds}{h(s)} < +\infty.$$

Let $\xi(t)$ be a positive continuous function for $t \ge t_0$ such that

$$\int_{t_0}^{+\infty} \xi(t) \, dt < \frac{\sigma}{2} \tag{2.7}$$

and $\gamma(t)$ be a positive continuous function for $t \ge t_0$ such that $\gamma(t_0) = \beta(t_0)h(2\sigma)$ and

$$\int_{t_0}^t \gamma(\tau) \int_{\partial \Omega} G_N(x, y; t - \tau) \, dS_y \, d\tau < \frac{\sigma}{2} \quad \text{for } x \in \overline{\Omega}, \ t \ge t_0.$$
(2.8)

We consider the following problem

$$\begin{cases} v_t = \Delta v - \xi(t) \text{ for } x \in \Omega, \ t > t_0, \\ \frac{\partial v(x,t)}{\partial \nu} = \beta(t)h(v) - \gamma(t) \text{ for } x \in \partial\Omega, \ t > t_0, \\ v(x,t_0) = 2\sigma \text{ for } x \in \Omega. \end{cases}$$
(2.9)

To find lower bound for v(x, t) we represent (2.9) in equivalent form

$$v(x,t) = 2\sigma \int_{\Omega} G_N(x,y;t) \, dy - \int_{t_0}^t \int_{\Omega} G_N(x,y;t-\tau)\xi(\tau) \, dy \, d\tau + \int_{t_0}^t \int_{\partial\Omega} G_N(x,y;t-\tau) \left(\beta(\tau)h(v) - \gamma(\tau)\right) \, dS_y \, d\tau.$$
(2.10)

Using (2.7), (2.8) and the properties of the Green's function (2.4), (2.5), we obtain from (2.10)

$$v(x,t) \ge 2\sigma - \int_{t_0}^t \xi(\tau) \, d\tau - \int_{t_0}^t \gamma(\tau) \int_{\partial \Omega} G_N(x,y;t-\tau) dS_y \, d\tau > \sigma.$$
(2.11)

As in [22] we put

$$m(t) = \int_{\Omega} \int_{v(x,t)}^{+\infty} \frac{ds}{h(s)} \, dx.$$

We observe that m(t) is well defined and positive for $t \ge t_0$. Since v(x, t) is the solution of (2.9), we get

$$m'(t) = -\int_{\Omega} \frac{v_t}{h(v)} dx = -\int_{\Omega} \frac{\Delta v}{h(v)} dx + \xi(t) \int_{\Omega} \frac{dx}{h(v)}$$
$$= -\int_{\Omega} \operatorname{div} \left(\frac{\nabla v}{h(v)}\right) dx - \int_{\Omega} \frac{h'(v) \|\nabla v\|^2}{h^2(v)} dx + \xi(t) \int_{\Omega} \frac{dx}{h(v)}$$

Applying the inequality $h'(v) \ge 0$, Gauss theorem, the boundary condition in (2.9) and (2.11), we obtain for $t \ge t_0$

$$m'(t) \leq -\int_{\partial\Omega} \frac{1}{h(v)} \frac{\partial v}{\partial v} \, dS + \xi(t) \frac{|\Omega|}{h(\sigma)} \leq -|\partial\Omega|\beta(t) + \frac{|\Omega|\xi(t) + |\partial\Omega|\gamma(t)}{h(\sigma)}.$$
(2.12)

Due to (2.2), (2.6)–(2.8) m(t) is negative for large values of t. Hence v(x, t) blows up in finite time T_0 . Applying Theorem 2.1 to v(x, t) and u(x, t) in $Q_T \setminus \overline{Q_{t_0}}$ for any $T \in (t_0, T_0)$, we prove the theorem.

Remark 2.3. If $u_0(x)$ is positive in $\overline{\Omega}$ we can obtain an upper bound for blow-up time of the solution. We put $t_0 = 0$ and $v(x, 0) = u_0(x) - \varepsilon$ in (2.9) for $\varepsilon \in (0, \min_{\overline{\Omega}} u_0(x))$. Integrating (2.12) over [0, T], we have

$$m(t) \leq m(0) - |\partial \Omega| \int_0^T \beta(t) \, dt + \int_0^T \frac{|\Omega|\xi(t) + |\partial \Omega|\gamma(t)}{h(\sigma)} \, dt.$$

Since m(t) > 0 and ε , $\xi(t)$, $\gamma(t)$ are arbitrary we conclude that the solution of (1.1)–(1.3) blows up in finite time T_b , where $T_b \leq T$ and

$$\int_{\Omega} \int_{u_0(x)}^{+\infty} \frac{ds}{h(s)} \, dx = |\partial \Omega| \int_0^T \beta(t) \, dt.$$

Remark 2.4. We note that (1.1)–(1.3) with $u_0(x) \equiv 0$ may have trivial and blow-up solutions under the assumptions of Theorem 2.2. Indeed, let the conditions of Theorem 2.2 hold, $\alpha(t) \equiv 0$, $\beta(t) \equiv 1$ and $g(u) = u^p$, $u \in [0, \gamma]$ for some $\gamma > 0$ and 0 . As it was proved in [3], problem (1.1)–(1.3) has trivial and positive for <math>t > 0 solutions and last one blows up in finite time by Theorem 2.2.

To prove next blow-up result for (1.1)–(1.3) we need a comparison principle with unstrict inequality in the boundary condition.

Theorem 2.5. Let $\delta > 0$ and $v(x,t), w(x,t) \in C^{2,1}(Q_T) \cap C^{1,0}(Q_T \cup \Gamma_T)$ satisfy the inequalities:

$$v_t - \Delta v - \alpha(t)f(v) + \delta < w_t - \Delta w - \alpha(t)f(w)$$
 in Q_T ,
 $\frac{\partial v(x,t)}{\partial v} \le \frac{\partial w(x,t)}{\partial v}$ on S_T ,
 $v(x,0) < w(x,0)$ in $\overline{\Omega}$.

Then

$$v(x,t) \leq w(x,t)$$
 in Q_T

Proof. Let τ be any positive constant such that $\tau < T$ and a positive function $\gamma(x) \in C^2(\overline{\Omega})$ satisfy the following inequality

$$\frac{\partial \gamma(x)}{\partial \nu} > 0 \quad \text{on } \partial \Omega.$$

For positive ε we introduce

$$w_{\varepsilon}(x,t) = w(x,t) + \varepsilon \gamma(x). \tag{2.13}$$

Obviously,

$$v(x,0) < w_{\varepsilon}(x,0)$$
 in $\overline{\Omega}$, $\frac{\partial v(x,t)}{\partial \nu} < \frac{\partial w_{\varepsilon}(x,t)}{\partial \nu}$ on S_{τ}

Moreover,

$$w_t - \Delta v - \alpha(t) f(v) < w_{\varepsilon t} - \Delta w_{\varepsilon} - \alpha(t) f(w_{\varepsilon})$$
 in Q_{τ} ,

if we take ε so small that

$$\delta > \varepsilon \Delta \gamma + \alpha(t) [f(w + \varepsilon \gamma) - f(w)]$$
 in Q_{τ} .

Applying Theorem 2.1 with $\beta(t) \equiv 0$, we obtain

$$v(x,t) < w_{\varepsilon}(x,t) \quad \text{in } Q_{\tau}$$

Passing to the limit as $\varepsilon \to 0$ and $\tau \to T$, we prove the theorem.

Theorem 2.6. *Let* f(s) > 0 *for* s > 0,

$$\int^{+\infty} \frac{ds}{f(s)} < +\infty \tag{2.14}$$

and

$$\int_0^{+\infty} \alpha(t) \, dt = +\infty. \tag{2.15}$$

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x, t) is a nontrivial nonnegative solution which exists in Q_T for any positive *T*. In Theorem 2.2 we proved (2.3). Let $\xi(t)$ be a positive continuous function for $t \ge t_0$ such that

$$\max_{[\sigma,2\sigma]} f(s) \int_{t_0}^{+\infty} \xi(t) \, dt < \sigma.$$
(2.16)

We consider the following auxiliary problem

$$\begin{cases} v'(t) = \alpha(t)f(v) - \xi(t)f(v), & t > t_0, \\ v(t_0) = 2\sigma. \end{cases}$$
(2.17)

We prove at first that

$$v(t) > \sigma \quad \text{for } t \ge t_0. \tag{2.18}$$

Suppose there exist t_1 and t_2 such that

$$t_2 > t_1 \ge t_0, \qquad v(t_1) = 2\sigma, \qquad v(t_2) = \sigma,$$

and

$$v(t) > \sigma$$
 for $t \in [t_0, t_2)$ and $v(t) \le 2\sigma$ for $t \in [t_1, t_2]$

Integrating the equation in (2.17) over $[t_1, t_2]$, we have due to (2.16)

$$v(t_2) \geq -\max_{[\sigma,2\sigma]} f(s) \int_{t_1}^{t_2} \xi(t) dt + v(t_1) > \sigma.$$

A contradiction proves (2.18).

From (2.17) we obtain

$$\int_{2\sigma}^{v(t)} \frac{ds}{f(s)} = \int_{t_0}^t [\alpha(\tau) - \xi(\tau)] \, d\tau.$$
(2.19)

By (2.14)–(2.16) the left side of (2.19) is finite and the right side of (2.19) tends to infinity as $t \to \infty$. Hence the solution of (2.17) blows up in finite time T_0 . Applying Theorem 2.5 to v(t) and u(x, t) in $Q_T \setminus \overline{Q_{t_0}}$ for any $T \in (t_0, T_0)$, we prove the theorem.

Remark 2.7. If $u_0(x)$ is positive in $\overline{\Omega}$ we can obtain an upper bound for blow-up time of the solution. Taking $t_0 = 0$, we conclude from (2.19) that the solution of (1.1)–(1.3) blows up in finite time T_b , where $T_b \leq T$ and

$$\int_{\min_{\overline{\Omega}} u_0(x)}^{+\infty} \frac{ds}{f(s)} = \int_0^T \alpha(t) \, dt.$$

Remark 2.8. Theorem 2.6 does not hold if f(s) is not positive for s > 0. To show this we suppose that $f(u_1) = 0$ for some $u_1 > 0$, $\beta(t) \equiv 0$, $u_0(x) = u_1$. Then problem (1.1)–(1.3) has the solution $u(x,t) = u_1$.

Remark 2.9. We note that (2.14) is necessary condition for blow-up of solutions of (1.1)–(1.3) with $\beta(t) \equiv 0$. Let f(s) > 0 for s > 0 and

$$\int^{+\infty} \frac{ds}{f(s)} = +\infty.$$

Then any solution of (1.1)–(1.3) is global. Indeed, let u(x, t) be a nontrivial solution of (1.1)–(1.3). Then there exist $t_0 \ge 0$ and $x \in \Omega$ such that $u(x, t_0) > 0$.

We consider the following problem

$$\begin{cases} v'(t) = (\alpha(t) + \xi(t))f(v), \ t > t_0, \\ v(t_0) > \max_{\overline{\Omega}} u(x, t_0) > 0, \end{cases}$$
(2.20)

where $\xi(t)$ is some positive continuous function for $t \ge t_0$. Obviously, v(t) is global solution of (2.20). Applying Theorem 2.5 to u(x,t) and v(t) in $Q_T \setminus \overline{Q_{t_0}}$ for any $T > t_0$, we prove the theorem.

Remark 2.10. Problem (1.1)–(1.3) with $u_0(x) \equiv 0$ may have trivial and blow-up solutions under the assumptions of Theorem 2.6. Indeed, let the conditions of Theorem 2.6 hold, $\beta(t) \equiv 0$, f(s) be a nondecreasing Hölder continuous function on $[0, \epsilon]$ for some $\epsilon > 0$ and

$$\int_0^\epsilon \frac{ds}{f(s)} < +\infty.$$

As it was proved in [15], problem (1.1)–(1.3) has trivial and positive for t > 0 solutions and last one blows up in finite time by Theorem 2.6.

3 Global existence

To formulate global existence result for problem (1.1)–(1.3) we suppose:

f(s) is a nonnegative locally Hölder continuous function for $s \ge 0$, (3.1)

there exists p > 0 such that f(s) is a positive nondecreasing function for $s \in (0, p)$, (3.2)

$$\int_{0} \frac{ds}{f(s)} = +\infty, \qquad \lim_{s \to 0} \frac{g(s)}{s} = 0,$$
(3.3)

$$\int_{0}^{+\infty} \left(\alpha(t) + \beta(t) \right) \, dt < +\infty \tag{3.4}$$

and there exist positive constants γ , t_0 and K such that $\gamma > t_0$ and

$$\int_{t-t_0}^t \frac{\beta(\tau)d\tau}{\sqrt{t-\tau}} \le K \quad \text{for } t \ge \gamma.$$
(3.5)

Theorem 3.1. Let (3.1)–(3.5) hold. Then problem (1.1)–(1.3) has bounded global solution for small initial datum.

Proof. It is well known that problem (1.1)–(1.3) has a local nonnegative classical solution u(x,t). Let y(x,t) be a solution of the following problem

$$\begin{cases} y_t = \Delta y, \ x \in \Omega, \ t > 0, \\ \frac{\partial y(x,t)}{\partial \nu} = \xi(t) + \beta(t), \ x \in \partial\Omega, \ t > 0, \\ y(x,0) = 1, \ x \in \Omega, \end{cases}$$
(3.6)

where $\xi(t)$ is a positive continuous function that satisfies (3.4), (3.5) with $\beta(t) = \xi(t)$. According to Lemma 3.3 of [10] there exists a positive constant Y such that

$$1 \le y(x,t) \le Y$$
, $x \in \Omega$, $t > 0$.

Due to (3.2), (3.3) for any $a \in (0, p)$, there exist $\varepsilon(a)$ and a positive continuous function $\eta(t)$ such that

$$0 < \varepsilon(a) < \frac{a}{Y}, \qquad \int_0^\infty \eta(t) \, dt < \infty \quad \text{and} \quad \int_{\varepsilon Y}^a \frac{ds}{f(s)} > Y \int_0^\infty \left(\alpha(t) + \eta(t) \right) \, dt$$

for any $\varepsilon \in (0, \varepsilon(a))$. Now for any T > 0 we construct a positive supersolution of (1.1)–(1.3) in Q_T in such a form that

$$\overline{u}(x,t) = \varepsilon z(t) y(x,t),$$

where function z(t) is defined in the following way

$$\int_{\varepsilon Y}^{\varepsilon Yz(t)} \frac{ds}{f(s)} = Y \int_0^t \left(\alpha(\tau) + \eta(\tau) \right) \, d\tau.$$

It is easy to see that $\epsilon Y z(t) < a$ and z(t) is the solution of the following Cauchy problem

$$z'(t) - \frac{1}{\varepsilon} \left(\alpha(t) + \eta(t) \right) f(\varepsilon Y z(t)) = 0, \qquad z(0) = 1.$$

After simple computations it follows that

$$\begin{split} \overline{u}_t - \Delta \overline{u} - \alpha(t) f(\overline{u}) &= \varepsilon z' y + \varepsilon z y_t - \varepsilon z \Delta y - \alpha(t) f(\varepsilon z y) \\ &\geq \alpha(t) (f(\varepsilon Y z(t)) - f(\varepsilon z y)) + \eta(t) f(\varepsilon Y z(t)) > 0, \qquad x \in \Omega, \ t > 0, \end{split}$$

and

$$\begin{aligned} \frac{\partial \overline{u}(x,t)}{\partial \nu} &- \beta(t)g(\overline{u}) = \varepsilon z(t)(\xi(t) + \beta(t)) - \beta(t)g(\varepsilon z(t)y(x,t)) \\ &> \varepsilon z(t)\beta(t) \left[1 - \frac{g(\varepsilon z(t)y(x,t))}{\varepsilon z(t)y(x,t)}y(x,t) \right] \ge 0 \end{aligned}$$

for small values of *a*. Thus, by Theorem 2.1 there exists bounded global solution of (1.1)–(1.3) for any initial datum satisfying the inequality

$$u_0(x) < \varepsilon.$$

Remark 3.2. We suppose that g(s) is a nondecreasing positive function for s > 0, f(s) > 0 for s > 0 and (2.1), (2.14) hold. Then by Theorem 2.2 and Theorem 2.6 (3.4) is necessary for global existence of solutions of (1.1)–(1.3).

Let for any a > 0 $g(s) > \delta(a) > 0$ if s > a. Then arguing in the same way as in the proof of Lemma 3.3 of [10] it is easy to show that (3.5) is necessary for the existence of nontrivial bounded global solutions of (1.1)–(1.3).

Acknowledgements

The first author was supported by the "RUDN University Program 5-100" and the state program of fundamental research of Belarus (grant 1.2.03.1). The second author was supported by DAI-UPJV F-Amiens.

References

- C. BANDLE, H. BRUNNER Blowup in diffusion equations: A survey, J. Comput. Appl. Math. 97(1998), No. 1-2, 3-22. https://doi.org/10.1016/S0377-0427(98)00100-9; MR1651764; Zbl 0932.65098
- [2] J. BEBERNES, D. EBERLY, Mathematical problems from combustion theory, Applied Mathematical Sciences, Vol. 83, Springer-Verlag, New York, 1989. https://doi.org/10.1007/ 978-1-4612-4546-9; Zbl 0692.35001

- 9
- [3] C. CORTAZAR, M. ELGUETA, J. D. ROSSI, Uniqueness and non-uniqueness for a system of heat equations with nonlinear coupling at the boundary, *Nonlinear Anal.* 37(1999), No. 2, 257–267. https://doi.org/10.1016/S0362-546X(98)00046-7; MR1689760; Zbl 0932.35123
- [4] J. DING, X. SHEN, Blow-up in *p*-Laplacian heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 67(2016), No. 125. https://doi.org/10.1007/s00033-016-0720-5; MR3451372; Zbl 1358.35055
- [5] J. DING, X. SHEN, Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions, *Math. Meth. Appl. Sci.* 41(2018), No. 4, 1683–1696. https://doi.org/10.1002/mma.4697; MR3767261; Zbl 1384.35043
- [6] Z. FANG, Y. WANG, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys. 66(2015), 2525–2541. https://doi.org/10.1007/s00033-015-0537-7; MR3412310; Zbl 1328.35108
- [7] A. FRIEDMAN, *Partial differential equations of parabolic type*, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. Zbl 0144.34903
- [8] A. FRIEDMAN, J. B. MCLEOD, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34(1985), No. 2, 425–447. MR783924; Zbl 0576.35068
- [9] V. A. GALAKTIONOV, J. L. VAZQUEZ, Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations, *Arch. Ration. Mech. Anal.* **129**(1995), 225–244. https://doi.org/10.1007/BF00383674; MR1328477; Zbl 0827.35055
- [10] A. GLADKOV, T. KAVITOVA Blow-up problem for semilinear heat equation with nonlinear nonlocal boundary condition, *Appl. Anal.* 95(2016), No. 9, 1974–1988. https://doi. org/10.1080/00036811.2015.1080353; MR3515089; Zbl 1362.35163
- B. Hu, Blow-up theories for semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 2018, Springer-Verlag, Berlin, 2011. Zbl 1226.35001
- B. HU, H. M. YIN, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, *Math. Methods Appl. Sci.* 19(1996), No. 14, 1099–1120. https://doi.org/10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J; MR1270664
- [13] C. S. KAHANE, On the asymptotic behavior of solutions of parabolic equations, *Czechoslovak Math. J.* 33(1983), No. 2, 262–285. MR699025; Zb1 0534.35051
- [14] A. V. LAIR, M. E. OXLEY, A Necessary and sufficient condition for global existence for a degenerate parabolic boundary value problem, J. Math. Anal. Appl. 221(1998), No. 1, 338–348. https://doi.org/10.1006/jmaa.1997.5900; MR1619148; Zbl 0931.35082
- [15] R. LAISTERA, J. C. ROBINSON, M. SIERŻĘGA, A necessary and sufficient condition for uniqueness of the trivial solution in semilinear parabolic equations, J. Differential Equations 262(2017), No. 10, 4979–4987. https://doi.org/10.1016/j.jde.2017.01.014; Zbl 1372.35156

- [16] H. A. LEVINE, L. E. PAYNE Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, *J. Differential Equations* 16(1974), No. 2, 319–334. https://doi.org/10.1016/0022-0396(74)90018-7; MR470481; Zbl 0285.35035
- [17] J. LÓPEZ-GÓMEZ, V. MÁRQUEZ, N. WOLANSKI, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differential Equations 92(1991), No. 2, 384–401. https://doi.org/10.1016/0022-0396(91)90056-F; MR1120912; Zbl 0735.35016
- [18] M. MARRAS, S. VERNIER PIRO, Reaction-diffusion problems under non-local boundary conditions with blow-up solutions, J. Inequal. Appl. 2014(2014), No. 167. https://doi. org/10.1186/1029-242X-2014-167; Zbl 06780049
- P. MEIER, Blow-up of solutions of semilinear parabolic differential equations, Z. Angew. Math. Phys. 39(1988), 135–149. https://doi.org/10.1007/BF00945760; MR937698; Zbl 0661.35051
- [20] L. E. PAYNE, G. A. PHILIPPIN, Blow-up phenomena in parabolic problems with timedependent coefficients under Neumann boundary conditions, *Proc. R. Soc. Edinburgh Sect. A.* 142(2012), No. 3, 625–631. https://doi.org/10.1017/S0308210511000485; MR2945975; Zbl 1241.35027
- [21] L. E. PAYNE, P. W. SCHAEFER, Lower bound for blow-up time in parabolic problems under Neumann conditions, *Appl. Anal.* 85(2006), No. 10, 1301–1311. https://doi. org/10.1080/00036810600915730; MR2263927; Zbl 1110.35032
- [22] D. F. RIAL, J. D. ROSSI, Blow-up results and localization of blow-up points in an *N*dimensional smooth domain, *Duke Math. J.* 88(1997), No. 2, 391–405. https://doi. org/10.1215/S0012-7094-97-08816-5; MR1455526; Zbl 0884.35071
- [23] W. WALTER, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 55, Springer-Verlag, Berlin, Heidelberg, 1970. https://doi.org/10. 1002/zamm.19720520931; Zbl 0252.35005
- [24] W. WALTER, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, *SIAM J. Math. Anal.* 6(1975), No. 1, 85–90. https://doi.org/10.1137/0506008; MR364868; Zbl 0268.35052
- [25] M. X. WANG, Y. H. WU, Global existence and blow-up problems for quasilinear parabolic equations with nonlinear boundary conditions, *SIAM J. Math. Anal.* 24(1993), No. 6, 1515–1521. https://doi.org/10.1137/0524085; MR1241155; Zbl 0790.35042
- [26] N. WOLANSKI, Global behavior of positive solutions to nonlinear diffusion problems with nonlinear absorption through the boundary, SIAM J. Math. Anal. 24(1993), No. 2, 317–326. https://doi.org/10.1137/0524021; MR1205529; Zbl 0778.35047
- [27] E. YANAGIDA, Blow-up of sign-changing solutions for a one-dimensional nonlinear diffusion equation, Nonlinear Anal. 185 (2019), 193–205. https://doi.org/10.1016/j.na. 2019.03.011; Zbl 1418.35048

[28] J. ZHANG, F. LI, Global existence and blow-up phenomena for divergence form parabolic equation with time-dependent coefficient in multidimensional space, Z. *Angew. Math. Phys.* **70**(2019), No. 150. https://doi.org/10.1007/s00033-019-1195-y; MR4010989; Zbl 1423.35175