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1 Introduction

In recent work [22, 23, 41], prototype integrable Ermakov–Painlevé II–IV equations have been
derived according to

Ermakov–Painlevé II

ρ̈ +

[
−ρ2 +

t
2

]
ρ = −

(α + 1
2 )

2

4ρ3 , (1.1)
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In the above, a dot indicates a derivative with respect to the independent variable t.
It is recalled that the classical Ermakov equation with genesis in work of [13], namely

ρ̈ + ω(t)ρ =
α

ρ3 (1.4)

arises, inter alia in the analysis of the large amplitude oscillation of thin-walled tubes of
Mooney–Rivlin hyperelastic materials [30, 43]. Importantly, the nonlinear superposition prin-
ciple admitted by (1.4) allows the exact solution of initial value problems associated with a
variety of boundary loadings [43]. In [20, 21], two-component nonlinear coupled Ermakov
systems were introduced according to

ρ̈ + ω(t)ρ =
1

ρ2σ
Φ(σ/ρ),

σ̈ + ω(t)σ =
1

ρσ2 Ψ(ρ/σ),
(1.5)

and which admit a distinctive integral of motion, namely the invariant

I =
1
2
(ρσ̇− σρ̇)2 +

∫ σ/ρ

Φ(z)dz +
∫ ρ/σ

Ψ(w)dw (1.6)

together with concomitant nonlinear superposition principles. Subsequently in [34], a 2+1-
dimensional extension of the Ermakov–Ray–Reid system (1.5) was constructed, while exten-
sions to Ermakov-type systems of arbitrary order and dimension and which admit analogues
of its characteristic invariant were presented in [42]. Therein, alignment of a 2+1-dimensional
Ermakov system and an integrable Ernst-type system was shown to generate a novel inte-
grable hybrid of the 2+1-dimensional solitonic sinh-Gordon system of [15,16] and a Ermakov-
type system. Multi-component Ermakov systems were introduced in [39] via a symmetry
reduction of a 2+1-dimensional multi-layer hydrodynamic model. Novel decomposition of
classes of many-body problems into such integrable multi-component Ermakov systems have
recently been obtained in [27, 28]. The canonical Ermakov–Ray–Reid system (1.5) has a di-
verse range of physical applications, notably in nonlinear optics, hydrodynamics, gas cloud
evolution theory and magneto-gasdynamics (see [29, 35–38] and work cited therein).

The six classical Painlevé equations, commonly denoted by PI–PVI likewise arise in a wide
range of physical contexts and play a basic role in modern soliton theory (see e.g. Conte
[10]). Like Ermakov–Ray–Reid systems and their single component classical reduction (1.4)
they admit nonlinear superposition principles, in the Painlevé case as generated via Bäcklund
transformations. They possess linear representations and it is recalled that Ermakov–Ray–
Reid systems (1.5) also possess underlying linear structure, albeit of another kind [9]. These
commonalities make the analysis of hybrid integrable Ermakov–Painlevé systems of natural
research interest.

The study of Ermakov–Painlevé equations was initiated in [22] where a symmetry reduc-
tion of a multi-component resonant Manakov system led to a novel two-component Ermakov–
Painlevé II sub-system. The latter was shown to admit a key underlying Ermakov invariant
which was applied to derive a single component canonical Ermakov–Painlevé II equation
of the type (1.1) for an associated wave packet amplitude. In subsequent work in [6], an
integrable Painlevé–Gambier equation as derived in a three-ion reduction of an m-ion electro-
diffusion system in [11] was shown to be related via the electric field to the EPII equation (1.1).
A connection between the latter and the classical PII equation

ω̈ = 2ω3 + tω + α (1.7)
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was thereby obtained. The EPII avatar of (1.7) proves to be of importance not only because
of its direct physical application but because it plays a basic role in the construction of novel
hybrid integrable multi-component EPII systems which admit characteristic Ermakov invari-
ants [40]. The application of a Bäcklund transformation to generate iteratively exact solutions
of such EPII systems was presented in [40]. EPII similarity reductions have been made of the
classical Korteweg capillarity system in [32] and in a cold plasma context in [33].

In [23], a Ermakov–Painlevé IV (EPIV) system was obtained through a symmetry reduction
of a derivative nonlinear Schrödinger (NLS) system. The single component EPIV equation
(1.3) constitutes a canonical base member of this system. Bäcklund transformations have
recently been applied in [31] to generate iteratively exact solutions of these integrable EPIV
systems via the linked classical PIV equation

ω̈ =
1

2ω
ω̇2 +

3
2

ω3 + 4tω2 + 2(t2 − α)ω +
β

ω
. (1.8)

In [26], hybrid EPII–IV systems have been set in a general context. Their admitted Ermakov
invariants have been exploited to establish integrability properties.

Boundary value problems for both the classical PII and PIV equations have been treated
in a series of papers [2–5, 8, 17]. Dirichlet boundary value problems have been investigated
in [6, 7] respectively and existence together with uniqueness properties established. Here, a
Neumann-type boundary value problem is considered for the hybrid EPIII equation (1.2) as
obtained by setting ω = ρ2 in the classical PIII equation

ω̈ =
ω̇2

ω
− ω̇

t
+

1
t
(αω2 + β) + γω3 +

δ

ω
. (1.9)

2 A class of boundary value problems

Here, the existence of positive solutions bounded over the interval (0, 1) are considered for
the Ermakov–Painlevé III equation (1.2) subject to the boundary conditions

lim
t→0+

tρ̇(t) = ρ̇(1) = 0. (2.1)

It is observed that, on setting u := tρ̇, (1.2) adopts the form

u̇ =
u2

tρ
+

1
2ρ

(αρ4 + β) +
tγρ5

2
+

tδ
2ρ3 . (2.2)

Both mixed boundary and Sturm–Liouville conditions have been investigated for equations
of the type

u̇ = p(t)q(t) f (t, ρ, u) (2.3)

where u := pρ̇ have previously been considered elsewhere in the literature [1, 14, 19] with
standard assumptions∫ 1

0
p(t)q(t) dt < ∞,

∫ 1

0

1
p(t)

∫ t

0
p(s)q(s) ds dt < ∞.

and f is non-singular with respect to the time variable t. Such conditions are not fulfilled
for the avatar (2.2) of EPIII and, one is led to consider a Neumann boundary value problem
over an interval [η, 1] for arbitrary η ∈ (0, 1) and obtain a solution of the original problem
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by means of a sequence of approximate solutions with η → 0. To this end, here we proceed
under the assumptions

α > 0, β < 0, γ ≥ 0, δ ≤ 0 (2.4)

and will establish that the boundary value problem for Ermakov–Painlevé III with side con-
ditions (2.1) admits at least one positive bounded solution. Thus, the existence of a positive
solution of (1.2) will be proved under the Neumann-type boundary conditions

ρ̇(η) = ρ̇(1) = 0 (2.5)

for arbitrary η ∈ (0, 1). Moreover, we obtain upper and lower bounds for ρ(t) and u = tρ̇(t)
that do not depend on η.

Here, application of the method of upper and lower solutions is made as follows.

Theorem 2.1. Under the conditions (2.4) on the Painlevé parameters, there exist positive constants
ε, M, B and C independent of η such that the Ermakov–Painlevé equation (1.2) subject to the Neumann
conditions (2.5) has at least one solution satisfying

ε < ρ(t) < M, −tC ≤ tρ̇(t) ≤ B, η ≤ t ≤ 1.

Proof. Fix M, ε > 0 such that M > ε and

αM4 + β +
δ

M2 > 0 > αε4 + β + γε6.

Thus, it is readily verified that (ε, M) is an ordered couple of a lower and upper solution for
the EPIII equation (1.2) under the Neumann conditions (2.5). Next, observe that the right-hand
side of (1.2) has quadratic growth with respect to ρ̇. Thus, a standard Nagumo condition (see
e.g. [12, 18]) holds and the existence of a solution ρ with ε < ρ < M follows. Furthermore,
integration of u̇ over [η, 1] yields

∫ 1

η

(
tρ̇(t)2

ρ(t)
+

αρ(t)4 + β

2ρ(t)
+

tγρ(t)5

2
+

tδ
2ρ(t)3

)
dt = u(1)− u(η) = 0,

and hence ∫ 1

η

tρ̇(t)2

ρ(t)
dt ≤

∫ 1

η

∣∣∣∣αρ(t)4 + β

2ρ(t)
+

tγρ(t)5

2
+

tδ
2ρ(t)3

∣∣∣∣ dt.

Because ε ≤ ρ ≤ M, setting

C(t) :=
αρ(t)4 + β

2ρ(t)
+

tγρ(t)5

2
+

tδ
2ρ(t)3 (2.6)

we deduce that |C(t)| ≤ C for some constant C depending only on ε and M, whence

∫ 1

η

tρ̇(t)2

ρ(t)
dt ≤ C(1− η) ≤ C.

This, in turn, implies for arbitrary r ∈ [η, 1]

−rρ̇(r) =
∫ 1

r
u̇(t) dt =

∫ 1

r

(
tρ̇(t)2

ρ(t)
+ C(t)

)
dt
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and consequently |rρ̇(r)| ≤ 2C := B. Finally, we shall prove that ρ̇ is bounded from below
independently of η. Indeed, suppose that ρ̇ achieves its absolute minimum value at some
t0 ∈ (η, 1) with ρ̇(t0) = −m < 0. Then ρ̈(t0) = 0 and it follows from equation (1.2) that

0 =
m2

ρ(t0)
+

m
t0

+
αρ(t0)4 + β

2t0ρ(t0)
+

γρ(t0)5

2
+

δ

2ρ(t0)3 >
m
t0

+
C(t0)

t0
.

Hence
m
t0

<
C
t0

.

We conclude that ρ̇ > −C and the claim follows.

3 A sequence of approximate solutions

Assume that (2.4) is satisfied and let ηn ↘ 0. From the previous section, there exist ε, M, B, C >

0 and a sequence {ρn} of solutions of (1.2) satisfying (2.5) for ηn with ε < ρn < M and such
that −tC ≤ tρ̇n(t) ≤ B holds for t ∈ [ηn, 1]. Setting ρn(t) ≡ ρn(ηn) for 0 ≤ t ≤ ηn, we may
assume that ρn ∈ H2(0, 1) for all n.

Furthermore, observe that {t2ρ̈n} is uniformly bounded and, consequently, the sequence
{t2ρn} is bounded in W2,∞(0, 1). Thus, passing to a subsequence if necessary, we may assume
that {t2ρn} converges in C1([0, 1]) to some mapping θ(t). For convenience, for t > 0 we shall
write θ(t) = t2ρ(t) and a simple computation shows that

ρn → ρ in C1([η, 1])

for arbitrary η > 0.
Next, fix ϕ ∈ C∞

0 (0, 1) and η ∈ (0, 1) such that supp(ϕ) ⊂ (η, 1). Taking limits at both
sides of the equality

−
∫ 1

η
ϕ̇(t)ρ̇n(t) dt =

∫ 1

η
ϕ(t)E(t, ρn(t), ρ̇n(t)) dt,

where

E(t, ρn(t), ρ̇n(t)) =
ρ̇2

n
ρn
− ρ̇n

t
+

1
2tρn

(αρ4
n + β) +

γρ5
n

2
+

δ

2ρ3
n

we deduce that ρ is a weak solution (and, by standard results, classical) of (1.2) in (0, 1).
Moreover, because −tC ≤ tρ̇n(t) ≤ B for all t and all n, it is deduced that −tC ≤ tρ̇(t) ≤ B
for t ∈ (0, 1]. Clearly, ρ̇(1) = 0, so it only remains to verify that tρ̇(t) → 0 as t → 0. It proves
convenient to write

u̇(t) =
tρ̇(t)2

ρ(t)
+ C(t),

where the mappings u(t) := tρ̇(t) and C(t) defined as in (2.6) are bounded. By the mean value
theorem, if lim supt→0+ u(t) > lim inft→0+ u(t), then there exists a sequence rn → 0+ such that
u̇(rn) → −∞, a contradiction because u̇(t) ≥ C(t) ≥ −C. We conclude that L := limt→0+ u(t)
exists.

Since −tC ≤ u(t), it is readily seen that L ≥ 0. In order to prove that L 6> 0, let us simply
observe that if tρ̇(t) ≥ c > 0 over some interval (0, η) then, for t ∈ (0, η),

ρ(η)− ρ(t) =
∫ η

t
ρ̇(s) ds ≥

∫ η

t

c
s

ds = c ln(η/t)→ +∞
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as t→ 0, which contradicts the fact that ρ is bounded.
Summarizing, the following existence result has been proved.

Theorem 3.1. Under the conditions (2.4) on the Painlevé parameters, the Ermakov–Painlevé equation
(1.2) subject to the boundary conditions (2.1) has at least one positive solution.

4 An integrable Hamiltonian Ermakov–Painlevé III system

Ermakov–Ray–Reid systems (1.5) which admit a Hamiltonian have been determined in [29,35].
Therein, the requirements

1
ρ2σ

Φ(σ/ρ) = −∂W
∂ρ

,
1

σρ2 Ψ(ρ/σ) = −∂W
∂σ

were imposed and the parametrisation

Φ = 2
(

σ

ρ

)
J(σ/ρ) +

(
σ

ρ

)2

J′(σ/ρ), Ψ = −
(

σ

ρ

)2

J′(σ/ρ)

obtained. Here, the hybrid Ermakov–Painlevé III system is considered, namely

φ̈1 −
[

ρ̇2

ρ2 −
ρ̇

ρt
+

1
2ρ2t

(αρ4 + β) +
γρ4

2
+

δ

2ρ4

]
φ1

=
1

φ2
1φ2

[
2
(

φ2

φ1

)
J(φ2/φ1) +

(
φ2

φ1

)2

J′(φ2/φ1)

]
,

φ̈2 −
[

ρ̇2

ρ2 −
ρ̇

ρt
+

1
2ρ2t

(αρ4 + β) +
γρ4

2
+

δ

2ρ4

]
φ2

=
1

φ1φ2
2

[
−
(

φ2

φ1

)2

J′(φ2/φ1)

]
where ρ is governed by the EPIII equation (1.2), namely

ρ̈−
[

ρ̇2

ρ2 −
ρ̇

ρt
+

1
2ρ2t

(αρ4 + β) +
γρ4

2
+

δ

2ρ4

]
ρ = 0.

Thus,

φ̈1ρ− ρ̈φ1 =
ρ

φ2
1φ2

[
2
(

φ2

φ1

)
J(φ2/φ1) +

(
φ2

φ1

)2

J′(φ2/φ1)

]
,

φ̈2ρ− ρ̈φ2 =
ρ

φ1φ2
2

[
−
(

φ2

φ1

)2

J′(φ2/φ1)

]
,

whence, on introduction of the transformation

cφ∗1 = φ1/ρ, φ∗2 = φ2/ρ

dt∗ = ρ−2dt

 R∗



On a Neumann BVP for Ermakov–Painlevé III 7

reduction is made to the canonical Hamiltonian Ermakov–Ray–Reid system of [29,35], namely

φ∗1t∗ t∗
=

1
φ∗21 φ∗2

[
2
(

φ∗2
φ∗1

)
J(φ∗2 /φ∗1) +

(
φ∗2
φ∗1

)2

J′(φ∗2 /φ∗1)

]
,

φ∗2t∗ t∗
=

1
φ∗1 φ∗22

[
−
(

φ∗2
φ∗1

)2

J′(φ∗2 /φ∗1)

]
.

The two integrals of motion of the latter system, namely its Ermakov invariant and Hamil-
tonian, allow its algorithmic solution in the manner described in [29, 35]. It is noted that
if the transformation R∗ is supplemented by the relation ρ∗ = ρ−1 then R∗2 = I so that
R∗ constitutes a reciprocal-type transformation. This kind of reciprocal transformation has
been employed in [41] to reduce certain non-autonomous Toda–Painlevé systems to integrable
canonical form. It has likewise recently been used in the exact solution of moving boundary
problems of Stefan-type relevant to the analysis of seepage phenomena in heterogeneous me-
dia in soil mechanics [24, 25].
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