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Abstract. We present general solutions to four classes of nonlinear difference equations,
as well as some representations of the general solutions for two of the classes in terms
of specially chosen solutions to linear homogeneous difference equations with constant
coefficients which are naturally associated to the equations of the classes. Our main
results considerably generalize some very special ones in recent literature, and present
concrete methods for solving the equations.
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1 Introduction

In this paper N denotes the set of all positive integers, N0 = N∪ {0}, Z the set of all integers,
R the set of all real numbers, whereas the set of all complex numbers is denoted by C.

One of the oldest problems regarding difference equations is their solvability. De Moivre
solved the following equation

yn+2 = ayn+1 + byn, n ∈N, (1.1)

where b 6= 0 [6], by showing that

yn =
(y2 − t2y1)tn−1

1 + (t1y1 − y2)tn−1
2

t1 − t2
, n ∈N, (1.2)
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is the general solution to equation (1.1) when a2 + 4b 6= 0. The corresponding general solution
to the difference equation in the case a2 = −4b, as well as the general solutions to the linear
homogeneous difference equation of the third order, in all possible cases, can be found in [8],
which motivated further investigations of linear difference equations.

Some investigations of solvability of nonhomogeneous linear difference equations can be
found in [13], where, among other things, it was solved the linear first-order difference equa-
tion, that is, the equation

xn+1 = pnxn + qn, n ∈N0,

(another method for solving the equation was presented in [14]; note that the equation is with
variable coefficients and that its special cases frequently appear in the literature, see, e.g.,
[5, 9, 11, 12, 16–19, 28, 30, 33, 34, 37]). As a consequence of the obtained formula for the general
solution to the equation it was obtained that in the case pn = p, qn = q, n ∈ N0, the general
solution is

xn = pnx0 + q
n−1

∑
j=0

pj, (1.3)

for n ∈ N0, from which are easily obtained the corresponding general solutions in the cases
p 6= 1 and p = 1.

Investigation of solvability of some classes of nonlinear difference equations can be found
in [14] yet, from which it is clear that the solvability of the following difference equation

xn+1 =
axn + b
cxn + d

, n ∈N0, (1.4)

has been essentially known at the time. For more information on the difference equation and
some of its applications see, e.g., [1, 4, 15, 18, 31, 36, 39, 42].

A lack of new important and general solvability methods for difference equations and
systems of difference equations caused a turn in their investigations to some other topics,
which can be noticed in the literature from the previous century (see, for example, [9, 11, 15,
16, 19]).

Recent development of computers enabled researchers to do some calculations and to
make some conjectures concerning solvability easier, what can be seen in recent literature.
However, many of the recent papers on solvability hardly use any theory producing some
issues, which have been mentioned and discussed in some of our recent papers [31,36–40,42].
Note that, as a topic of wide interest, solvability and their applications appear frequently in
popular mathematical literature (see, e.g., [1, 12, 17, 18, 28]).

A paper on a special case of the difference equation

xn+2 =
xn

α + βxn+1xn
, n ∈N0, (1.5)

presenting some closed-form formulas for their solutions, motivated us to explain them theo-
retically in 2004. This, among other things, motivated some further investigations on solvabil-
ity of related difference equations and systems of difference equations (see, e.g., [27,30,37] and
the references therein; see also [3]). Not long before it started some investigations of many
concrete classes of systems of difference equations [20–25], motivating us to study solvability
of the systems corresponding to some solvable difference equations (see, e.g, [5, 32, 37, 41]).
Recall that there are numerous applications of solvable difference equations and systems in
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many research areas (see, e.g., [4,6,9–12,14,15,17,18,28,29,33–35]). Let us also mention that be-
side general solutions, invariants for difference equations and systems of difference equations
are of some importance (see, e.g., [21–23, 26] and the related references therein).

The Fibonacci sequence is the solution to the following special case of difference equa-
tion (1.1)

xn+2 = xn+1 + xn, n ∈N, (1.6)

such that x1 = x2 = 1. Since from (1.6) we have xn = xn+2 − xn+1, we see that it can be also
calculated for n ≤ 0. The sequence is denoted by fn, and by using formula (1.2) it is obtained
the corresponding closed-form formula for the sequence. Moreover, from formula (1.2) we
have that every solution to equation (1.6) can be represented in the following form

xn = x1 fn−2 + x2 fn−1, n ∈ Z. (1.7)

Representation (1.7) is well-known and it is a basic one (see, e.g., [2]). For some other results
on the Fibonacci sequences, including many identities and relations involving the sequence,
as well as their various applications in mathematics, see, e.g., [2, 12, 17, 43].

There are some recent papers which give representations of solutions to very special cases
of some solvable difference equations in terms of the Fibonacci sequence. Bearing in mind
that practically none of these papers is based on a mathematical theory and that they use
only some simple inductive arguments (if they present any one), we have done some research
in this direction. For example, in [31, 36, 38, 39, 42] we explained the theoretical background
lying behind some of such difference equations. Paper [40] explains a representation for the
general solution to a second-order difference equation in terms of a related sequence which is
a solution to a linear homogeneous difference equation of third order.

One of the papers which gives representations of solutions to some nonlinear difference
equations is [7], where seven difference equations are considered or mentioned. Some theo-
retical explanations for three out of the seven difference equations were given in [38].

Here we present some methods for getting the general solutions to the other four difference
equations considered in [7]. In fact, we consider here four classes of difference equations
which include the four difference equations respectively as their very special cases. Besides,
for two of these four classes we present some representations of their general solutions in
terms of specially chosen solutions to some linear homogeneous difference equations with
constant coefficients which are naturally associated to the equations of the classes.

Now we list these four difference equations, as well as the corresponding closed-form for-
mulas for their general solutions presented in [7]. Before this, to avoid any possible confusion,
we would like to point out that the definition of the Fibonacci sequence given in [7] is differ-
ent from the standard one appearing in the literature, which we also use here. Namely, they
defined the Fibonacci sequence (Fn)n≥−2 as the solution to equation (1.6) such that x−2 = 0
and x−1 = 1, which means that Fn = fn+2, that is, their Fibonacci sequence is the standard
one with the indices shifted for two.

Equation 1. The first difference equation is the following:

xn+1 =
xn−1xn−2

xn + xn−2
, n ∈N0, (1.8)

for which it is said in [7] that its general solution is given by the following two formulas

x2n =x0

n

∏
j=1

x0 f2j−1 + x−2 f2j

x0 f2j + x−2 f2j+1
, (1.9)
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x2n+1 =x−1

n

∏
j=0

x0 f2j + x−2 f2j+1

x0 f2j+1 + x−2 f2j+2
, (1.10)

for n ∈N0.

Equation 2. The second difference equation is the following:

xn+1 =
xnxn−1

xn + xn−2
, n ∈N0, (1.11)

for which it is said in [7] that its general solution is given by the following two formulas

x2n = x0

n

∏
j=1

x0

2x0 j + x−2
, (1.12)

x2n+1 = x−1

n

∏
j=0

x0

x0(2j + 1) + x−2
, (1.13)

for n ∈N0.

Equation 3. The third difference equation is the following:

xn+1 =
xnxn−2

xn−1 + xn−2
, n ∈N0, (1.14)

for which it is said in [7] that its general solution is given by the following two formulas

x2n =
x0x−1x−2

( fnx−1 + fn+1x−2)( fnx0 + fn+1x−1)
, (1.15)

x2n+1 =
x0x−1x−2

( fn+1x−1 + fn+2x−2)( fnx0 + fn+1x−1)
, (1.16)

for n ∈N0.

Equation 4. The fourth difference equation is the following:

xn+1 =
xnxn−1

xn−1 + xn−2
, n ∈N0, (1.17)

for which it is said in [7] that its general solution is given by the following two formulas

x2n = x0

n−1

∏
j=0

x0x−1

((j + 1)x−1 + x−2)((j + 1)x0 + x−1))
, (1.18)

x2n+1 =
(x0x−1)

n+1

∏n
j=0((j + 1)x−1 + x−2)∏n−1

j=0 ((j + 1)x0 + x−1))
, (1.19)

for n ∈N0.

Remark 1.1. Closed-form formulas given in (1.9), (1.10), (1.12), (1.13), (1.15), (1.16), (1.18) and
(1.19), are not proved in [7]. There was simply said that difference equations (1.8), (1.11), (1.14)
and (1.17) can be treated similarly as in the previous cases, where some closed-form formulas
for the general solutions to two difference equations are proved by induction. This means
that [7] does not give any explanation for getting any of the closed-form formulas mentioned
there including the formulas (1.9), (1.10), (1.12), (1.13), (1.15), (1.16), (1.18) and (1.19), that is,
[7] does not present any constructive method for getting them.
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Let g : Dg → R, where Dg ⊆ R, be a bijection from the domain Dg of function g onto the
range g(Dg).

Here we consider four generalizations of difference equations (1.8), (1.11), (1.14) and (1.17).
More specifically, here we consider the following generalization of equation (1.8)

xn+1 = g−1
(

g(xn−1)g(xn−2)

ag(xn) + bg(xn−2)

)
, n ∈N0; (1.20)

the following generalization of equation (1.11)

xn+1 = g−1
(

g(xn)g(xn−1)

ag(xn) + bg(xn−2)

)
, n ∈N0; (1.21)

the following generalization of equation (1.14)

xn+1 = g−1
(

g(xn)g(xn−2)

ag(xn−1) + bg(xn−2)

)
, n ∈N0; (1.22)

and the following generalization of equation (1.17)

xn+1 = g−1
(

g(xn)g(xn−1)

ag(xn−1) + bg(xn−2)

)
, n ∈N0, (1.23)

where a, b ∈ R.
By using the method of transformation, which is based on some suitably chosen changes

of variables which transform original difference equations to some known solvable ones, we
show that difference equations (1.20)–(1.23) are solvable in closed form. Besides, the repre-
sentation formulas (1.9), (1.10), (1.15) and (1.16), are considerably extended, by presenting
infinitely many other related representations to the general solution to equations (1.20) and
(1.22), respectively. This shows that not only the representation in terms of the Fibonacci
sequence is one of many possible representations, but also that more or less the sequence
is chosen arbitrary. Since many other nonlinear difference equations can be solved by using
equation (1.1), it follows that the general solution to some of them can be also represented
in terms of any suitably chosen solution to equation (1.1). Hence, from the point of view of
solvability, the choice of the Fibonacci sequence in such representations does not have some
advantages with the respect to the other ones.

2 An auxiliary result

This section quotes an important and interesting auxiliary result which is employed in the
analysis of solvability of difference equation (1.20) which follows in the next section.

Motivated by representation (1.7) of the general solution to equation (1.6) and some other
representations which include the Fibonacci sequence (see also [31] and the related references
therein), and since the choice of the Fibonacci sequence in the representations looked a bit
artificially, we came up with an idea to find other sequences which can be used in similar
representations of the general solution to the difference equation.

The following result recently proved in [38], gives an answer to the problem of representing
the general solution to equation (1.1) in terms of a specially chosen solution to the equation.
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Lemma 2.1. Assume that b 6= 0 and (sn(~v))n∈N0 is the solution to equation (1.1) such that

s0 = v0 and s1 = v1. (2.1)

Then the following representation

yn = c1sn+1(~v) + c2sn(~v), n ∈N0, (2.2)

holds for each solution (yn)n∈N0 to the equation if and only if

v2
1 6= v0(av1 + bv0). (2.3)

Further, if (2.3) holds, then

yn =
(v1y0 − v0y1)sn+1(~v) + (v1y1 − av1y0 − bv0y0)sn(~v)

v2
1 − av0v1 − bv2

0
, n ∈N0, (2.4)

for every solution (yn)n∈N0 to the equation.

Remark 2.2. Note that (2.3) does not hold if and only if v0 = v1 = 0 or when the quantity v1/v0

is equal to one of the roots of the characteristic polynomial associated with equation (1.1).

3 Main results

In this section we conduct a detailed analysis related to solvability of each of difference equa-
tions (1.20)–(1.23), which leads to the formulations of the main results in this paper.

The first step is to transform each of the equations in a form of some rational difference
equations. To do this, first note that since g is one-to-one function it is possible to use the
following change of variables

yn = g(xn), n ≥ −2, (3.1)

in any of the equations from which it follows that equation (1.20) is transformed to the fol-
lowing one

yn+1 =
yn−1yn−2

ayn + byn−2
, n ∈N0; (3.2)

equation (1.21) is transformed to the following one

yn+1 =
ynyn−1

ayn + byn−2
, n ∈N0; (3.3)

equation (1.22) is transformed to the following one

yn+1 =
ynyn−2

ayn−1 + byn−2
, n ∈N0; (3.4)

whereas equation (1.23) is transformed to the following one

yn+1 =
ynyn−1

ayn−1 + byn−2
, n ∈N0, (3.5)

where a, b ∈ R.
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Remark 3.1. Before we continue with our analysis, note that in the case when a = 0 or
b = 0 the above four difference equations are reduced to some simple product-type ones (for
some results on product-type difference equations and systems of difference equations see,
for example, [32,41] and the related references therein). From the analyses that follow we will
see that the case b = 0 need not be considered separately, whereas the case a = 0 should be
considered separately in the cases of equations (3.2) and (3.4).

The next step is to transform each of the difference equations (3.2)–(3.5) to a known solv-
able one (in the case of equations (3.2)–(3.5) it will be some special cases of the bilinear differ-
ence equations, that is, of equation (1.4), or to some of their cousins with interlacing indices).

By using the change of variables

zn =
yn

yn−2
, n ∈N0, (3.6)

equation (3.2) is transformed to

zn+1 =
1

azn + b
, n ∈N0, (3.7)

whereas equation (3.3) is transformed to

zn+1 =
zn

azn + b
, n ∈N0. (3.8)

By using the change of variables

zn =
yn

yn−1
, n ≥ −1, (3.9)

equation (3.4) is transformed to

zn+1 =
1

azn−1 + b
, n ∈N0, (3.10)

whereas equation (3.5) is transformed to

zn+1 =
zn−1

azn−1 + b
, n ∈N0. (3.11)

Now we consider each of the difference equations (3.7), (3.8), (3.10) and (3.11) separately.

An analysis of solvability of equation (3.7). By using the change of variables

zn =
un−1

un
, n ∈N0, (3.12)

equation (3.7) is transformed to

un+1 = bun + aun−1, (3.13)

for n ∈N0.

There are two cases to be considered: 1) a 6= 0; 2) a = 0.
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Case a 6= 0. Since parameter a is different from zero, we can employ Lemma 2.1 to equation
(3.13), from which we obtain the following representation formula for its general solution

un =
(v0u−1 − v−1u0)ŝn+1(~v) + (v0u0 − bv0u−1 − av−1u−1)ŝn(~v)

v2
0 − bv0v−1 − av2

−1
, (3.14)

for n ≥ −1, and for every solution (un)n≥−1 to the equation, where (ŝn(~v))n≥−1 is the solution
to equation (3.13) such that

ŝ−1(~v) = v−1 and ŝ0(~v) = v0, (3.15)

and where v−1 and v0 are such that

v2
0 6= bv0v−1 + av2

−1. (3.16)

Combining (3.12) and (3.14), and then using (3.6) with n = 0, we have

zn =
(v0u−1 − v−1u0)ŝn(~v) + (v0u0 − bv0u−1 − av−1u−1)ŝn−1(~v)
(v0u−1 − v−1u0)ŝn+1(~v) + (v0u0 − bv0u−1 − av−1u−1)ŝn(~v)

=
(v0z0 − v−1)ŝn(~v) + (v0 − (bv0 + av−1)z0)ŝn−1(~v)
(v0z0 − v−1)ŝn+1(~v) + (v0 − (bv0 + av−1)z0)ŝn(~v)

(3.17)

=
(v0y0 − v−1y−2)ŝn(~v) + (v0y−2 − (bv0 + av−1)y0)ŝn−1(~v)
(v0y0 − v−1y−2)ŝn+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝn(~v)

, (3.18)

for n ∈N0.
From (3.6) and (3.18), we have

yn = yn−2
(v0y0 − v−1y−2)ŝn(~v) + (v0y−2 − (bv0 + av−1)y0)ŝn−1(~v)
(v0y0 − v−1y−2)ŝn+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝn(~v)

, (3.19)

for n ∈N0.
Hence we have

y2n = y2n−2
(v0y0 − v−1y−2)ŝ2n(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2n−1(~v)
(v0y0 − v−1y−2)ŝ2n+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2n(~v)

y2n+1 = y2n−1
(v0y0 − v−1y−2)ŝ2n+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2n(~v)
(v0y0 − v−1y−2)ŝ2n+2(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2n+1(~v)

,

for n ∈N0, from which it follows that

y2n =y0

n

∏
j=1

(v0y0 − v−1y−2)ŝ2j(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2j−1(~v)
(v0y0 − v−1y−2)ŝ2j+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2j(~v)

, (3.20)

y2n+1 =y−1

n

∏
j=0

(v0y0 − v−1y−2)ŝ2j+1(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2j(~v)
(v0y0 − v−1y−2)ŝ2j+2(~v) + (v0y−2 − (bv0 + av−1)y0)ŝ2j+1(~v)

, (3.21)

for n ∈N0.
Using (3.1) in (3.20) and (3.21), as well as the fact that g is a bijection, we obtain

x2n = g−1

(
g(x0)

n

∏
j=1

(v0g(x0)−v−1g(x−2))ŝ2j(~v)+(v0g(x−2)−(bv0+av−1)g(x0))ŝ2j−1(~v)
(v0g(x0)−v−1g(x−2))ŝ2j+1(~v)+(v0g(x−2)−(bv0+av−1)g(x0))ŝ2j(~v)

)
, (3.22)
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x2n+1 = g−1

(
g(x−1)

n

∏
j=0

(v0g(x0)−v−1g(x−2))ŝ2j+1(~v)+(v0g(x−2)−(bv0+av−1)g(x0))ŝ2j(~v)
(v0g(x0)−v−1g(x−2))ŝ2j+2(~v)+(v0g(x−2)−(bv0+av−1)g(x0))ŝ2j+1(~v)

)
, (3.23)

for n ∈N0.

Case a = 0. Since a = 0, then from (3.2) we see that every well-defined solution to the equation
satisfies the following relation

yn+1 =
yn−1

b
, n ∈N0,

from which it easily follows that

y2m =
y0

bm , (3.24)

y2m+1 =
y−1

bm+1 , (3.25)

for every m ∈N0.
Using (3.1) in relations (3.24) and (3.25), as well as the fact that g is a bijection, we obtain

x2m = g−1
(

g(x0)

bm

)
, (3.26)

x2m+1 = g−1
(

g(x−1)

bm+1

)
, (3.27)

for m ∈N0.
Hence, from the consideration conducted above we have that the following theorem holds.

Theorem 3.2. Consider equation (1.20), where a, b ∈ R, g : Dg → R is a bijection. Then, the equation
is solvable and the following statements hold.

(a) If a 6= 0, then every well-defined solution (xn)n≥−2 to equation (1.20) can be represented by
formulas (3.22) and (3.23), where (ŝn(~v))n≥−1 is the solution to equation (3.13) satisfying the
initial conditions in (3.15) with v−1, v0 ∈ R such that condition (3.16) holds.

(b) If a = 0, then the general solution to equation (1.20) is given by formulas (3.26) and (3.27).

The following corollary concerns equation (1.8).

Corollary 3.3. Equation (1.8) is solvable in closed form and its general solution is given by formulas
(1.9) and (1.10).

Proof. If in Theorem 3.2 we take g(t) = t, t ∈ R, a = b = 1, and the sequence (ŝn(~v))n≥−1 is
chosen to be the solution to the corresponding equation (3.13) such that v−1 = 1 and v0 = 0,
then we see that sn = fn, for every n ≥ −1, from which along with formulas (3.22) and (3.23),
the formulas (1.9) and (1.10) are easily obtained by some simple calculations.

An analysis of solvability of equation (3.8). By using the following change of variables

zn =
1

un
, n ∈N0, (3.28)

equation (3.8) is transformed to

un+1 = bun + a, (3.29)
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for n ∈N0.
Equation (3.29) is the linear first-order difference equation with constant coefficient. Hence,

by using formula (1.3) we see that its general solution is given by

un = bnu0 + a
n−1

∑
j=0

bj,

for n ∈N0, from which it follows that

un = bnu0 + a
bn − 1
b− 1

, (3.30)

for n ∈N0, when b 6= 1, and

un = u0 + an, (3.31)

for n ∈N0, when b = 1.
If b 6= 1, then by combining relations (3.28) and (3.30), and then employing (3.6) with

n = 0, it follows that

zn =
(b− 1)z0

(b− 1 + az0)bn − az0
(3.32)

=
(b− 1)y0

((b− 1)y−2 + ay0)bn − ay0
, (3.33)

for n ∈N0.
If b = 1, then by combining relations (3.28) and (3.31), and using (3.6) with n = 0, we have

zn =
z0

az0n + 1
(3.34)

=
y0

ay0n + y−2
, (3.35)

for n ∈N0.
Hence, if b 6= 1, then from (3.6) and (3.33) we have

yn = yn−2
(b− 1)y0

((b− 1)y−2 + ay0)bn − ay0
,

for n ∈N0, that is,

y2n = y2n−2
(b− 1)y0

((b− 1)y−2 + ay0)b2n − ay0
,

y2n+1 = y2n−1
(b− 1)y0

((b− 1)y−2 + ay0)b2n+1 − ay0
,

for n ∈N0, from which it follows that

y2n = y0

n

∏
j=1

(b− 1)y0

((b− 1)y−2 + ay0)b2j − ay0
, (3.36)

y2n+1 = y−1

n

∏
j=0

(b− 1)y0

((b− 1)y−2 + ay0)b2j+1 − ay0
, (3.37)
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for n ∈N0.
Using (3.1) in (3.36) and (3.37), we obtain

x2n = g−1

(
g(x0)

n

∏
j=1

(b− 1)g(x0)

((b− 1)g(x−2) + ag(x0))b2j − ag(x0)

)
, (3.38)

x2n+1 = g−1

(
g(x−1)

n

∏
j=0

(b− 1)g(x0)

((b− 1)g(x−2) + ag(x0))b2j+1 − ag(x0)

)
, (3.39)

for n ∈N0.
If b = 1, then from (3.6) and (3.35) we have

yn = yn−2
y0

ay0n + y−2
,

for n ∈N0, that is,

y2n = y2n−2
y0

2ay0n + y−2
,

y2n+1 = y2n−1
y0

ay0(2n + 1) + y−2
,

for n ∈N0, from which it follows that

y2n = y0

n

∏
j=1

y0

2ay0 j + y−2
, (3.40)

y2n+1 = y−1

n

∏
j=0

y0

ay0(2j + 1) + y−2
, (3.41)

for n ∈N0.
Using (3.1) in (3.40) and (3.41), we obtain

x2n = g−1

(
g(x0)

n

∏
j=1

g(x0)

2ag(x0)j + g(x−2)

)
, (3.42)

x2n+1 = g−1

(
g(x−1)

n

∏
j=0

g(x0)

ag(x0)(2j + 1) + g(x−2)

)
, (3.43)

for n ∈N0.
Hence, from the above consideration we have that the following theorem holds.

Theorem 3.4. Consider equation (1.21), where a, b ∈ R, and g : Dg → R is a bijection. Then, the
equation is solvable and the following statements hold.

(a) If b 6= 1, then the general solution to the equation is given by formulas (3.38) and (3.39).

(b) If b = 1, then the general solution to the equation is given by formulas (3.42) and (3.43).

The following corollary concerns equation (1.11).

Corollary 3.5. Equation (1.11) is solvable in closed form and its general solution is given by formulas
(1.12) and (1.13).
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Proof. If in Theorem 3.4 we take g(t) = t, t ∈ R, a = b = 1, the formulas (1.12) and (1.13) are
easily obtained from formulas (3.42) and (3.43).

An analysis of solvability of equation (3.10). First note that equation (3.10) is a difference equation
with interlacing indices of order two (for the definition of the notion and some explanations
related to it see [37, 39]). This means that the following two sequences

ẑ(i)m := z2m+i, m ∈N0, i = −1, 0,

are solutions to difference equation (3.7).
Hence, in the case when a 6= 0, by using formula (3.17), we have

ẑ(i)m =
(v0ẑ(i)0 − v−1)ŝm(~v) + (v0 − (bv0 + av−1)ẑ

(i)
0 )ŝm−1(~v)

(v0ẑ(i)0 − v−1)ŝm+1(~v) + (v0 − (bv0 + av−1)z
(i)
0 )ŝm(~v)

,

for m ∈N0, i = −1, 0, where (ŝm(~v))n≥−1 is the solution to equation (3.13) satisfying the initial
conditions (3.15), and v−1, v0 ∈ R are such that condition (3.16) holds, from which along with
(3.9) it follows that

y2m = y2m−1
(v0y0 − v−1y−1)ŝm(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm−1(~v)
(v0y0 − v−1y−1)ŝm+1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm(~v)

, (3.44)

y2m−1 = y2m−2
(v0y−1 − v−1y−2)ŝm(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm−1(~v)
(v0y−1 − v−1y−2)ŝm+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm(~v)

, (3.45)

for m ∈N0.
From (3.44) and (3.45) it follows that

y2m = y2m−2
(v0y0 − v−1y−1)ŝm(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm−1(~v)
(v0y0 − v−1y−1)ŝm+1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm(~v)

× (v0y−1 − v−1y−2)ŝm(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm−1(~v)
(v0y−1 − v−1y−2)ŝm+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm(~v)

(3.46)

and

y2m−1 = y2m−3
(v0y−1 − v−1y−2)ŝm(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm−1(~v)
(v0y−1 − v−1y−2)ŝm+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm(~v)

× (v0y0 − v−1y−1)ŝm−1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm−2(~v)
(v0y0 − v−1y−1)ŝm(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm−1(~v)

, (3.47)

for m ∈N0.
From (3.46) and some simple calculations we obtain

y2m = y0

m

∏
j=1

(v0y0 − v−1y−1)ŝj(~v) + (v0y−1 − (bv0 + av−1)y0)ŝj−1(~v)
(v0y0 − v−1y−1)ŝj+1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝj(~v)

×
m

∏
j=1

(v0y−1 − v−1y−2)ŝj(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝj−1(~v)
(v0y−1 − v−1y−2)ŝj+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝj(~v)

= y0
(v0y0 − v−1y−1)ŝ1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝ0(~v)

(v0y0 − v−1y−1)ŝm+1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm(~v)

× (v0y−1 − v−1y−2)ŝ1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝ0(~v)
(v0y−1 − v−1y−2)ŝm+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm(~v)

, (3.48)
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for m ∈N0.
From (3.47) and some simple calculations we obtain

y2m−1 = y−1

m

∏
j=1

(v0y−1 − v−1y−2)ŝj(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝj−1(~v)
(v0y−1 − v−1y−2)ŝj+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝj(~v)

×
m

∏
j=1

(v0y0 − v−1y−1)ŝj−1(~v) + (v0y−1 − (bv0 + av−1)y0)ŝj−2(~v)
(v0y0 − v−1y−1)ŝj(~v) + (v0y−1 − (bv0 + av−1)y0)ŝj−1(~v)

= y−1
(v0y−1 − v−1y−2)ŝ1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝ0(~v)

(v0y−1 − v−1y−2)ŝm+1(~v) + (v0y−2 − (bv0 + av−1)y−1)ŝm(~v)

× (v0y0 − v−1y−1)ŝ0(~v) + (v0y−1 − (bv0 + av−1)y0)ŝ−1(~v)
(v0y0 − v−1y−1)ŝm(~v) + (v0y−1 − (bv0 + av−1)y0)ŝm−1(~v)

, (3.49)

for m ∈N0.
Using (3.1) in (3.48) and (3.49), we obtain

x2m = g−1
(

g(x0)
(v0g(x0)−v−1g(x−1))ŝ1(~v)+(v0g(x−1)−(bv0+av−1)g(x0))ŝ0(~v)

(v0g(x0)−v−1g(x−1))ŝm+1(~v)+(v0g(x−1)−(bv0+av−1)g(x0))ŝm(~v)

× (v0g(x−1)−v−1g(x−2))ŝ1(~v)+(v0g(x−2)−(bv0+av−1)g(x−1))ŝ0(~v)
(v0g(x−1)−v−1g(x−2))ŝm+1(~v)+(v0g(x−2)−(bv0+av−1)g(x−1))ŝm(~v)

)
(3.50)

x2m−1 = g−1
(

g(x−1)
(v0g(x−1)−v−1g(x−2))ŝ1(~v)+(v0g(x−2)−(bv0+av−1)g(x−1))ŝ0(~v)

(v0g(x−1)−v−1g(x−2))ŝm+1(~v)+(v0g(x−2)−(bv0+av−1)g(x−1))ŝm(~v)

× (v0g(x0)−v−1g(x−1))ŝ0(~v)+(v0g(x−1)−(bv0+av−1)g(x0))ŝ−1(~v)
(v0g(x0)−v−1g(x−1))ŝm(~v)+(v0g(x−1)−(bv0+av−1)g(x0))ŝm−1(~v)

)
, (3.51)

for m ∈N0.

If a = 0, then equation (3.4) becomes

yn+1 =
yn

b
, n ∈N0,

from which it follows that

yn =
y0

bn , n ∈N0. (3.52)

Using (3.1) in (3.52), we obtain

xn = g−1
(

g(x0)

bn

)
, (3.53)

for n ∈N0.

Hence, from the above conducted analysis we have that the following theorem holds.

Theorem 3.6. Consider equation (1.22), where a, b ∈ R and g : Dg → R is a bijection. Then, the
equation is solvable and the following statements hold.

(a) If a 6= 0, then every well-defined solution (xn)n≥−2 to equation (1.22) can be represented by
formulas (3.50) and (3.51), where (ŝn(~v))n≥−1 is the solution to equation (3.13) satisfying the
initial conditions in (3.15) with v−1, v0 ∈ R such that condition (3.16) holds.

(b) If a = 0, then the general solution to equation (1.22) is given by formula (3.53).

The following corollary concerns equation (1.14).
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Corollary 3.7. Equation (1.14) is solvable in closed form and its general solution is given by formulas
(1.15) and (1.16).

Proof. If in Theorem 3.6 we take g(t) = t, t ∈ R, a = b = 1, and the sequence (ŝn(~v))n≥−1 is
chosen to be the solution to the corresponding equation (3.13) such that v−1 = 1 and v0 = 0,
then we see that sn = fn, for every n ≥ −1, from which along with formulas (3.50) and (3.51),
the formulas (1.15) and (1.16) are easily obtained by some simple calculations.

An analysis of solvability of equation (3.11). First note that equation (3.11) is a difference equation
with interlacing indices of order two. This means that the sequences

z̃(i)m := z2m+i, m ∈N0, i = −1, 0,

are two solutions to difference equation (3.8).
Hence, if b 6= 1, then by using formula (3.32), it follows that

z̃(i)m =
(b− 1)z̃(i)0

(b− 1 + az̃(i)0 )bm − az̃(i)0

,

for m ∈N0, or equivalently

z2m =
(b− 1)y0

((b− 1)y−1 + ay0)bm − ay0
, (3.54)

z2m−1 =
(b− 1)y−1

((b− 1)y−2 + ay−1)bm − ay−1
, (3.55)

for m ∈N0, where we have used (3.9) with n = 0 and n = −1, respectively.
From (3.9), (3.54) and (3.55), we have

y2m = y2m−1
(b− 1)y0

((b− 1)y−1 + ay0)bm − ay0
,

y2m−1 = y2m−2
(b− 1)y−1

((b− 1)y−2 + ay−1)bm − ay−1
,

for m ∈N0, from which it easily follows that

y2m = y2m−2
(b− 1)y0

((b− 1)y−1 + ay0)bm − ay0

(b− 1)y−1

((b− 1)y−2 + ay−1)bm − ay−1
, (3.56)

y2m−1 = y2m−3
(b− 1)y−1

((b− 1)y−2 + ay−1)bm − ay−1

(b− 1)y0

((b− 1)y−1 + ay0)bm−1 − ay0
, (3.57)

for m ∈N0.
Relations (3.56) and (3.57) are simple product-type recurrent relations, from which we

obtain

y2m = y0

m

∏
j=1

(b− 1)y0

((b− 1)y−1 + ay0)bj − ay0

(b− 1)y−1

((b− 1)y−2 + ay−1)bj − ay−1
, (3.58)

y2m−1 = y−1

m

∏
j=1

(b− 1)y−1

((b− 1)y−2 + ay−1)bj − ay−1

(b− 1)y0

((b− 1)y−1 + ay0)bj−1 − ay0
, (3.59)

for m ∈N0.
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Using (3.1) in (3.58) and (3.59), we obtain

x2m = g−1

(
g(x0)

m

∏
j=1

(b− 1)g(x0)

((b− 1)g(x−1) + ag(x0))bj − ag(x0)
.

× (b− 1)g(x−1)

((b− 1)g(x−2) + ag(x−1))bj − ag(x−1)

)
, (3.60)

x2m−1 = g−1

(
g(x−1)

m

∏
j=1

(b− 1)g(x−1)

((b− 1)g(x−2) + ag(x−1))bj − ag(x−1)

× (b− 1)g(x0)

((b− 1)g(x−1) + ag(x0))bj−1 − ag(x0)

)
, (3.61)

for m ∈N0.
If b = 1, then by using formula (3.34), it follows that

z̃(i)m =
z̃(i)0

az̃(i)0 m + 1
, (3.62)

for m ∈N0, or equivalently

z2m =
y0

ay0m + y−1
, (3.63)

z2m−1 =
y−1

ay−1m + y−2
, (3.64)

for m ∈N0, where we have used (3.9) with n = 0 and n = −1, respectively
From (3.9), (3.63) and (3.64), we have

y2m = y2m−1
y0

ay0m + y−1
,

y2m−1 = y2m−2
y−1

ay−1m + y−2
,

for m ∈N0, from which it follows that

y2m = y2m−2
y0

ay0m + y−1

y−1

ay−1m + y−2
,

y2m−1 = y2m−3
y−1

ay−1m + y−2

y0

ay0(m− 1) + y−1

for m ∈N0, and consequently

y2m = y0

m

∏
j=1

y0

ay0 j + y−1

y−1

ay−1 j + y−2
, (3.65)

y2m−1 = y−1

m

∏
j=1

y−1

ay−1 j + y−2

y0

ay0(j− 1) + y−1
, (3.66)

for m ∈N0.
Using (3.1) in (3.65) and (3.66), we obtain

x2m = g−1

(
g(x0)

m

∏
j=1

g(x0)

ag(x0)j + g(x−1)

g(x−1)

ag(x−1)j + g(x−2)

)
, (3.67)



16 S. Stević

x2m−1 = g−1

(
g(x−1)

m

∏
j=1

g(x−1)

ag(x−1)j + g(x−2)

g(x0)

ag(x0)(j− 1) + g(x−1)

)
, (3.68)

for m ∈N0.
Hence, from the above conducted consideration we have that the following theorem holds.

Theorem 3.8. Consider equation (1.23), where a, b ∈ R, a 6= 0, and g : Dg → R is a bijection. Then,
the equation is solvable and the following statements hold.

(a) If b 6= 1, then the general solution to the equation is given by formulas (3.60) and (3.61).

(b) If b = 1, then the general solution to the equation is given by formulas (3.67) and (3.68).

The following corollary concerns equation (1.17).

Corollary 3.9. Equation (1.17) is solvable in closed form and its general solution is given by formulas
(1.18) and (1.19).

Proof. If in Theorem 3.8 we take g(t) = t, t ∈ R, a = b = 1, the formulas (1.18) and (1.19) are
easily obtained from formulas (3.67) and (3.68).

Remark 3.10. Note that Corollaries 3.3, 3.5, 3.7 and 3.9 show that the formulas (1.9) and (1.10),
(1.12) and (1.13), (1.15) and (1.16), (1.18) and (1.19), listed in [7], are really general solutions to
the equations (1.8), (1.11), (1.14), (1.17), respectively.
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[34] S. Stević, Bounded solutions to nonhomogeneous linear second-order difference equa-
tions, Symmetry 9(2017), Article No. 227, 31 pp. https://doi.org/10.3390/sym9100227
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