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Abstract. This paper is concerned with the stability problem of the positive equilib-
rium of a Nicholson’s blowflies model with nonlinear density-dependent mortality rate
subject to stochastic perturbations. More specifically, the existence of a unique posi-
tive equilibrium of a Nicholson’s blowflies model described by the delay differential
equation

N′(t) = −
(

a− be−N(t)
)
+ βN(t− τ)e−γN(t−τ)

is first quoted. It is assumed that the underlying model in noisy environments is ex-
posed to stochastic perturbations, which are proportional to the derivation of the state
from the equilibrium point. Then, by utilizing a stability criterion formulated for lin-
ear stochastic differential delay equations, explicit stability conditions are obtained. An
extension to models with multiple delays is also presented.

Keywords: Nicholson’s blowflies model, nonlinear mortality rate, stochastic perturba-
tions, asymptotic stability.
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1 Introduction

Delay differential equations (DDEs) are typically used to describe dynamics of biology and
ecology systems [3, 4]. For example, Gurney et al. [5] proposed the following DDE

N′(t) = −αN(t) + βN(t− τ)e−γN(t−τ) (1.1)

to model the laboratory population of the Australian sheep-blowfly, where N(t) represents
the population size at time t, α is the per capita daily adult mortality rate, β is the maximum
per capita daily egg production rate, 1

γ is the size at which the population reproduces at its
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maximum rate and τ > 0 is the generation time (i.e. the time taken from birth to maturity).
This equation is known as the celebrated Nicholson’s blowflies equation.

In the past four decades, Nicholson equation and its extensions have been extensively
studied (see, for example, [2, 7, 12, 14] and the references therein). In particular, Wang et al.
[13] considered a stochastic variant of model (1.1) where the mortality rate α is affected by en-
vironmental noises, α α− σdB(t), which is presented by the following Itô-type differential
equation

dN(t) =
[
−αN(t) + βN(t− τ)e−γN(t−τ)

]
dt + σN(t)dB(t) (1.2)

with initial condition N(s) = φ(s), s ∈ [−τ, 0], φ ∈ C([−τ, 0], [0, ∞)) and φ(0) > 0. Finite ulti-
mate estimations for lim supt→∞ E[N(t)] and lim supt→∞

1
t E
[∫ t

0 N(s)ds
]

were obtained under

condition α > σ2/2. The results of [13] were later extended to stochastic Nicholson’s blowflies
differential equations with regime switching

dN(t) =
[
−αrt N(t) + βrt N(t− τrt)e

−γrt N(t−τrt )
]

dt + σrt N(t)dB(t) (1.3)

in [17], where (rt)t≥0 is a finite state continuous-time Markov chain. An extension of (1.2) to
include a patch structure was also investigated in recent work [6].

However, the aforementioned works only dealt with stochastic Nicholson-type models
with linear density-dependent mortality rates of the form D(N) = αN with some positive
constant α. As discussed in [2], a model of linear density-dependent mortality rate will only
be most accurate for populations at low densities. In addition, according to marine ecologists,
many models in fishery such as marine protected areas or models of B-cell chronic lympho-
cytic leukemia dynamics are described by Nicholson-type delay differential equations of the
form

N′(t) = −D(N(t)) + βN(t− τ)e−γN(t−τ), (1.4)

where the mortality rate function D(N) is of the forms D(N) = a− be−N (type-I) or D(N) =
aN

b+N (type-II) with positive constants a and b. In the past few years, significant research atten-
tion has been devoted to studies of model (1.4) and its extensions. For example, by utilizing
some reasoning techniques of the so-called fluctuation lemma combining with the method
of using differential and integral inequalities, the problems of existence and global conver-
gence of positive periodic/almost periodic solutions of Nicholson-type models with nonlinear
mortality rates of type-I and type-II were investigated in [15] and [16], respectively. In [11],
a novel approach based on comparison techniques via differential and integral inequalities
and extended Lyapunov functions was developed to establish the existence, uniqueness and
global attractivity of a positive periodic solution of Nicholson-type models with type-I mor-
tality rate function. The proposed approach of [11] can also be utilized to derive conditions
ensuring the global convergence of a unique positive equilibrium of autonomous (constant co-
efficients) Nicholson-type models with type-I mortality rates. However, up to date the study
of Nicholson-type models as (1.4) subject to certain types of stochastic noises has received
considerably less attention. It is noted that in population models, characteristic quantities
as growth rates, environmental capacity, competition coefficients and some other parameters
are always affected by environmental noises due to which model (1.4) is more suitable to be
described by stochastic DDEs [8, 13]. Thus, it is relevent to study model (1.4) and its variants
subject to certain type of stochastic noises. This motivates us for the present investigation.

In this paper, we study the problem of asymptotic stability in probability of a stochastic
extension of model (1.4). Specifically, we consider Nicholson-type model (1.4) with nonlinear
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mortality rate function D(N) = a− be−N for positive scalars a, b and apply the method of Son
et al. [11] to establish the existence of a unique positive equilibrium namely N∗. We then con-
sider the case that model (1.4) is exposed to stochastic perturbations which are proportional to
the derivation of its state from the equilibrium point N∗. This will be represented in the form
of an Itô stochastic differential equation. Based on the linearization method and by utilizing a
stability criterion established for linear stochastic differential delay equations [9, Lemma 2.1],
explicit delay-dependent stability conditions are obtained. The presented result is then also
extended to models with multiple delays.

2 Preliminaries

Consider the following Nicholson-type delay differential equation

N′(t) = −
(

a− be−N(t)
)
+ βN(t− τ)e−γN(t−τ), t > 0, (2.1)

with initial condition

N(s) = φ(s) for s ∈ [−τ, 0] and φ ∈ C([−τ, 0], [0, ∞)), φ(0) > 0, (2.2)

where a, b, β, γ and τ are positive constants. It was shown in [11, Theorem 3.1] that if b > a
the initial value problem (IVP) governed by (2.1)-(2.2) has a unique solution N(t, φ) which is
strictly positive on [0, ∞) and satisfies lim inft→∞ N(t, φ) ≥ ln( b

a ). Moreover, if β
γe < a < b

then, for any solution N(t, φ) of (2.1)-(2.2), it holds that [11, Proposition 5.1]

ln
(

b
a

)
≤ lim inf

t→∞
N(t, φ) ≤ lim sup

t→∞
N(t, φ) ≤ ln

(
b

a− β
γe

)
. (2.3)

2.1 Positive equilibrium

By substituting N(t) = N∗, a positive equilibrium point of (2.1) is defined by the following
algebraic equation

− a + be−N∗ + βN∗e−γN∗ = 0. (2.4)

Assume that the parameters β, γ, a and b of model (2.1) satisfy the following condition

β

(
1

γe
+ max

{
1
e2 ,

1− γ ln( b
a )

eγ ln( b
a )

})
< a < b. (2.5)

Then, by (2.3), any positive equilibrium point of (2.1) is confined within the range [r1, r2],

where r1 = ln( b
a ) and r2 = ln

(
b

a− β
γe

)
.

Lemma 2.1. Assume that β
γe < a < b. Then, for any x ∈ [r1, r2], where r1 = ln( b

a ), r2 = ln
(

b
a− β

γe

)
,

it holds that

|1− γx|e−γx ≤ max

{
1
e2 ,

1− γ ln( b
a )

eγ ln( b
a )

}
.
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Proof. Let ϕ(x) = |1− γx|e−γx, −∞ < x < ∞. Note that ϕ(x) = (1− γx)e−γx for x < 1/γ

and ϕ′(x) = γ(γx− 2)e−γx < 0. Thus, the function ϕ(x) is strictly deceasing on the interval
(−∞, 1/γ). On the other hand, for x > 1/γ, we have ϕ′(x) = γ(2− γx)e−γx, ϕ′(2/γ) = 0,
ϕ′(x) > 0 for x ∈ (1/γ, 2/γ) and ϕ′(x) < 0 for x > 2/γ. Therefore, ϕ(x) ≤ ϕ(2/γ) = 1

e2 for
any x ≥ 1/γ. This shows that for any x ∈ [r1, r2], we have

ϕ(x) ≤ max
{

1
e2 , ϕ(r1)

}
= max

{
1
e2 ,

1− γ ln( b
a )

eγ ln( b
a )

}
.

The proof of this lemma is now completed.

Lemma 2.2. Let f : R → R be a function defined by f (x) = xe−γx, γ > 0. Then, f (x) ≤ (γe)−1

for all x ∈ R. Moreover, f (x) = (γe)−1 if and only if x = 1/γ.

Proof. The derivative f ′(x) of f (x) is given by

f ′(x) = (1− γx) e−γx.

Thus, f ′(1/γ) = 0, f ′(x) > 0 for x < 1/γ and f ′(x) < 0 for x > 1/γ. Therefore, the function
f (x) is strictly increasing on the interval (−∞, 1/γ) and decreasing on the interval (1/γ, ∞).
This shows that f (x) attains its maximum f (1/γ) = (γe)−1 at x = 1/γ. Consequently,
f (x) ≤ (γe)−1. The proof is completed.

It is clear that the function Ψ(N) = −a + be−N + βNe−γN is continuous on [r1, r2], Ψ(r1) =

βr1e−γr1 > 0 and Ψ(r2) = β(r2e−γr2 − 1
γe ) < 0 according to Lemma 2.2 and the fact r2 < 1/γ.

Thus, there exists an N∗ ∈ (r1, r2) such that Ψ(N∗) = 0, which is a positive equilibrium of
(2.1). On the other hand, for any N ∈ [r1, r2], by Lemma 2.1, we have be−N ≥ be−r2 = a− β

γe

and |1− γN|e−γN ≤ max
{

1
e2 , 1−γ ln( b

a )

eγ ln( b
a )

}
. Therefore,

Ψ′(N) = −be−N + β(1− γN)e−γN < 0, ∀N ∈ [r1, r2],

which implies that the function Ψ(N) is strictly decreasing on [r1, r2]. By this, we can conclude
under condition (2.5) that model (2.1) has a unique positive equilibrium point N∗ which is
defined by equation (2.4).

2.2 Stochastic perturbations

Considering that equation (2.1) is affected by some white noise of the environment, which is
proportional to the derivation of N(t) from the equilibrium N∗ [1]. Then, model (2.1) can be
represented by the following Itô stochastic differential equation [9]

dN(t) =
[
−D(N(t)) + βN(t− τ)e−γN(t−τ)

]
dt + σ(N(t)− N∗)dB(t), (2.6)

where D(N) = a − be−N , σ denotes the intensity of the white noise and B(t) is an one-
dimensional Brownian motion defined on a filtered probability space (Ω,F , {Ft}t≥0, P). Note
that the equilibrium point N∗ is also a stationary solution of the stochastic differential equation
(2.6). We now define N(t) = N∗ + x(t) then, by (2.6), we have

dx(t) =
[
−D(x(t) + N∗) + β(N∗ + x(t− τ))e−γ(N∗+x(t−τ))

]
dt + σx(t)dB(t). (2.7)
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Remark 2.3. By similar arguments of [17, Theorem 2.1] and [11, Theorem 3.1], it can be verified
that for any initial function φ ∈ C([−τ, 0], R), Eq. (2.7) possesses a unique solution x(t, φ)

defined on the interval [−τ, ∞).

According to (2.4), we have βN∗e−γN∗ = a− be−N∗ . Therefore,

βN∗e−γ(N∗+x(t−τ)) =
(

a− be−N∗
)

e−γx(t−τ).

This, together with (2.7), leads to

dx(t) =
[
− a + be−N∗e−x(t) + (a− be−N∗)e−γx(t−τ)

+ βe−γN∗x(t− τ)e−γx(t−τ)
]
dt + σx(t)dB(t). (2.8)

The asymptotic stability of the equilibrium N∗ of (2.6) is equivalent to that of the zero solution
x = 0 of (2.8) [10]. Thus, together with (2.8), we consider the following linearized equation at
the zero point

dx̃(t) = [−δx̃(t) + px̃(t− τ)]dt + σx̃(t)dB(t), (2.9)

where δ = be−N∗ and

p = βe−γN∗ − γ(a− be−N∗) = β(1− γN∗)e−γN∗ .

Note also that N∗ ≤ r2 < 1/γ, thus δ, p are positive coefficients.

2.3 Auxiliary results

In this section, we present some definitions of stability and auxiliary results which will be
used to derive stability conditions of the positive equilibrium point N∗ of (2.1).

Definition 2.4 ([9]). The zero solution x = 0 of (2.7) is said to be stable in probability if for
any ε > 0, η > 0, there exists a δ > 0 such that P

{
supt≥0 |x(t, φ)| > ε|F0

}
< η for any initial

function φ ∈ C([−τ, 0], R) with P
{

sups∈[−τ,0] |φ(s)| < δ
}
= 1.

Definition 2.5 ([9]). The linearized Eq. (2.9) is said to be (i) mean square stable (MSS) if
for any given ε > 0 there exists a δ = δ(ε) > 0 such that for any initial function φ with
sups∈[−τ,0] E|φ(s)|2 < δ, it holds that E|x̃(t, φ)|2 < ε for all t ≥ 0, where E{·} denotes the
mathematical expectation on (Ω,F , P); and (ii) asymptotically mean square stable (AMSS) if
it is MSS and any solution x̃(t, φ) of (2.9) satisfies limt→∞ E|x̃(t, φ)|2 = 0.

Remark 2.6. As mentioned in [9,10], the AMSS property of (2.9) implies stability in probability
of the zero solution of nonlinear equation (2.7). This fact will be used to derive stability
conditions for the equilibrium N∗.

In the remaining of this section, let us reformulate an auxiliary result on asymptotic mean
square stability of linear stochastic differential equations from [9]. Consider the following
linear stochastic differential equation

dx = [Ax(t) + Bx(t− τ)]dt + σx(t)dB(t) (2.10)

where A, B, σ, τ ≥ 0 are known constants.
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Lemma 2.7 ([9, Lemma 2.1, p. 44]). The zero solution of (2.10) is asymptotically mean square stable
if and only if

A + B < 0, G−1 >
σ2

2
,

where

G =
2
π

∫ ∞

0

dt
(A + B cos τt)2 + (t + B sin τt)2 .

Moreover,

G =


Bq−1 sin(qτ)−1

A+B cos(qτ)
for B + |A| < 0, q =

√
B2 − A2,

1+|A|τ
2|A| for B = |A| < 0,

Bq−1 sinh(qτ)−1
A+B cosh(qτ)

for A + |B| < 0, q =
√

A2 − B2,

where sinh(·) and cosh(·) are the hyperbolic sine and hyperbolic cosine functions, respectively.

3 Stability conditions

For given scalars a, b, β, γ and τ, which satisfy condition (2.5), let N∗ be the unique positive
root of (2.4) in the interval [r1, r2]. We denote the following positive constants

δ = be−N∗ and p = β(1− γN∗)e−γN∗ . (3.1)

We have the following result.

Theorem 3.1. Assume that the condition given in Eq. (2.5) holds. Then, the linearized equation (2.9)
is AMSS if and only if the following condition holds

p cosh
(

τ
√

δ2 − p2
)
− δ

p√
δ2−p2

sinh
(

τ
√

δ2 − p2
)
− 1

> σ2/2, (3.2)

where δ, p are positive constants given in Eq. (3.1).

Proof. As shown in the preceding section, under condition (2.5), the positive root N∗ of (2.4)
exists and is unique. Moreover, we have

−be−N∗ + β(1− γN∗)e−γN∗ < 0.

Therefore, Eq. (2.9) is AMSS if and only if (see, Lemma 2.7)

G−1 > σ2/2, (3.3)

where

G =
2
π

∫ ∞

0

dt
(p cos τt− δ)2 + (t + p sin τt)2 . (3.4)

Moreover, the exact value of the constant G can be calculated via elementary functions as

G =
q + δ + pe−qτ

q (q + δ− pe−qτ)
,
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where q =
√

δ2 − p2. Using the fact that cosh(qτ) = sinh(qτ) + e−qτ, q2 − δ2 = −p2, we have(
q + δ + pe−qτ

)
(p cosh(qτ)− δ)

=
(
q + δ + pe−qτ

)
(p sinh(qτ) + pe−qτ − δ)

= p(q + δ) sinh(qτ) + p2e−qτ
(
sinh(qτ) + e−qτ

)
+ pqe−qτ − δ(q + δ)

= (q + δ)(p sinh(qτ)− q) + pe−qτ (q− p sinh(qτ))

=
(
q + δ− pe−qτ

)
(p sinh(qτ)− q).

Therefore,

G =

p
q sinh(qτ)− 1

p cosh(qτ)− δ
.

This, together with (3.3), leads to condition (3.2). The proof is completed.

Remark 3.2. In a more restrictive case, we assume that

2β(1− γN∗)e−γN∗ < be−N∗ i.e. δ > 2p, (3.5)

then the equality (3.4) can be estimated as follows

G ≤ 2
π

∫ ∞

0

dt
(δ2 − 2δp) + (t− p)2

=
1√

δ2 − 2δp

(
1 +

2
π

arctan
p√

δ2 − 2δp

)
. (3.6)

By (3.3) and (3.6), a sufficient condition for the AMSS of Eq. (2.9) is√
δ2 − 2δp

1 + 2
π arctan p√

δ2−2δp

> σ2/2. (3.7)

For Nicholson-type DDEs with multiple delays

N′(t) = −
(

a− be−N(t)
)
+

m

∑
k=1

βkN(t− τk)e−γk N(t−τk), (3.8)

condition (2.5) is extended to (see [11], Theorem 5.2)

m

∑
k=1

βk

(
1

eγk
+ max

{
1
e2 ,

1− γk ln
( b

a

)
eγk ln( b

a )

})
< a < b (3.9)

and the positive root N∗ of the equation

− a + b−N∗ +

( m

∑
k=1

βke−γk N∗
)

N∗ = 0 (3.10)

exists and is unique. By a similar process, Eq. (2.9) is now given as

dx̃(t) =
[
−δx̃(t) +

m

∑
k=1

pk x̃(t− τk)

]
dt + σx̃(t)dB(t), (3.11)

where
δ = be−N∗ and pk = βk(1− γkN∗)e−γk N∗ , k = 1, 2, . . . , m. (3.12)
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Similar to Theorem 3.1, Eq. (3.11) is AMSS if and only if G−1
m > σ2/2, where

Gm =
2
π

∫ ∞

0

dt

(∑m
k=1 pk cos τkt− δ)2 + (t + ∑m

k=1 pk sin τkt)2 . (3.13)

Unfortunately, the computation of exact value of Gm in (3.13) is still an unsolved problem
[9]. To derive sufficient conditions, we use the estimating method as (3.7). More specifically,
assume that

∆2 = δ2 − 2δ
m

∑
k=1

pk − 4 ∑
1≤i<j≤m

pi pj > 0. (3.14)

Then, we have (
−δ +

m

∑
k=1

pk cos τkt

)2

+

(
t +

m

∑
k=1

pk sin τkt

)2

= t2 + 2t
m

∑
k=1

pk sin τkt + δ2 − 2δ
m

∑
k=1

pk cos τkt

+

(
m

∑
k=1

pk sin τkt

)2

+

(
m

∑
k=1

pk cos τkt

)2

≥ t2 − 2t
m

∑
k=1

pk + δ2 − 2δ
m

∑
k=1

pk +
m

∑
k=1

p2
k

+ 2 ∑
1≤i<j≤m

pi pj cos(τi − τj)t

≥
(

t−
m

∑
k=1

pk

)2
+ ∆2.

Therefore,

Gm ≤
2
π

∫ ∞

0

dt(
t−∑m

k=1 pk

)2
+ ∆2

=
1
∆

(
1 +

2
π

arctan ∑m
k=1 pk

∆

)
.

In summary, we have the following result.

Proposition 3.3. Consider model (3.8) and assume that the derived conditions in Eqs. (3.9) and (3.14)
are fulfilled, where δ and pk, k = 1, 2, . . . , m, are positive constants defined in (3.12). Then, the
linearized equation (3.11) is AMSS if the following condition holds√

δ2 − 2δ
m
∑

k=1
pk − 4 ∑

1≤i<j≤m
pi pj

1 + 2
π arctan

m
∑

k=1
pk√

δ2−2δ
m
∑

k=1
pk−4 ∑

1≤i<j≤m
pi pj

>
σ2

2
. (3.15)

Remark 3.4. Clearly, conditions (3.2), (3.7) and (3.15) hold for sufficiently small σ. In other
words, the positive equilibrium N∗ of model (2.1) or (3.8) is stable in probability under small
stochastic perturbations. In this regard, the result of Proposition 3.3 in this paper extends that
of Theorem 5.2 in [11].
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4 Simulations

Consider model (2.1) with β = 1. It can be seen that condition (2.5) holds if and only if

1
γe

+ max
{

1
e2 ,

1− ln κ

κ

}
< a < b, (4.1)

where κ =
( b

a

)γ. Since the equation 1−ln κ
κ = 1

e2 has a unique positive root κ∗ ' 2.0576,
condition (4.1) holds if and only if

a >

{ 1
γe +

1−ln κ
κ if κ ∈ (1, κ∗)

1
γe +

1
e2 if κ ≥ κ∗.

(4.2)

For γ = 0.5, κ = 1.1, a = 1.6 and b = 1.936, Eq. (2.4) has a unique positive root N∗ = 0.4399.
Then, we have δ = 1.247 and p = 0.626. With the delay τ = 2, by condition (3.2), the linearized
equation (2.9) is AMSS if and only if σ2 < 2.0266. Simulation results given in Figure 4.1 are
taken with σ = 1.42 and various initial conditions. It can be seen that all sample trajectories
converge to N∗, which supports the conclusion.

time (s)0 10 20 30

N
(t

)

0.4

0.5

0.7

0.9

N(t)

Figure 4.1: Sample trajectories of N(t)

5 Conclusions

In this paper, a stochastic Nicholson-type blowflies model with nonlinear density-dependent
mortality rate has been investigated. Sufficient conditions have been derived to ensure the
existence of a unique positive equilibrium which is stable in probability subject to stochastic
perturbations of the white noise type. Numerical simulations have been given to illustrate the
effectiveness of the derived stability conditions.
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