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Abstract. We consider the Dirichlet problem for a class of quasilinear elliptic systems in
domain with irregular boundary. The principal part satisfies componentwise coercivity
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1 Introduction

We are interested in the regularity properties of a kind of quasilinear elliptic operators with
discontinuous data acting in a bounded domain Ω, with irregular boundary ∂Ω. Precisely, we
consider the following Dirichlet problem{

div
(
A(x)Du + a(x, u)

)
= b(x, u, Du), x ∈ Ω

u(x) = 0, x ∈ ∂Ω .
(1.1)

Here Ω ⊂ Rn, n ≥ 2 is a bounded Reifenberg-flat domain, the matrix A = {Aαβ
ij (x)}α,β≤n

i,j≤N of the
coefficients is essentially bounded in Ω, and the non linear terms

a(x, u) = {aα
i (x, u)}α≤n

i≤N and b(x, u, z) = {bi(x, u, z)}i≤N

are Carathéodory maps, i.e., they are measurable in x ∈ Ω for all u ∈ RN , z ∈ MN×n and
continuous in (u, z) for almost all x ∈ Ω. Since we are going to study the weak solutions of
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(1.1) we need to impose controlled growth conditions on the nonlinear terms in order to ensure
convergence of the integrals in the definition (2.6). For this aim we suppose that (cf. [17, 33])

aα
i (x, u) = O(ϕ1(x) + |u| n

n−2 ),

bi(x, u, z) = O(ϕ2(x) + |u| n+2
n−2 + |z| n+2

n )

for n > 2. In the particular case n = 2, the powers of |u| could be arbitrary positive numbers,
while the growth of |z| is subquadratic.

Our aim is to study the dependence of the solution from the regularity of the data and to
obtain Calderón–Zygmund type estimate in an optimal Morrey space.

There are various papers dealing with the integrability and regularity properties of differ-
ent kind of quasilinear and nonlinear differential operators. Namely, it is studied the question
how the regularity of the data influences on the regularity of the solution. In the scalar case N = 1
the celebrated result of De Giorgi and Nash asserts that the weak solution of linear elliptic and
parabolic equations with only L∞ coefficients is Hölder continuous [12].

Better integrability can be obtained also by the result of Gehring [16] relating to functions
satisfying the inverse Hölder inequality. Later Giaquinta and Modica [18] noticed that certain
power of the gradient of a function u ∈ W1,p satisfies locally the reverse Hölder inequal-
ity. Modifying Gehring’s lemma they obtained better integrability for the weak solutions of some
quasilinear elliptic equations. Their pioneer works have been followed by extensive research ded-
icated to the regularity properties of various partial differential operators using the Gehring–
Giaquinta–Modica technique, called also a “direct method” (cf. [3, 27, 28] and the references
therein.) Recently the method of A-harmonic approximation permits to study the regularity with-
out using Gehring’s lemma (see for example [1]).

The theory for linear divergence form operators defined in Reifenberg’s domain was de-
veloped firstly in [8, 10]. In [4, 5] the authors extend this technique to quasilinear uniformly
elliptic equations in the Sobolev–Morrey spaces. Making use of the Adams inequality [2] and
the Hartmann–Stampacchia maximum principal they obtain Hölder regularity of the solution
while in [7] it is obtained generalized Hölder regularity for regular and nonregular nonlinear
elliptic equations.

Concerning nonlinear nonvariational operators we can mention the results of
Campanato [11] related to basic systems of the form F(D2u) = 0 in the Morrey spaces. Af-
terwards Marino and Maugeri in [24] have contributed to this theory with their own research
on the boundary regularity of the solutions of basic systems. Imposing differentiability of the
operator F they obtain, via immersion theorems, Morrey regularity of the second derivatives

D2u ∈ L2,2− 2
q , q > 2. These studies have been extended in [15] to nonlinear equations of a

kind F(x, D2u) without any differentiability assumptions on F. It is obtained global Morrey
regularity via the Korn trick and the near operators theory of Campanato. Moreover, in the
variational case it is established a Caccioppoli-type inequality for a second-order degenerate
elliptic systems of p-Laplacian type [14]. Exploiting the classical Campanato’s approach and
the hole-filling technique due to Widman, it is proved a global regularity result for the gradient
of u in the Morrey and Lebesgue spaces.

In the present work we consider quasilinear systems in divergence form with a principal
part satisfying componentwise coercivity condition. This condition permits to apply the results of
[29,33] that gives L∞ estimate of the weak solution. In addition the controlled growth conditions
imposed on the nonlinear terms allow to apply the integrability result from [31]. Making
use of step-by-step technique we show optimal Morrey regularity of the gradient depending
explicitly on the regularity of the data.
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In what follows we use the standard notation:

• Ω is a bounded domain in Rn, with a Lebesgue measure |Ω| and boundary ∂Ω;

• Bρ(x) ⊂ Rn is a ball, Ωρ(x) = Ω ∩ Bρ(x) with ρ ∈ (0, diam Ω], x ∈ Ω;

• MN×n is the set of N × n-matrices;

• u = (u1, . . . , uN) : Ω→ RN , Dαuj = ∂uj/∂xα,

|u|2 = ∑
j≤N
|uj|2, Du = {Dαuj}α≤n

j≤N ∈MN×n, |Du|2 = ∑
α≤n
j≤N

|Dαuj|2;

• For u ∈ Lp(Ω; RN) we write ‖u‖p,Ω instead of ‖u‖Lp(Ω;RN);

• The spaces W1,p(Ω; RN) and W1,p
0 (Ω; RN) are the classical Sobolev spaces as they are

defined in [19].

Throughout the paper the standard summation convention on repeated upper and lower
indexes is adopted. The letter C is used for various positive constants and may change from
one occurrence to another.

2 Definitions and auxiliary results

In [34] Reifenberg introduced a class of domains with rough boundary that can be approxi-
mated locally by hyperplanes.

Definition 2.1. The domain Ω is (δ, R) Reifenberg-flat if there exist positive constants R and
δ < 1 such that for each x ∈ ∂Ω and each ρ ∈ (0, R) there is a local coordinate system
{y1, . . . , yn} with the property

Bρ(x) ∩ {yn > δρ} ⊂ Ωρ(x) ⊂ Bρ(x) ∩ {yn > −δρ}. (2.1)

Reifenberg arrived at this concept of flatness in his studies on the Plateau problem in
higher dimensions and he proved that such a domain is locally a topological disc when δ is
small enough, say δ < 1/8. It is easy to see that a C1-domain is a Reifenberg flat with δ→ 0 as
R → 0. A domain with Lipschitz boundary with a Lipschitz constant less than δ also verifies
the condition (2.1) if δ is small enough, say δ < 1/8, (see [10, Lemma 5.1]). But the class of
Reifenberg’s domains is much more wider and contains domains with fractal boundaries. For
instance, consider a self-similar snowflake Sβ. It is a flat version of the Koch snowflake Sπ/3
but with angle of the spike β such that sin β ∈ (0, 1/8). This kind of flatness exhibits minimal
geometrical conditions necessary for some natural properties from the analysis and potential
theory to hold. For more detailed overview of these domains we refer the reader to [35] (see
also [8, 27] and the references therein).

In addition (2.1) implies the (A)-property (cf. [17, 28]). Precisely, there exists a positive
constant A(δ) < 1/2 such that

A(δ)|Bρ(x)| ≤ |Ωρ(x)| ≤ (1− A(δ))|Bρ(x)| (A)

for any fixed x ∈ ∂Ω, ρ ∈ (0, R) and δ ∈ (0, 1). This condition excludes that Ω may have
sharp outward and inward cusps. As consequence, the Reifenberg domain is W1,p-extension
domain, 1 ≤ p ≤ ∞, hence the usual extension theorems, the Sobolev and Sobolev-Poincaré
inequalities are still valid in Ω up to the boundary.
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Definition 2.2. A real valued function f ∈ Lp(Ω) belongs to the Morrey space Lp,λ(Ω) with
p ∈ [1, ∞), λ ∈ (0, n), if

‖ f ‖p,λ;Ω =

(
sup
Bρ(x)

1
ρλ

∫
Ωρ(x)

| f (y)|p dy

)1/p

< ∞

where Bρ(x) ranges in the set of all balls with radius ρ ∈ (0, diam Ω] and x ∈ Ω.

In [25] Morrey obtained local Hölder regularity of the solutions to second order elliptic
equations. His new approach consisted in estimating the growth of the integral function
g(ρ) =

∫
Bρ
|Du(y)|pdy via a power of the radius of the same ball, i.e., Cρλ with λ > 0.

Although he did not talk about function spaces, his paper is considered as the starting point
for the theory of the Morrey spaces Lp,λ.

The family of the Lp,λ spaces is partially ordered (cf. [30]).

Lemma 2.3. For 1 ≤ r′ ≤ r′′ < ∞ and σ′, σ′′ ∈ [0, n) the following embedding holds

Lr′′σ′′(Ω) ↪→ Lr′,σ′(Ω) iff
n− σ′

r′
≥ n− σ′′

r′′
.

Furthermore, we have the continuous inclusion

L
nr′

n−σ′ (Ω) ↪→ Lr′,σ′(Ω) .

For x ∈ Rn, Iα is the Riesz potential operator whose convolution kernel is |x|α−n, 0 < α < n.
Suppose that f is extended as zero in Rn and consider its Riesz potential

Iα f (x) =
∫

Rn

f (y)
|x− y|n−α

dy.

In [2] Adams obtained the following inequality.

Lemma 2.4. Let f ∈ Lr,σ(Rn), then Iα : Lr,σ → Lr∗σ ,σ is continuous and

‖Iα f ‖Lr∗σ ,σ(Rn) ≤ C‖ f ‖Lr,σ(Rn), (2.2)

where C depends on n, r, σ, |Ω|, and r∗σ is the Sobolev–Morrey conjugate

r∗σ =

{
(n−σ)r
n−σ−r if r + σ < n

arbitrary large number if r + σ ≥ n.
(2.3)

The nonlinear terms a(x, u) and b(x, u, z) satisfy controlled growth conditions

|a(x, u)| ≤ Λ(ϕ1(x) + |u| 2
∗
2 ), (2.4)

ϕ1 ∈ Lp,λ(Ω), p > 2, p + λ > n, λ ∈ [0, n),

|b(x, u, z)| ≤ Λ
(

ϕ2(x) + |u|2∗−1 + |z|2
(2∗−1)

2∗
)
, (2.5)

ϕ2 ∈ Lq,µ(Ω), q >
2∗

2∗ − 1
, 2q + µ > n, µ ∈ [0, n)

with a positive constant Λ. Here 2∗ is te Sobolev conjugate of 2, i.e. 2∗ = 2n
n−2 if n > 2 and it is

arbitrary large number if n = 2 (cf. [17, 22, 31, 33]).
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A weak solution to (1.1) is a function u ∈W1,2
0 (Ω; RN) satisfying∫

Ω
Aαβ

ij (x)Dβuj(x)Dαχi(x)dx +
∫

Ω
aα

i (x, u(x))Dαχi(x)dx

+
∫

Ω
bi(x, u(x), Du(x))χi(x)dx = 0, j = 1, . . . , N

(2.6)

for all χ ∈W1,2
0 (Ω; RN) where the convergence of the integrals is ensured by (2.4) and (2.5).

3 Main result

The general theory of elliptic systems does not ensure boundedness of the solution if we
impose only growth conditions as (2.4) and (2.5) (see for example [21, 23]). For this goal we
need some additional structural restrictions on the operator as componentwise coercivity similar
to that imposed in [23, 29, 32, 33].

Suppose that ‖A‖∞,Ω ≤ Λ0 and for each fixed i ∈ {1, . . . , N} there exist positive constants
θi and γ(Λ0) such that for |ui| ≥ θi we have

γ|zi|2 −Λ|u|2∗ −Λϕ1(x)2 ≤
n

∑
α=1

(
Aαβ

ij (x)zj
β + aα

i (x, u)
)

zi
α

bi(x, u, z) sign ui(x) ≥ −Λ
(

ϕ2(x) + |u|2∗−1 + |zi|2 2∗−1
2∗
) (3.1)

for a.a. x ∈ Ω and for all z ∈MN×n. The functions ϕ1 and ϕ2 are as in (2.4) and (2.5).

Theorem 3.1. Let u ∈ W1,2
0 (Ω; RN) be a weak solution of the problem (1.1) under the conditions

(2.1), (2.4), (2.5) and (3.1). Then

u ∈W1,r
0 ∩ L∞(Ω; RN) with r = min{p, q∗µ} .

Moreover

|Du| ∈ Lr,ν(Ω) with ν = min

{
n +

r(λ− n)
p

, n +
r(µ− n)

q∗µ

}
(3.2)

where q∗µ is the Sobolev–Morrey conjugate of q (see (2.3)).

Remark 3.2. If we take a bounded weak solution of (1.1) u ∈ W1,r
0 ∩ L∞(Ω; RN) we can substitute

the coercivity condition (3.1) with a uniform ellipticity condition. In this case we may suppose the
principal coefficients to be discontinuous with small discontinuity controlled by their BMO modulus.
Precisely, we suppose that

sup
0<ρ≤R

sup
y∈Ω
−
∫

Ωρ(y)
|Aαβ

ij (x)− Aαβ
ij Ωρ(y)

|2 dx ≤ δ2,

Aαβ
ij Ωρ(y)

= −
∫

Ωρ(y)
Aαβ

ij (x) dx,

where δ ∈ (0, 1) is the same parameter as in (2.1). The small BMO successfully substitute the VMO in
the study of PDEs with discontinuous coefficients, harmonic analysis and integral operators studying,
geometric measure analysis and differential geometry (see [4,6,8,20,28,33] and the references therein).
A higher integrability result for such kind of operators can be found in [13, 28, 31] for equations and
systems, respectively.
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Proof. The essential boundedness of the solution follows by [29] (see also [32, 33]). Precisely,
there exists a constant depending on n, Λ, p, q, ‖ϕ1‖Lp(Ω), ‖ϕ2‖Lq(Ω) and ‖Du‖L2(Ω) such that

‖u‖∞,Ω ≤ M . (3.3)

Let the solution and the functions ϕ1 and ϕ2 be extended as zero outside Ω. By the Defini-
tion 2.2 we have that ϕ1 ∈ Lp(Ω) and ϕ2 ∈ Lq(Ω). In [17] Giaquinta show that there exists
an exponent r̃ > 2 such that u ∈ W1,̃r

loc(Ω; RN). His approach is based on the reverse Hölder
inequality and a version of Gehring’s lemma. Since the Cacciopoli-type inequalities hold up to
the boundary, this method can be carried out up to the boundary and it is done in [17, Chap-
ter 5] for the Dirichlet problem in Lipschitz domain (see also [3, 11, 13, 31]). In [9] the authors
have shown that an inner neighborhood of (δ, R)-Reifenberg flat domain is a Lipschitz domain
with the (δ, R)-Reifenberg flat property.

Lemma 3.3. ([9]) Let Ω be a (δ, R)-Reifenberg flat domain for sufficiently small δ > 0. Then for any
0 < ε < R

5 the set Ωε = {x ∈ Ω : dist (x, ∂Ω) > ε} is a Lipschitz domain satisfying (2.1).

This lemma permits us to extend the results of [17, Chapter 5] in Reifenberg-flat domains.
Further |Du| belongs at least to Lr0(Ω) with r0 = min{p, q∗} > n

n+2 (cf. [31]).
Let n > 2 and u ∈ W1,r0

0 (Ω; RN) ∩ L∞(Ω; RN) be a solution to (1.1). Our first step is to
improve its integrability. Fixing that solution in the nonlinear terms we obtain linear problem{

Dα

(
Aαβ

ij (x)Dβuj(x)
))

= fi(x)− Dα Aα
i (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.4)

where we have used the notion

fi(x) = bi(x, u, Du), Aα
i (x) = aα

i (x, u).

By (2.4), (2.5) and (3.3) we get

|Aα
i (x)| ≤ Λ

(
ϕ1(x) + |u(x)| n

n−2

)
(3.5)

that gives Aα
i (x) ∈ Lp,λ(Ω) with p > 2 and p + λ > n. Analogously

| fi(x)| ≤ Λ
(

ϕ2(x) + |u| n+2
n−2 + |Du| n+2

n

)
. (3.6)

Since |Du| ∈ Lr0(Ω) we get |Du| n+2
n ∈ L

r0n
n+2 (Ω) that gives fi ∈ Lq1(Ω) where q1 = min{q, r0n

n+2}.
Let Γ be the fundamental solution of the Laplace operator. Recall that the Newtonian

potential of fi(x) is given by

N fi(x) =
∫

Ω
Γ(x− y) fi(y) dy, ∆N fi(x) = fi(x) for a.a. x ∈ Ω

and by [19, Theorem 9.9] we have that N fi ∈W2,q1(Ω). Denote by

Fα
i (x) = DαN fi(x) = C(n)

∫
Ω

(x− y)α fi(y)
|x− y|n dy for a.a. x ∈ Ω

and Fi = (F1
i , . . . , Fn

i ) = gradN fi. Hence div Fi = fi and{
Dα

(
Aαβ

ij (x)Dβuj(x)
))

= Dα(Fα
i (x)− Aα

i (x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(3.7)
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By (3.5) and (3.6) we get

|Fα
i (x)− Aα

i (x)| ≤ C(n, Λ)
∫

Ω

ϕ2(y) + |u(y)|
n+2
n−2 + |Du(y)| n+2

n

|x− y|n−1 dy

+ Λ
(

ϕ1(x) + |u(x)| n
n−2

)
≤ C

(
1 + ϕ1(x) + I1ϕ2(x) + I1|Du(x)| n+2

n

) (3.8)

with a constant depending on n, Λ, and ‖u‖∞,Ω. By (2.2) we get

‖I1ϕ2‖Lq∗µ ,µ
(Ω)
≤ C‖ϕ2‖Lq,µ(Ω)

‖I1|Du| n+2
n ‖

L(
r0n
n+2 )

∗
(Ω)
≤ C‖ |Du|

n+2
n ‖

L
r0n
n+2 (Ω)

≤ C‖Du‖
n+2

n
Lr0 (Ω)

where q∗µ is the Sobolev–Morrey conjugate of q and

(
r0n

n + 2

)∗
=


r0n

n + 2− r0
if r0 < n + 2 ,

arbitrary large number if r0 ≥ n + 2 .

Hence Fα
i − Aα

i ∈ Lr1(Ω) with r1 = min{p, q∗µ, ( r0n
n+2 )

∗}. If r1 = min{p, q∗µ} then we have the
assertion, otherwise r1 = ( r0n

n+2 )
∗ and we consider two cases:

1. r0 = p that leads to p > ( pn
n+2 )

∗ which is impossible;

2. r0 = q∗ and we consider two sub-cases:

2a) q∗ ≥ n+ 2 which means that r1 is arbitrary large number and we arrive to contradiction
with the assumption r1 < min{p, q∗µ};

2b) q∗ < n + 2 hence r1 = q∗n
n+2−q∗ .

Applying [10, Theorem 1.7] to the linearized system (3.7) we get that for each matrix function
F−A ∈ Lr1(Ω; MN×n), with r1 = q∗n

n+2−q∗ holds u ∈W1,r1
0 ∩ L∞(Ω; RN) with the estimate

‖Du‖r1,Ω ≤ C‖F−A‖r1,Ω.

Here A(x) = {Aα
i (x)}α≤n

i≤N and F(x) = {Fα
i (x)}α≤n

i≤N . Let us note that this estimate is valid for
each solution of (3.7) including u.

Repeating the above procedure for u ∈W1,r1(Ω; RN) ∩ L∞(Ω; RN) we get that

|Du| ∈ Lr2(Ω) r2 = min
{

p, q∗µ,
( r1n

n + 2

)∗}
.

If r2 = min{p, q∗µ} then we have the assertion, otherwise r2 = ( r1n
n+2 )

∗ > r1 and we repeat
the arguments of the previous case. In such a way we get an increasing sequence of indexes
{rk}k≥0. After k′ iterations we obtain rk′ ≥ min{p, q∗µ} and

‖Du‖r,Ω ≤ C‖F−A‖r,Ω with r = min{p, q∗µ}. (3.9)

The second step consists of showing that the gradient lies in a suitable Morrey space. Sup-
pose that |Du| ∈ Lr,θ(Ω) with arbitrary θ ∈ [0, n). Direct calculations give |Du| n+2

n ∈ L
rn

n+2 ,θ(Ω)(
1
ρθ

∫
Bρ

|Du| n+2
n

rn
n+2 dx

) n+2
rn

=

(
1
ρθ

∫
Bρ

|Du|r dx
) n+2

rn

≤ ‖Du‖
n+2

n
r,θ;Ω.
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Keeping in mind (3.8) and (2.2) we get

I1|Du| n+2
n ∈ L( nr

n+2 )
∗
θ ,θ(Ω)

while ϕ1 ∈ Lp,λ(Ω) and I1ϕ2 ∈ Lq∗µ,µ(Ω).
Further by the Hölder inequality we get the estimates(

1

ρ
n− n−λ

p r

∫
Bρ

ϕ1(x)r dx

) 1
r

≤ C(n)‖ϕ1‖p,λ;Ω,

 1

ρ
n− n−µ

q∗µ
r

∫
Bρ

(I1ϕ2(x))r dx

 1
r

≤ C(n)‖I1ϕ2‖q∗µ,µ;Ω

that implies ϕ1 ∈ Lr,n− n−λ
p r(Ω) and I1ϕ2 ∈ L

r,n− n−µ

q∗µ
r
(Ω).

Concerning the potential I1|Du| n+2
n we consider two cases:

1. n− θ ≤ rn
n+2 then

( nr
n+2

)∗
θ

is arbitrary large number and we can take it such that

I1|Du| n+2
n ∈ Lr(Ω);

2. n− θ > rn
n+2 then by the embedding between the Morrey spaces we have

L( nr
n+2 )

∗
θ ,θ(Ω) ⊂ Lr,r−2+θ n+2

n (Ω) .

Then

|Fα
i − Aα

i | ∈ L
r,min{r−2+θ n+2

n ,n− n−λ
p r,n− n−µ

q∗µ
r}
(Ω)

which implies via [6, Theorem 5.1] that the gradient of the solution of the linearized prob-
lem satisfies

|Du| ∈ L
r,min{r−2+θ n+2

n ,n− n−λ
p r,n− n−µ

q∗µ
r}
(Ω) .

In order to determine the optimal θ we use step-by-step arguments starting with the result
obtained in the first step and taking as θ0 = 0. Suppose that

r− 2 < min

{
n− n− λ

p
r, n− n− µ

q∗µ
r

}
,

otherwise we have the assertion.
Repeating the above procedure with u such that |Du| ∈ Lr,θ1(Ω) with θ1 = r− 2 we obtain

|Du| ∈ Lr,θ2(Ω)

with

θ2 = min

{
r− 2 + θ1

n + 2
n

, n− n− λ

p
r, n− n− µ

q∗µ
r

}
.

If θ2 = min{n− n−λ
p r, n− n−µ

q∗µ
r} we have the assertion, otherwise we take

θ2 = r− 2 + θ1
n + 2

n
= (r− 2)

(
1 +

n + 2
n

)
.
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Iterating we obtain an increasing sequence {θk = (r− 2)∑k−1
i=0 (

n+2
n )i}k≥1. Then there exists an

index k′′ for which

r− 2 + θk′′
n + 2

n
≥ min

{
n− n− λ

p
r, n− n− µ

q∗µ
r
}

that gives the assertion.
If n = 2 then the growth conditions have the form

|a(x, u)| ≤ Λ(ϕ1(x) + |u|κ),
ϕ1 ∈ Lp,λ(Ω), p > 2, p + λ > n, λ ∈ [0, n),

(3.10)

|b(x, u, z)| ≤ Λ
(

ϕ2(x) + |u|κ−1 + |z|2−ε
)
,

ϕ2 ∈ Lq,µ(Ω), q > 1, 2q + µ > n, µ ∈ [0, n)
(3.11)

with κ > 1 arbitrary large number and ε > 0 arbitrary small.
Fixing again the solution u ∈W1,r0

0 (Ω; RN) ∪ L∞(Ω; RN) in the nonlinear terms and using
the Lemma 2.3 and Lemma 2.4 we obtain

Fα
i − Aα

i ∈ Lr1(Ω), r1 = min
{

p, q∗µ,
( r0

2− ε

)∗}
.

If r1 =
( r0

2−ε

)∗ then the only possible value for r0 is r0 = q∗ and hence r1 = 2q∗

2(2−ε)−q∗ , otherwise
we rich to contradiction. Then by [10] we get |Du| ∈ Lr1(Ω).

Repeating the above procedure with u ∈W1,r1
0 ∩ L∞(Ω; RN) we obtain that

|Du| ∈ Lr2(Ω), r2 = min
{

p, q∗µ,
( r1

2− ε

)∗}
.

If
r2 =

( r1

2− ε

)∗
< min{p, q∗µ}

we repeat the same procedure obtaining an increasing sequence {rk}k≥0. Hence there exist an
index k0 such that rk0 ≤ min{p, q∗µ} that gives the assertion.

To obtain Morrey’s regularity we take |Du| ∈ Lr,θ(Ω) with arbitrary θ ∈ [0, 2). Hence
|Du|2−ε ∈ L

r
2−ε ,θ(Ω). By Lemma 2.3 and Lemma 2.4 we obtain

ϕ1 ∈ Lp,λ(Ω) ⊂ Lr,2− 2−λ
p r(Ω)

I1ϕ2 ∈ Lq∗µ,µ(Ω) ⊂ L
r,2− 2−µ

q∗µ
r
(Ω)

I1|Du|2−ε ∈ L( r
2−ε )

∗
θ ,θ(Ω) ⊂ Lr,r−2(1−ε)+θ(2−ε)(Ω).

Hence the Calderón–Zygmund estimate for the linearized problem (see [6]) gives

|Du| ∈ L
r,min{2− 2−λ

p r,2− 2−µ

q∗µ
r,r−2(1−ε)+θ(2−ε)}

(Ω) .

To determine the precise Morrey space we apply the step-by-step procedure.

1. Since the last term is minimal when θ = 0 than we start with an this initial value θ0 = 0.
Suppose that

r− 2(1− ε) < min
{

2− 2− λ

p
r, 2− 2− µ

q∗µ
r
}

< 2

(otherwise we have the assertion) and denote θ1 = r− 2(1− ε).
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2. Take |Du| ∈ Lr,θ1(Ω). The above procedure gives |Du| ∈ Lr,θ2(Ω) with

θ2 = min

{
2− 2− λ

p
r, 2− 2− µ

q∗µ
, r− 2(1− ε) + θ1(2− ε)

}
.

If θ2 = r− 2(1− ε) + θ1(2− ε) (otherwise we have the assertion) then we continue with the
same procedure obtaining the sequence defined by recurrence

θ0 = 0, θk = r− 2(1− ε) + θk−1(2− ε).

3. Since r > 2, hence the sequence is increasing and there exists an index k such that

θk ≥ min

{
2− 2− λ

p
r, 2− 2− µ

q∗µ
r

}

which is the assertion.

Corollary 3.4. Let the conditions of Theorem 3.1 hold. Then

ui ∈ C0,α(Ω) with α = min

{
1− n− λ

p
, 1− n− µ

q∗µ

}
,

and for any ball Bρ(z) ⊂ Ω we have

osc
Bρ(z)

ui ≤ Cρα ∀ i = 1, . . . , N .

Proof. By (3.2) we have that for each ball Bρ(z) ⊂ Ω

∫
Bρ(z)
|Dui(y)| dy ≤ Cρn− n−ν

r .

Then for any x, y ∈ Bρ(z) and for each fixed i = 1, . . . , N we have

|ui(x)− ui(y)| ≤ 2|ui(x)− ui
Bρ(z)| ≤ C

∫
Bρ(z)

Dui(y)
|x− y|n−1 dy

≤ C
∫ ρ

0

∫
Bt(z)
|Dui(y)| dy

dt
tn ≤ Cρ1− n−ν

r .
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