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Abstract. We study some properties of the range of the relativistic pendulum opera-
tor P , that is, the set of possible continuous T-periodic forcing terms p for which the
equation Px = p admits a T-periodic solution over a T-periodic time scale T. Writ-
ing p(t) = p0(t) + p, we prove the existence of a nonempty compact interval I(p0),
depending continuously on p0, such that the problem has a solution if and only if
p ∈ I(p0) and at least two different solutions when p is an interior point. Furthermore,
we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small
then I(p0) is a neighbourhood of 0 for arbitrary p0. The results in the present paper
improve the smallness condition obtained in previous works for the continuous case
T = R.
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1 Introduction

The T-periodic problem for the forced relativistic pendulum equation on time scales reads

Px(t) := (ϕ(x∆(t)))∆ + ax∆(t) + b sin x(t) = p0(t) + s, t ∈ T, (1.1)

where a, b > 0 and s are real numbers, T is an arbitrary T-periodic nonempty closed subset
of R for some T > 0, ϕ : (−c, c)→ R is the relativistic operator

ϕ(x) :=
x√

1− x2

c2

with c > 0 and p0 is continuous and T-periodic in T, with zero average. In this work, we are
concerned with the set of all possible values of s such that (1.1) admits a T-periodic solution.

The time scales theory was introduced in 1988, in the PhD thesis of Stefan Hilger [12],
as an attempt to unify discrete and continuous calculus. The time scale R corresponds to
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the continuous case and, hence, yields results for ordinary differential equations. If the time
scale is Z, then the results apply to standard difference equations. However, the generality
of the set T produces many different situations in which the time scales formalism is useful
in several applications. For example, in the study of hybrid discrete-continuous dynamical
systems, see [6].

In the past decades, periodic problems involving the relativistic forced pendulum differen-
tial equation for the continuous case T = R were studied by many authors, see [3,4,8,14,18,19].
In particular, the works [3, 19] are concerned with the so-called solvability set, that is, the set
I(p0) of values of s for which (1.1) has at least one T-periodic solution. We remark that prob-
lem (1.1) is 2π-periodic and, consequently, if x is a T-periodic solution then x + 2kπ is also a
T-periodic solution for all k ∈ Z. For this reason, the multiplicity results for (1.1) usually refer
to the existence of geometrically distinct T-periodic solutions, i.e. solutions not differing by a
multiple of 2π.

For the standard pendulum equation with a = 0, the solvability set was analyzed in the
pioneering work [9], where it was proved that I(p0) ⊂ [−b, b] is a nonempty compact interval
containing 0. Moreover, I(p0) depends continuously on p0. These results were partially ex-
tended to the relativistic case in [8]; however, the method of proof in both works is variational
and, consequently, cannot be applied to the case a > 0. This latter situation was studied in
[11] for the standard pendulum and in [19] for the relativistic case. An interesting question,
stated already in [9] is whether or not the equation may be degenerate, namely: is there any
p0 such that I(p0) reduces to a single point? Many works are devoted to this problem and,
for the classical pendulum, nondegeneracy has been proved for an open and dense subset
of C̃T, the space of zero-average T-periodic continuous functions. However, the question for
arbitrary p0 remains unsolved. For a survey on the pendulum equation and open problems
see for example [15].

The purpose of this work is to extend the results in [3] and [19] to the context of time
scales. To this end, we prove in the first place that the set I(p0) is a nonempty compact interval
depending continuously on p0. The method of proof is inspired in a simple idea introduced in
[11] for the standard pendulum equation, which basically employs the Schauder Theorem and
the method of upper and lower solutions. Moreover, by a Leray–Schauder degree argument
it shall be proved that if s is an interior point of I(p0), then the problem admits at least two
geometrically distinct periodic solutions.

Furthermore, sufficient conditions shall be given in order to guarantee that 0 ∈ I(p0). We
recall that, when a 6= 0, this is not trivial even in the continuous case T = R. For the classical
pendulum equation, there exist well known examples with 0 /∈ I(p0) for arbitrary values of
T; for the relativistic case, it was proved in [3] that, if cT <

√
3π, then 0 ∈ I(p0)◦. In a

very recent paper (see [10]), this bound was improved in terms of a, b and ‖p0‖L1 , yielding
the uniform condition cT ≤ 2π. It is worth noticing that, however, the problem is still open
for large values of T. As we shall see, a slight improvement of the previous bound can be
deduced from the results in the present paper. Specifically, we shall prove the existence of
T∗ with cT∗ > π such that if T ≤ T∗ then 0 ∈ I(p0) and it is an interior point when the
inequality is strict. An inferior bound for T∗ can be characterized as a zero of a real function;
for the continuous case T = R, it is easily shown that the bound obtained in [4] is improved;
furthermore, it is numerically seen that cT∗ > 6.318, thus improving also the bound in [10].
We remark that the computation is independent of p0: in other words, if T < T∗, then the
range of the operator P contains a set of the form C̃T + [−ε, ε] for some ε > 0.

We highlight that our paper is devoted to equations on time scales that involve a ϕ-
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laplacian of relativistic type, for which the literature is scarce. For example, in [17], the
existence of heteroclinic solutions for a family of equations on time scales that includes the
unforced relativistic pendulum is proved. However, to our knowledge there are no papers
concerned with periodic solutions and, more precisely, the solvability set for equations with a
singular ϕ-laplacian on time scales.

This work is organized as follows. In Section 2, we establish the notation, terminology
and preliminary results which will be used throughout the paper. In Section 3 we prove that
the set I(p0) is a nonempty compact interval depending continuously on p0, and that two
geometrically distinct T-periodic solutions exist when s is an interior point. Finally, Section 4
is devoted to find sufficient conditions in order to guarantee that 0 ∈ I(p0) and improve the
condition obtained in [3] for the continuous case.

2 Notation and preliminaries

For the reader’s convenience, let us firstly recall some basic definitions concerning time-scales
that shall be used in this work. For a more detailed exposition, see e.g. [6, 7].

A time scale T is a nonempty closed subset of R, with the induced topology. Throughout
this work, we shall assume that T is T-periodic for some fixed T > 0, namely that T + T = T.
For a, b ∈ T with a ≤ b, we shall denote [a, b]T := [a, b] ∩T.

The forward jump operator σ : T→ T is defined by

σ(t) := inf {s ∈ T : s > t} .

A point t ∈ T is called right scattered if σ(t) > t, and right dense otherwise. A function u is
delta differentiable at t ∈ T if there exists a number (denoted by u∆(t)) with the property that
given any ε > 0 there is a neighbourhood U of t (i.e., U = (t− δ, t + δ) ∩T for some δ > 0)
such that ∣∣(u(σ(t))− u(s))− u∆(t) (σ(t)− s)

∣∣ ≤ ε |σ(t)− s|

for all s ∈ U. Thus, we call u∆(t) the delta derivative of u at t. Moreover, we say that u is
delta differentiable on T provided that u∆(t) exists for all t ∈ T. Note that for T = R, we have
u∆ = u′, the usual derivative, and for T = Z we have that u∆(t) = ∆u(t) = u(t + 1)− u(t).

A function U : T → R is called a ∆-antiderivative of u : T → R provided U∆(t) = u(t)
holds for all t ∈ T. It is not difficult to prove that every continuous u has a ∆-antiderivative,
which is unique up to a constant term. Thus, the ∆-integral from t0 to t of u is well defined by∫ t

t0
u(s)∆s = U(t)−U(t0) for all t ∈ T.

Let CT = CT (T, R) be the Banach space of all continuous T-periodic real functions on T

endowed with the uniform norm

‖x‖∞ = sup
T

|x(t)| = sup
[0,T]T

|x(t)|

and let C̃T be the subspace of those elements of CT having zero average. By C1
T = C1

T (T, R)
we shall denote the Banach space of all continuous T-periodic functions on T that are ∆-
differentiable functions with continuous ∆-derivatives, endowed with the standard norm

‖x‖1 = sup
[0,T]T

|x(t)|+ sup
[0,T]T

|x∆(t)|.
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Equation (1.1) can be written as

(ϕ(x∆(t)))∆ = f (t, x(t), x∆(t)), t ∈ T, (2.1)

where f : T × R × R → R is the continuous function given by f (t, u, v) := p0(t) + s −
au− b sin(u). A function x ∈ C1

T is said to be a solution of (2.1) if ϕ(x∆) ∈ C1
T and verifies

(ϕ(x∆(t)))∆ = f (t, x(t), x∆(t)) for all t ∈ T. We remark that necessarily ‖x‖∞ < c.
For x ∈ CT, the average, the maximum value and the minimum value of x shall be denoted

respectively by x, xmax and xmin, namely

x :=
1
T

∫ T

0
x(t)∆t, xmax := max

t∈[0,T]T
x(t) xmin := min

t∈[0,T]T
x(t).

2.1 Upper and lower solutions and degree

Let us define T-periodic lower and upper solutions for problem (2.1) as follows.

Definition 2.1. A lower T-periodic solution α (resp. upper solution β) of (2.1) is a function
α ∈ C1

T with
∥∥α∆

∥∥
∞ < c such that ϕ(α∆) is continuously ∆-differentiable and(

ϕ
(

α∆(t)
))∆
≥ f (t, α(t), α∆(t)) (resp.

(
ϕ
(

β∆(t)
))∆
≤ f (t, β(t), β∆(t))) (2.2)

for all t ∈ T. Such lower (upper) solution is called strict if the inequality (2.2) is strict for all
t ∈ T.

It is worth recalling the problem of finding T-periodic solutions of (2.1) over the closure of
the set

Ωα,β := {x ∈ C1
T : α(t) ≤ x(t) ≤ β(t) for all t}

can be reduced to a fixed point equation x = M f (x), where M f : Ωα,β → C1
T is a compact

operator that can be defined according to the nonlinear version of the continuation method
(see e.g. [16]), namely

M f (x) := x + N f x + K(N f x− N f x),

where N f is the Nemitskii operator associated to f and K : C̃T → C̃T is the (nonlinear) compact
operator given by Kξ = x, with x ∈ C1

T the unique solution of the problem (ϕ(x∆(t)))∆ = ξ(t)
with zero average. We recall, for the reader’s convenience, that the definition of K based upon
the existence, easy to prove, of a (unique) completely continuous map φ : CT → R satisfying∫ T

0 ϕ−1(h + φ(h))∆t = 0 for all h ∈ CT. For the purposes of the present paper, we shall only
need the following result, which is an adaptation of Theorem 3.7 in [1]:

Theorem 2.2. Suppose that (2.1) has a T-periodic lower solution α and an upper solution β such that
α(t) ≤ β(t) for all t ∈ T. Then problem (1.1) has at least one T-periodic solution x with α(t) ≤
x(t) ≤ β(t) for all t ∈ T. If furthermore α and β are strict, then degLS(I − M f , Ωα,β(0), 0) = 1,
where degLS stands for the Leray–Schauder degree.

3 The solvability set I(p0)

In this section, we shall prove that the solution set I(p0) is a nonempty compact set; further-
more, employing the method of upper and lower solutions it shall be verified that I(p0) is
an interval depending continuously on p0. Finally, the excision property of the degree will
be employed to verify that if s is an interior point of I(p0), then the problem has at least 2
geometrically different T-periodic solutions.
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Theorem 3.1. Assume that p0 ∈ CT has zero average. Then, there exist numbers d(p0) and D(p0),
with −b ≤ d(p0) ≤ D(p0) ≤ b, such that (1.1) has at least one T-periodic solution if and only if
s ∈ [d(p0), D(p0)]. Moreover, the functions d, D : C̃T → R are continuous.

Proof. For the reader’s convenience, we shall proceed in several steps.

Step 1 (An associated integro-differential problem). Observe that if x ∈ C1
T is a solution of (1.1),

then, ∆-integration over [0, T]T yields s = b
T

∫ T
0 sin(x(t))∆t. Therefore, it proves convenient to

consider the integro-differential Dirichlet problem{
(ϕ(x∆(t)))∆ + ax∆(t) + b sin x(t) = p0(t) + s(x), t ∈ (0, T)T

x(0) = x(T),
(3.1)

with s(x) := b
T

∫ T
0 sin(x(t))∆t. By Schauder’s fixed point theorem, it is straightforward to

prove that for each r ∈ R there exists at least one solution x ∈ C([0, T]T) of (3.1) such that
x(0) = x(T) = r.

Step 2 (I(p0) is is nonempty and bounded). Let x be a solution of (3.1) such that x(0) =

x(T) = r, then integration over [0, T]T yields

ϕ(x∆(T))− ϕ(x∆(0)) + b
∫ T

0
sin x(t)∆t = Ts(x),

and hence ϕ(x∆(T)) = ϕ(x∆(0)). It follows that x may be extended in a T-periodic fashion to
a solution of (1.1) with s = s(x). In other words,

I(p0) = {s(x) : x is a solution of (3.1) for some r ∈ [0, 2π]} 6= ∅.

Moreover, it is clear from definition that |s(x)| ≤ b, so I(p0) ⊂ [−b, b].

Step 3 (I(p0) is connected). Assume that s1, s2 ∈ I(p0) are such that s1 < s2, and let x1 and
x2 be T-periodic solutions of (1.1) for s1 and s2, respectively. Then for any s ∈ (s1, s2) it is
verified that x1 and x2 are strict upper and a lower solutions of (1.1), respectively. Replacing
x1 by x1 + 2kπ, with k the first integer such that x2 < x1 + 2kπ and applying Theorem 2.2 with
α = x2 and β = x1 + 2kπ, we conclude that problem (1.1) has at least one T-periodic solution,
whence s ∈ I(p0).

Step 4 (I(p0) is closed). Let {sn} ⊂ I(p0) converge to some s, and let xn ∈ C1
T be a

solution of (1.1) for sn. Without loss of generality, we may assume that xn(0) ∈ [0, 2π].
Because

∥∥x∆
n
∥∥

∞ < c, by Arzelà–Ascoli theorem there exists a subsequence (still denoted
{xn}) that converges uniformly to some x. Furthermore, from (1.1) we deduce the exis-
tence of a constant C independent of n such that |(ϕ(x∆

n (t)))∆| ≤ C for all t. We claim
that ϕ(x∆

n ) is also uniformly bounded, that is, ‖x∆
n ‖∞ is bounded away from c. Indeed,

otherwise passing to a subsequence we may suppose for example that ϕ(x∆
n )max → +∞.

Because ϕ(x∆
n (t1)) − ϕ(x∆

n (t0)) ≤ C(t1 − t0) for all t1 > t0, we deduce from periodicity
that ϕ(x∆

n )max − ϕ(x∆
n )min ≤ CT and, consequently, ϕ(x∆

n )min → +∞. This implies that
(x∆

n )min → c, which contradicts the fact that x∆
n has zero average. Using Arzelà-Ascoli again,

we may assume that ϕ(x∆
n ) converges uniformly to some function v and, from the identity

xn(t) = xn(0) +
∫ t

0 x∆
n (ξ)∆ξ we deduce that x ∈ C1

T and x∆ = ϕ−1(v). Now integrate the
equation for each n and take limit for n→ ∞ to obtain

ϕ(x∆(t)) = ϕ(x∆(0)) +
∫ t

0
[s + p0(ξ)− b sin(x(ξ))]∆ξ − a[x(t)− x(0)].
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In turn, this implies that x is a solution of (3.1) with s(x) = s; hence, I(p0) is closed and the
proof is complete.

Step 5 (continuous dependence on p0). Let {pn
0}n∈N ⊂ C̃T be a sequence that converges to

some p0. We shall prove that D(pn
0) → D(p0); the proof for d is analogous. Similarly to Step

4, it is seen that if a subsequence of {D(pn
0)} converges to some D, then the problem for p0

with s = D admits a solution and, consequently, D ≤ D(p0). Thus, it suffices to prove that
lim infn→∞ D(pn

0) ≥ D(p0). Indeed, otherwise, passing to a subsequence we may suppose that
D(pn

0)→ D < D(p0). Fix η > 0 such that D + η < D(p0) and let x be a T-periodic solution of
(1.1) for s = D(p0). Take n large enough such that

p0(t) + D(p0) > pn
0(t) + D + η > pn

0(t) + D(pn
0) ∀ t ∈ [0, T]T

and let xn be a T-periodic solution of (1.1) for pn
0 and s = D(pn

0). The previous inequalities
imply that x and xn are respectively a lower and an upper solution of the problem for pn

0 and
s = D + η and, without loss of generality, we may assume that x < xn. Thus, (1.1) has a
T-periodic solution for pn

0 and s = D + η > D(pn
0), a contradiction.

The following theorem establishes the existence of at least two geometrically different T-
periodic solutions to problem (1.1) when s is an interior point.

Theorem 3.2. Assume that p0 ∈ CT has zero average. If s ∈ (d(p0), D(p0)), then the problem (1.1)
has at least two geometrically different T-periodic solutions.

Proof. For s ∈ (d(p0), D(p0)), let s1 := d(p0) < s < D(p0) := s2 and let x1, x2 be as in Step 3
of the previous proof. Then x1 and x2 are strict upper and lower solutions for s, respectively.
Due to the 2π-periodicity of (1.1), we may assume that x2 < x1 and x2 + 2π 6≤ x1 and,
consequently, Ωx2,x1 and Ωx2+2π,x1+2π are disjoint open subsets of Ωx2,x1+2π. From Theorem
2.2 and the excision property of the Leray–Schauder degree, we deduce the existence of three
different solutions y1, y2, y3 ∈ C1

T such that

x2(t) < y1(t) < x1(t),

x2(t) + 2π < y2(t) < x1(t) + 2π

x2(t) < y3(t) < x1(t) + 2π

for all t ∈ T. If y2 = y1 + 2π, then y3 6= y1, y1 + 2π and the conclusion follows.

4 Sufficient conditions for 0 ∈ I(p0)

In this section, we shall obtain conditions guaranteeing that 0 belongs to the solvability set.
Even in the continuous case, this is not clear when a 6= 0 since, as it is well known, counter-
examples exist for the classical pendulum equation for arbitrary periods. In the relativistic
case, however, it was proved that 0 ∈ I(p0) when T is sufficiently small and counter-examples
for large values of T are not yet known. Here, as mentioned in the introduction, we shall im-
prove the bounds for T obtained in previous works for T = R. The results shall be expressed
in terms of k(T), the optimal constant of the inequality

‖x− x‖∞ ≤ k‖x∆‖∞, x ∈ C1
T.
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For instance, for arbitrary T it is readily seen that k(T) ≤ T
2 , because x∆ has zero average and

hence, due to periodicity,

xmax − xmin ≤
∫ tmax

tmin

[x∆(t)]+∆t ≤
∫ T

0
[x∆(t)]+∆t =

1
2

∫ T

0
|x∆(t)|∆t.

We recall that, in the continuous case, the (optimal) Sobolev inequality ‖x−x‖∞≤
√

T
12‖x′‖2

implies that k(R) ≤ T
2
√

3
.

The main result of this section reads as follows.

Theorem 4.1. Assume that ck(T) < π and define the function

ψ(δ) := 2δ cos(δ) + (cT − 2δ) cos (ck(T)) .

If ψ(δ) ≥ 0 for some δ ∈ (0, π
2 ), then 0 ∈ I(p0). Furthermore, if the previous inequality is strict, then

0 ∈ I(p0)◦.

Before proceeding to the proof, it is worth to recall that, from Theorem 4.1 and Example
5.3 in [2], in order to prove the existence of T-periodic solutions for s = 0 it suffices to verify
that the equation  x∆(t)√

1− x∆(t)2

c2

∆

= λ[p0(t)− ax∆(t)− b sin x(t)] (4.1)

has no T-periodic solutions with average ±π
2 . For example, if x ∈ C1

T is a solution of (4.1)
such that x = π

2 , then it follows from the definition of k(T) that, for all t ∈ T,∣∣∣x(t)− π

2

∣∣∣ ≤ ck(T).

In particular, if ck(T) ≤ π
2 , then x(t) ∈ [0, π] for all t ∈ T and, upon integration of equation

(4.1), we deduce:

0 = b
∫ T

0
sin(x(t))∆t > 0.

The same contradiction is obtained also if x = −π
2 . For example, the condition cT ≤ π is

sufficient for arbitrary T and, in the continuous case, the condition cT ≤
√

3π is retrieved.
However, the previous bound ck(T) ≤ π

2 can be improved, as we shall see in the following
proof.

Proof of Theorem 4.1. From the preceding discussion, it may be assumed that π
2 < ck(T) < π.

Suppose that x is a solution of (4.1) such that x = π
2 , then

x(t) ∈
[π

2
− ck(T),

π

2
+ ck(T)

]
⊂
(
−π

2
,

3π

2

)
for all t ∈ T and hence

sin x(t) ≥ − sin(A) > −1, where A = ck(T)− π

2
.

Fix δ ∈ (0, π
2 ) and consider the set

Cδ =
{

t ∈ [0, T]T :
∣∣∣x(t)− π

2

∣∣∣ ≤ δ
}

.
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Then

0 =
∫ T

0
sin(x(t))∆t ≥

∫
Cδ

(sin(x(t)) + sin(A))∆t− T sin(A)

≥
[
sin(

π

2
− δ) + sin(A)

]
m(Cδ)− T sin(A)

= cos(δ)m(Cδ)− [T −m(Cδ)] sin A,

(4.2)

where m(Cδ) is the measure of the set Cδ associated to the ∆-integral, namely m(Cδ) =
∫

Cδ
∆t.

Clearly, a contradiction is obtained when the latter term of (4.2) is positive.
Moreover, notice that if x(t0) ≤ π

2 and t1 > t0 is such that x(t1) ≥ π
2 + δ, then

δ ≤ x(t1)− x(t0) =
∫ t1

t0

x∆(s)∆s < c(t1 − t0).

In the same way, if t0 < t1 are such that x(t0) ≥ π
2 and x(t1) ≤ π

2 − δ, then c(t1− t0) > δ. Thus,
by periodicity, we deduce that m(Cδ) > 2δ

c . The same conclusions are obtained if x = −π
2 ;

hence, a sufficient condition for the existence of at least one T-periodic solution is that, for
some δ ∈ (0, π

2 ),

cos(δ)
2δ

c
≥
(

T − 2δ

c

)
sin A

or, equivalently, that ψ(δ) ≥ 0. Note, furthermore, that if the inequality is strict, then a
contradiction is still obtained as in (4.2) if we add a small parameter s to the function p0 in
(4.1).

Remark 4.2. It is seen that ψ reaches its maximum at the unique δ∗ ∈ (0, π
2 ) such that

cos(δ∗)− δ∗ sin(δ∗) = cos (ck(T)) . (4.3)

Thus, replacing (4.3) in ψ, a somewhat explicit condition on T reads:

2(δ∗)2 sin(δ∗) + cT cos (ck(T)) ≥ 0.

An immediate corollary is the following:

Corollary 4.3. There exists a constant T∗ with cT∗ > π such that 0 ∈ I(p0) for all p0 ∈ C̃T if
T ≤ T∗ and it is an interior point if T < T∗. For the particular case T = R, it is verified that
cT∗ >

√
3π.

Proof. For arbitrary T, we know already that k(T) ≤ T
2 , then a sufficient condition when

cT ∈ (π, 2π) is the existence of δ ∈ (0, π
2 ) such that Ψ(δ, T) ≥ 0, where

Ψ(δ, T) := 2δ cos(δ) + (cT − 2δ) cos
(

cT
2

)
.

The result now follows trivially from the fact that Ψ(δ, π
c ) = 2δ cos(δ). The proof is similar for

T = R, now taking

Ψcont(δ, T) := 2δ cos(δ) + (cT − 2δ) cos
(

cT
2
√

3

)
.
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Remark 4.4. A more quantitative version of the previous corollary follows from the fact that
the function Ψ is strictly decreasing with respect to T when cT ∈ (π, 2π) and arbitrary δ ∈
(0, π

2 ). In particular, observe that if Ψ(δ, T̂) ≥ 0 for some T̂ ∈ (π
c , 2π

c ) and some δ ∈ (0, π
2 ),

then Ψ(δ, T) > 0 for T ∈ (π
c , T̂). Thus, a lower bound for T∗ is given by the unique value of

T ∈ (π
c , 2π

c ) such that
max

δ∈[0, π
2 ]

Ψ(δ, T) = 0.

Analogous conclusions are obtained when T = R using Ψcont instead of Ψ.

4.1 Numerical examples and final remarks

As shown in Corollary 4.3, the bound thus obtained always improves the simpler one ck(T) ≤
π
2 and, in particular, it guarantees that if the latter inequality is satisfied then 0 is in fact an
interior point of I(p0). In the continuous case, an easy numerical computation gives the
sufficient condition cT ≤ 6.318, slightly better than the bound cT ≤ 2π deduced from [10]
(see Figure 1). For arbitrary T, numerical experiments show that 0 ∈ I(p0)◦ for cT ≤ 4.19, as
shown in Figure 2.

Figure 4.1: Graph of ψ for T = R with cT = 6.318

Figure 4.2: Graph of ψ for k(T) = T
2 and cT = 4.19

Remark 4.5. An estimation of the constant k(T) could be obtained analogously to the continu-
ous case as shown for example in [13]. Let {en}n∈Z ⊂ CT be an orthonormal basis of L2(0, T)T
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with e0 ≡ 1√
T

and En be a primitive of en such that En = 0. Writing x∆ = ∑n 6=0 anen, it follows
that

‖x− x‖∞ =

∣∣∣∣∣∑n 6=0
anEn

∣∣∣∣∣ ≤ ‖x∆‖L2

√
∑
n 6=0
‖En‖2

∞ ≤ ‖x∆‖∞

√
T ∑

n 6=0
‖En‖2

∞.

When T = R, taking the usual Fourier basis one has that ‖En‖∞ =
√

T
2πn and the value k(R) ≤

T
2
√

3
is obtained from the well known equality ∑n∈N

1
n2 = π2

6 .

Remark 4.6. As mentioned in the introduction, Theorem 4.1 allows to compute an inferior
bound for the length of the solvability interval which does not depend on p0, provided that
T is small enough. In some obvious cases, inferior bounds are obtained for arbitrary T: for
example, if ‖p0‖∞ < b then [−ε, ε] ⊂ I(p0) for ε = b− ‖p0‖∞. This is readily verified taking
α = π

2 and β = 3π
2 as lower and upper solutions.
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