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Abstract. We show that the presence of a two-dimensional inertial manifold for an ordi-
nary differential equation in Rn permits reducing the problem of determining asymp-
totically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3
we implement such a scenario for a model of a satellite rotation around a celestial body
of small mass and for a biochemical model.
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1 Introduction

We consider ordinary differential equations

ẋ = −Ax + F(x), x ∈ Rn, n ≥ 3, (1.1)

where A is a symmetric n× n matrix with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn and the
function F belongs to C1+α(Rn, Rn) for some α ∈ (0, 1). We let F′(x) denote the Jacobi matrix
of the mapping F at a point x, and ‖·‖ and ‖·‖2 denote the Euclidean norm in Rn and the
Euclidean norm of matrices, respectively. If one of the two conditions

‖F(x)− F(y)‖ ≤ K ‖x− y‖ ,
∥∥F′(x)

∥∥
2 ≤ K, x, y ∈ Rn, (1.2)

that are equivalent in this situation is satisfied, then equation (1.1) generates a C1-smooth
phase flow {Φt∈R} in Rn. Everywhere below we identify linear operators on Rn with their
matrices. Let f = −A + F be a vector field of (1.1), then we call xs ∈ Rn a singular point
if f (xs) = 0. By a cycle we mean a closed trajectory. A stable limit cycle is a cycle that is
asymptotically orbitally stable as t→ +∞.
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The theory of inertial (that is, invariant and globally exponentially attracting) manifolds
was developed in the 1980s as a tool for studying the final (at large times) dynamics of semilin-
ear parabolic equations with a vector field structure of the form (1.1) in an infinite-dimensional
Hilbert space X (see [6, Ch. 8], [13] and the references therein). In this case, as usual, it
is assumed that A is an unbounded self-adjoint positive linear operator in X with a com-
pact resolvent. In such a situation, the presence of an m-dimensional inertial manifold (IM)
permits describing the final dynamics of an infinite-dimensional evolutionary system by an
ordinary differential equation (ODE) in Rm. Here we demonstrate the usefulness of inertial
manifolds in the finite-dimensional case X = Rn. Namely, the existence of a two-dimensional
IM (m = 2) allows one to reduce studying the final dynamics of equation (1.1) to solving
the corresponding problem in R2 and, in several cases, to prove the presence and to discover
the localization of a stable limit cycle without using the bifurcation technique or some rather
complicated topological constructions. We stress that, in contrast to the bifurcation theory,
our approach proves the existence of stable self-sustained oscillations of a “large amplitude”.

2 Inertial manifolds

A set Λ ⊆ Rn is said to be invariant if ΦtΛ = Λ, t > 0. Let Pm and Qm be orthogonal
projection operators in Rn on the subspaces Xm and Xn−m corresponding to the eigenvalues
λ1, . . . , λm and λm+1, . . . , λn, λm < λm+1, of the matrix A.

The invariant manifold of the form

Hm = {x ∈ Rn : x = u + h(u), u ∈ Xm} (2.1)

with the function h ∈ Lip (Xm, Xn−m)
⋂

C1(Xm, Xn−m) is called inertial, if for each trajectory
x(t), there exists a trajectory x(t) ⊂ Hm such that

‖x(0)− x(0)‖ ≤ M1 ‖Qmx(0)− h(Pmx(0))‖ , (2.2)

‖x(t)− x(t)‖ ≤ M2e−γt ‖x(0)− x(0)‖ (2.3)

for t > 0, where M1, M2, γ > 0. If a set E ⊂ Rn is bounded, then the Lipschitzian function
h : Xm → Xn−m is bounded on the bounded set PmE and for everyone x(0) ∈ E we have
‖Qmx(0) − h(Pmx(0))‖ ≤ M with M = M(E). It follows from (2.3) that ‖x(t) − x(t)‖ ≤
M1M2Me−γt for x(0) ∈ E, t > 0, which means Hm exponentially and uniformly attracts E.
Let Λ ⊂ Rn be a compact invariant set and y ∈ Λ. If x(0) = Φ−ty, then x(0) ∈ Λ, x(t) = y,
and

‖x(t)− x(t)‖ = ‖y− x(t)‖ ≤ M(Λ)e−γt.

Since t > 0 is arbitrary, x(t) ∈ Hm and the set Hm is closed, then y ∈ Hm and Λ ⊂ Hm. In this
way, the inertial manifold contains all compact invariant sets (including the singular points
and cycles) of the dynamical system.

It is well known [3, 5] that if the exact spectral gap condition

λm+1 − λm > 2K (2.4)

is satisfied, then there is such a manifold with h ∈ Lip (Xm, Xn−m) and the factor 2 on the
right-hand side of (2.4) cannot be decreased in general. Later, it was shown [13], that condi-
tion (2.4) also provides the existence of a C1-smooth inertial manifold. Estimate (2.2) means
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that ‖x(0)− x(0)‖ is small if the initial point x(0) is close to Hm. Estimate (2.3) reflects the
exponential tracking of the initial trajectory x(t) by the trajectory x(t) ⊂ Hm.

By the reduction principle [5, Lemma 1], the compact invariant sets Λ of equation (1.1)
and PmΛ of the ODE

u̇ = −Au + PmF(u + h(u)), u = Pmx, (2.5)

in Xm ' Rm are simultaneously asymptotically stable or unstable. The dynamical system
generated by (2.5) is topologically conjugate to the restriction of the original dynamical sys-
tem (1.1) to Hm. This means that the final (for t → +∞) regimes of the original equation in
Rn are fully described by some ODE in space of smaller dimension, which in many cases sim-
plifies their research. Essentially, we highlight the m < n “defining” degrees of freedom of a
n-dimensional dynamical system. In addition, if t is sufficiently large then every solution x(t)
of equation (1.1) is completely determined by its projection u(t) = Pmx(t) onto the subspace
Xm and is reconstructed by the formula x(t) = ψ(u(t)) with ψ(u) = u + h(u).

Splitting the right-hand side of equation (1.1) into linear and nonlinear components, of
course, is not unique. Right choice matrix A in (1.1) can help to satisfy the condition (2.4).
On the other hand, condition (2.4) can sometimes be ensured by using a nondegenerate linear
change of variables; the topology of the phase portrait of the dynamical system does not
change in this case. Such a method is used below in Section 4 to study a mathematical model
of cell processes.

Remark 2.1. The existence of a two-dimensional inertial manifold allows one to assert that the
union of all singular points and cycles (if any) has the form of a Lipschitz graph over a certain
plane X2 ⊂ Rn.

It should be noted that, under condition (2.4), the inertial manifold Hm does not inherit
the smoothness of the nonlinearity F; for example, the condition that F is real analytic in Rn

does not even imply that Hm ∈ C2.

Definition 2.2. A domain D ⊂ Rn is strictly positive invariant if ΦtD ⊆ D, t > 0.

In particular, this means that the boundary ∂D does not contain singular points.

Remark 2.3. Even under a weaker condition ΦtD ⊆ D, t > 0, the continuity of the mapping
x → Φtx for x ∈ Rn guarantees the inclusion ΦtD ⊆ D, t > 0, for the closure D.

The strict positive invariance of D is ensured if the vector field f (x) = −Ax + F(x) of
equation (1.1) on the boundary ∂D is directed inside the interior of D. If the domain D ⊂ Rn

is strictly positive invariant, then the domain PmD ⊂ Xm has the same property with respect
to the ODE (2.5).

Remark 2.4. The closure of the union of all cycles contained in the strictly positive invariant
domain D does not contain points of ∂D.

This is a consequence of the continuity of the phase flow {Φt} with respect to x ∈ Rn.
Consider the quadratic form V(x) = ‖Qx‖2 − ‖Px‖2 with an arbitrary orthogonal projec-

tion operator P in Rn and Q = Id− P. Assume that, for some λ, ε > 0, any two solutions x(t)
and y(t) of (1.1) satisfy the following relation holds with t > 0:

d
dt

V(x(t)− y(t)) + 2λV(x(t)− y(t)) ≤ −ε ‖x(t)− y(t)‖2 . (2.6)

This condition is known in the theory of inertial manifolds as the strong cone condition.



4 L. A. Kondratieva and A. V. Romanov

Remark 2.5 ([13, Lemma 2.21]; [5, Lemma 4]). Condition (2.4) implies (2.6) with P = Pm, λ =

(λm+1 + λm)/2 and ε = (λm+1 − λm)/2− K.

Recall the well-known (see [12]) estimate T ≥ 2π/K1 of the periods T > 0 of periodic
solutions (1.1), where K1 = λn + K is the Lipschitz constant of the vector field f = −A + F.
For τ = π/K1, we set Uτ(x) = x − Φτx, x ∈ Rn. The zeros of the vector field Uτ are
precisely the singular points of equation (1.1). A point xs is said to be asymptotically unstable
if the spectrum σ( f ′(xs)) contains an eigenvalue with Re λ > 0. In this case, σ(U′τ(xs)) =

{1} − exp(τσ( f ′(xs))).

Theorem 2.6. Assume that the following conditions are satisfied for equation (1.1):

(i) there exists bounded convex strictly positive invariant domain D ⊂ Rn containing a unique
singular point xs, this point is asymptotically unstable and satisfies det f

′
(xs) 6= 0;

(ii) the function F is real analytic in D;

(iii) λ3 − λ2 > 2K.

Then at least one stable limit cycle is localized in the domain D.

Proof. We use condition (iii) to reduce the final dynamics of (1.1) to the two-dimensional
inertial manifold H2 3 xs. By Remark 2.5, the estimate (iii) implies relation (2.6) for the
quadratic form V with P = P2, λ = (λ3 + λ2)/2 and ε = (λ3 − λ2)/2 − K. Assume that
Re κ1 ≥ Re κ2 ≥ · · · ≥ Re κn for κi ∈ σ( f ′(xs)). If we consider the matrix f ′(xs) as a perturba-
tion of the matrix −A, then condition (iii) implies the inequality Re κ3 < −λ < 0. It follows
from condition (i) that the vector field Uτ with τ = π/K1 has a unique zero xs in D.

Since the domain D is convex and ΦτD ⊂ D, then according to [2, Theorem 21.5] the
vector field Uτ is not is degenerate (0 does not belong to σ(U′τ)) on ∂D and the rotation of Uτ

on ∂D is equal to 1. By the hypothesis (i) of the theorem the vector field Uτ is not degenerate
at the point xs, therefore from [2, Theorem 20.6] and [2, Theorem 21.6] we successively find
that ind xs = 1 and ind xs = (−1)β, where ind is the Poincaré index and β is an even sum
multiplicities of the real λ > 1 in σ(Φ′τ(xs)). At the same time, β is the sum multiplicities of
positive κ ∈ σ( f ′(xs)). So, since Re κ3 < 0 and Re κ1 > 0, then Re κ2 > 0.

Thus, taking (i), (ii), and Remark 2.4 into account, we see that the assumptions in
[8, Corollary 6.1] are satisfied, and hence the domain D contains at most finitely many cy-
cles. One can see that the point P2xs is an unstable focus or an unstable knot of equation (2.5)
in the plane X2 ⊂ Rn. By the Poincaré–Bendixson theorem [4, Sect. 2.8], this equation has
finitely many embedded cycles in the strictly positive invariant domain P2D ⊂ X2 and at least
one of them, Γ, is stable. Then ψΓ is a stable limit cycle of the original equation (1.1).

Theorem 2.6 gives us a method for determining stable limit cycles of ODEs in Rn. In what
follows we refer to this method as to the “spectral gap method”. In fact, notion similar to that
of inertial manifold has been used successfully by R. A. Smith (see [8–10] and the references
therein) in his studies of cycles of ODEs. This author worked with Lipschitz invariant man-
ifolds of the form (2.1), attracting (not necessarily exponentially) all trajectories for t → +∞
and containing all bounded invariant sets. He did not use the simple and convenient condi-
tion (2.4) but directly considered* the condition of type (2.6) with an arbitrary quadratic form

*See, e.g., [10, Theorem 3].
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V(x) of the signature (0, n− 2, 2). Formally, assumption (2.6) is weaker than (2.4) and does
not mean that the vector field of the equation splits into linear and nonlinear parts. At the
same time, the spectral gap condition (2.4) can be verified significantly simpler.

On the other hand, the method proposed in [3] guarantees the existence of an inertial
manifold of dimension m < n for equations of the form (1.1) with an arbitrary linear part −A
if, for some λ > 0, the spectrum σ(A) has m values (with multiplicity taken into account)
in the half-plane Re z < λ, the straight line Re z = λ lies in the resolvent set ρ(A), and
‖(A− λ− iω)−1‖2 < 1/K, ω ∈ R. Such a technique was independently used to determine
stable limit cycles in [10]. The author believes that the revival of this approach is rather
perspective.

It should be noted that the technique of this paper (as well as papers [8–10] only detect
ODE cycles lying on invariant 2D-manifolds of the Cartesian structure (2.1).

In the following two sections we illustrate the spectral gap method with examples from
two distinct areas of natural science.

3 Satellite motion model

The problems of the periodic dynamics of the satellites of celestial bodies extensive literature
is devoted (see, for example, [7] and references therein). In particular, the dynamics of a
artificial satellite flying around a celestial body of small mass was studied in [1]. We consider
here this model as a successful mathematical application of our method for detecting stable
limit cycles. Let (r, ϕ) be the polar coordinates in the plane of the motion r = r(t), ϕ = ϕ(t) of
a flying vehicle. According to [1], the radial and transverse control forces act on the satellite,
depending on the positive parameters µ1, µ2, µ3 and some smooth function g(ϕ̇). The goal
is to determine the values µ1, µ2, µ3 and the function g so as to ensure the existence of a
stable periodic motion in coordinates (r, ṙ, ϕ̇). We set x1 = ṙ + µ2r, x2 = r, x3 = ϕ̇. In these
new coordinates, the satellite dynamics can be described by the system of equations (slightly
different from the system in [1])

ẋ1 = −µ1x1 + g(x3),

ẋ2 = −µ2x2 + x1,

ẋ3 = −µ3x3 + x2

(3.1)

with control parameters µ1, µ2, µ3 > 0 and the “admissible” nonlinear function g ∈ C1+α(R).
We define the class of admissible smooth functions g in (3.1) by conditions

0 < g(x3) < M, −1 ≤ g′(x3) < 0 (3.2)

for x3 ∈ R. The choice of such a class will allow us to apply Theorem 2.6 under certain
conditions on the parameters µ1, µ2, µ3. A similar mathematical model was studied in [10,
Sect. 7] from a different standpoint. System (3.1) takes the form (1.1) if we set

A =

 µ1 0 0
0 µ2 0
0 0 µ3

 , F(x) =

 g(x3)

x1

x2

 .

This decomposition of a vector field (3.1) is natural from the point of view of condition (iii)
of Theorem 2.6, so as the matrix A is symmetric, and the Lipschitz constant of nonlinearity F
easy to appreciate.
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Due to the second condition in (3.2), system (3.1) generates a C1 phase flow {Φt} in R3.
Given the structure of the right side of the system, it is not difficult show that every solution
x(t) is bounded for t ≥ 0 and phase semiflow retains positive octant: ΦtR

3
+ ⊂ R3

+, t ≥ 0.
However, we will be interested in the dynamics (3.1) in a bounded positive invariant domain
D ⊂ R3.

Lemma 3.1. The convex domain

D =

{
x ∈ R3 : 0 < x1 <

M
µ1

, 0 < x2 <
M

µ1µ2
, 0 < x3 <

M
µ1µ2µ3

}
is strictly positive invariant and contains a unique singular point.

Proof. The search of the singular points of the system (3.1) reduces to solving the scalar equa-
tion g(x3) = µ1µ2µ3x3. Since according to conditions (3.2) we have 0 < g < M and g′ < 0,
then this equation has a unique solution x3 = ν > 0. So there exists a unique singular point
in R3:

xs = (µ2µ3ν, µ3ν, ν) =

(
g(ν)
µ1

,
g(ν)
µ1µ2

,
g(ν)

µ1µ2µ3

)
.

Note that xs ∈ D.
We first show that ΦtD ⊆ D, and hence ΦtD ⊆ D for t > 0. Consider the solution x(t) =

(x1(t), x2(t), x3(t) with x(0) ∈ D. On the faces x1 = 0 and x1 = M/µ1 of the parallelepiped D,
we have ẋ1 = g(x3) > 0 and ẋ1 = −µx1 + g(x3) < 0 respectively, so 0 < x1(t) < M/µ1 for
t > 0. On the faces x2 = M/(µ1µ2) and x2 = 0, we have ẋ2 < 0 and ẋ2(t) = x1(t) > 0
respectively, and hence, 0 < x2(t) < M/(µ1µ2) for t > 0. On the faces x3 = M/(µ1µ2µ3) and
x3 = 0, we have ẋ3 < 0 and ẋ3(t) = x2(t) > 0 respectively, so that 0 < x3(t) < M/(µ1µ2µ3)

for t > 0.
We write Π = {x ∈ ∂D : Φtx ∈ D, t > 0} and Π0 = ∂D\Π. We see that Π0 ⊆ l1

⋃
l2
⋃{0},

where l1 = {x ∈ ∂D : x1 = 0, x2 = 0, x3 > 0} and l2 = {x ∈ ∂D : x1 > 0, x2 = 0, x3 = 0}.
On l1 and l2, we respectively have ẋ1 > 0 and ẋ2 > 0, and hence Φtx ∈ D, t > 0, on Π0/{0}.
Because Φt0 6= 0, we have Φt0 ∈ D, t > 0. Thus, Π0 = φ, Π = ∂D, and ΦtD ⊆ D for t > 0.

Clearly,

F′(x) =

 0 0 g′(x3)

1 0 0
0 1 0

 , (F′(x))∗ · F′(x) = diag (1, 1, (g′(x3))
2 ),

and ‖F′(x)‖2 = 1 for all x ∈ R3. Let λ1, λ2, λ3 stand for the parameters µ1, µ2, µ3 permutated
by nondecreasing order. We have K = 1 and the spectral gap condition (2.4) becomes

λ3 − λ2 > 2. (3.3)

We linearize the vector field of the system (3.1) at the singular point xs. Note that the Routh–
Hurwitz criterion gives the condition of asymptotic instability of xs by the inequality

− g′(ν) + λ1λ2λ3 > (λ1 + λ2 + λ3) (λ1λ2 + λ1λ3 + λ2λ3) . (3.4)

In addition, det(F
′
(xs)−A) = g′(ν)−λ1λ2λ3 6= 0. Estimates (3.3), (3.4) determine a nonempty

open set Ω in the positive octant R3
+ of the parameters λ1, λ2, λ3. In particular, the domain Ω

contains points of the form (δ, δ, 2 + 2δ) for all sufficiently small δ > 0. If the function g
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in (3.2) is real analytic for 0 < x3 < M/(µ1µ2µ3), then by Theorem 2.6, system (3.1) with
(λ1, λ2, λ3) ∈ Ω has a stable limit cycle Γ ⊂ D.

As an admissible nonlinear function in (3.1) we can, for example, take

g(x3) = arccot(x3 − ν), ν =
π

2µ1µ2µ3
.

This function satisfies conditions (3.2) with g′(ν) = −1 and M = π. The function g depends on
the angular velocity ϕ̇ = x3, and also from the control parameters µ1, µ2, µ3. Selection of these
parameters should provide adequate with engineering-physical point of view restrictions on
possible the values of x1(t), x2(t), x3(t) as t ≥ 0 along satellite trajectories in positive invariant
domain D ⊂ R3.

In similar constructions [1], the real analyticity of the function g in (3.1) is not required, but
it is only necessary to prove the existence of an orbitally stable periodic trajectory on which at
least one different trajectory is “winding” as t→ +∞.

4 A model of cell processes

Another example illustrating the spectral gap method is related to the complex dynamics in
cell processes [11]. Consider the following the system of equations

ẋ = −kx + R(z),

ẏ = x− G(y, z),

ż = −qz + G(y, z),

(4.1)

where

R(z) =
1

1 + z4 , G(y, z) =
Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2

and k, q, T, L > 0 are constants. Here x, y, and z are dimensionless concentrations of the
matters S1, S2, and S3, where S1 is the initial product, S2 is the intermediate product, and S3

is the final product; k and q are constants of the rate of variation in S1 and S3. We have

Rz = −
4z3

(1 + z4)2 , Gz =
2TLy(1 + y)(1 + z)

(L + (1 + y)2(1 + z)2)2 ,

Gy =
2TLy(1 + z)2

(L + (1 + y)2(1 + z)2)2 +
T(1 + z)2

L + (1 + y)2(1 + z)2 ,

Rz(z) < 0 for z > 0, and G(y, z) < T, Gy(y, z) > 0, Gz(y, z) > 0 for y, z > 0. Since the
first derivatives of the functions R and G are uniformly bounded in z ∈ R and (y, z) ∈ R2,
we see that system (4.1) generates a smooth flow {Φt} in R3. We fix the values T = 10 and
L = 106 that are physically meaningful from the standpoint of the authors of [11] and try to
determine pairs of free parameters (k, q) ∈ R2

+ for which this system satisfies the conditions
of Theorem 2.6 and hence admits a stable periodic regime.

Everywhere below we restrict ourselves to the simple case when kT > 1 and k > q. By
p(x, y, z) we denote points in R3.
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4.1 Positive invariant domain and a singular point

We note that G(+∞, 0) = T and G(0, z) = 0 for z > 0. Since kT > 1, we can uniquely
determine the value y0 > 0 from the relation G(y0, 0) = 1/k. In what follows we set x0 =

1/k, z0 = T/q.

Lemma 4.1. The convex domain D = {p ∈ R3 : 0 < x < x0, 0 < y < y0, 0 < z < z0} is strictly
positive invariant and contains a unique singular point.

Proof. Equating the right-hand side of (4.1) to zero we obtain the relations x = qz and kqz =

R(z) which are satisfied for a unique pair of values xs, zs > 0. Another scalar equation
ϕ(y) = 0 with ϕ(y) = qzs − G(y, zs), ϕ′ < 0, has a unique solution ys > 0. So system (4.1)
has a unique singular point ps = (xs, ys, zs) in R3

+. Since the function R decreases in z > 0, it
follows that zs = (kq)−1R(zs) < (kq)−1 < z0 and xs = k−1R(zs) < x0. Taking into account that
G is an increasing function with respect to each variable y > 0 and z > 0, from the relation
xs = G(ys, zs) we derive that xs = G(ys, zs) < x0 = G(y0, 0), and hence ys < y0 and ps ∈ D.

First, we show that ΦtD ⊆ D, and hence ΦtD ⊆ D for t > 0. We consider the solution
p(t) = (x(t), y(t), z(t)) with p(0) ∈ D. On the faces z = 0 and z = z0 of the bar D, we have
ż = G(y, 0) > 0 and ż = −T + G(y, z0) < 0, respectively, and hence 0 < z(t) < z0 for t > 0.
On the faces x = 0 and x = x0, we have ẋ = R(z) > 0 and ẋ(t) = −1 + R(z(t)) < 0 for p(t),
respectively, and hence 0 < x(t) < x0 for t > 0. On the faces y = 0 and y = y0, we respectively
have ẏ(t) = x(t)− G(0, z(t)) = x(t) > 0 and ẏ(t) = x(t)− G(y0, z(t)) < x0 − G(y0, 0) = 0 for
p(t), whence 0 < y(t) < y0 for t > 0.

We write Π = {p ∈ ∂D : Φt p ∈ D, t > 0}, Π0 = ∂D \Π, and p0 = (x0, y0, 0). We see that
Π0 ⊆ l1

⋃
l2
⋃

l3
⋃{p0}, where l1 : {x = x0, 0 ≤ y < y0, z = 0}, l2 : {x = 0, y = 0, 0 ≤ z ≤ z0},

and l3 : {x = x0, y = y0, 0 ≤ z ≤ z0}. On l1, l2, and l3, we respectively have ż > 0, ẋ > 0,
ẋ < 0, and hence Φt p ∈ D, t > 0, on Π0 \ {p0}. Since Φt p0 6= p0, we see that Φt p0 ∈ D, t > 0.
Thus, Π0 = φ, Π = ∂D, and ΦtD ⊆ D for t > 0.

4.2 Inertial manifold

In the natural decomposition f = −A + F of the vector field f of system (4.1) into the linear
and nonlinear parts, we have

A =

 −k 0 0
0 0 0
0 0 −q

 , F

 x
y
z

 =

 R(z)
x− G(y, z)

G(y, z)

 .

This decomposition with symmetric matrix A is chosen in order to best provide condition
(iii) of Theorem 2.6. For the matrix A we have λ1 = 0, λ2 = q, λ3 = k. The change u = y + z
takes (4.1) to the form

ẋ = −kx + R(z), u̇ = x− qz, ż = −qz + G(u− z, z) (4.2)

in the variables (x, u, z) with the vector field decomposition f1 = −A + F1, where F1 :
(x, u, z)→ (R(z), x− qz, G(u− z, z)). In this case, x

y
z

 = C

 x
u
z

 , C =

 1 0 0
0 1 −1
0 0 1

 , C−1 =

 1 0 0
0 1 1
0 0 1

 .
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The nonlinear part F1 in (4.2) is simpler than the nonlinear part F in the original system (4.1),
which allows us to sharpen the estimate of K = K(k, q) for the norm of its Jacobi matrix in the
spectral gap condition λ3 − λ2 > 2K. The domain C−1D is strictly positive invariant for (4.2).
We put

K = max
C−1D

∥∥∥F
′
1(p)

∥∥∥
2
= max

D

∥∥∥(F
′
1 C−1)(p)

∥∥∥
2

, F
′
1 C−1 =

 0 0 −Rz

1 0 −q
0 Gy Gz − Gy

 , (4.3)

where p = (x, u, z). The condition (2.4) of existence of the inertial manifold means that
(1.2) is satisfied for the function F1 on R3. In this connection, it is useful to consider a C1+α

extension of F1 from the domain C−1D to R3 with the same value of K. To this end, consider
the functions R and G defined as follows. The function R satisfies R(0) = R(0) and its
derivative Rz is an even 2z0-periodic extension of Rz from [0, z0] to R. Similarly, G satisfies
G(0, 0) = G(0, 0) and its derivatives Gy and Gz are even, with respect to both y and z, and
(2y0, 2z0)-periodic extensions of Gy and Gz, correspondingly, from [0, y0]× [0, z0] to R2. If we
now put F2 : (x, u, z) → (R(z), x − qz, G(u − z, z)), then the function F2 yields the sought
extension of F1 from C−1D to R3. Clearly, the phase dynamics of system (4.2) in the domain
C−1D remains the same when F1 is replaced by F2.

Let Θ = {(k, q) ∈ R2
+, k − q > 2K(k, q)}. Then λ3 − λ2 = k − q and, for (k, q) ∈ Θ, the

system of equations

ẋ = −kx + R(z), u̇ = x− qz, ż = −qz + G(u− z, z) (4.4)

admits a two-dimensional inertial manifold. The same is also true for the system

ẋ = −kx + R(z), ẏ = x− G(y, z), ż = −qz + G(y, z), (4.5)

which inherits the phase dynamics of (4.1) in the domain D.

Remark 4.2. If (k0, q0) ∈ Θ, then (k, q) ∈ Θ for k ≥ k0, q ≥ q0, k− q ≥ k0 − q0.
Indeed, since the strictly positive invariant domain D decreases as k and q increase, it

follows that the constant K = K(k, q) in (4.3) does not increase and the inequality k− q > 2K
still holds. We see that systems (4.1) and (4.5) demonstrate the two-dimensional final dynamics
in the vast domain Θ of the parameters (k, q).

4.3 Instability of the singular point

The singular points of systems (4.1) and (4.4) are simultaneously stable or unstable. The Jacobi
matrix f

′
(ps) of the vector field of system (4.1) at the singular point ps = (xs, ys, zs) ∈ D has

the form  −k 0 −b
1 −c −d
0 c d− q


with b = −Rz(zs), c = Gy(ys, zs), and d = Gz(ys, zs). By the Routh–Hurwitz criterion, this
point is asymptotically unstable if a1 < 0 or a1a2 − a3 < 0 or a3 < 0, where

a1 = c− d + k + q, a2 = k(c− d) + qc + kq, a3 = (kq + b)c .

Because a3 > 0, the point ps is unstable under the condition a2 < 0. We have det f
′
(ps) =

c(b− kq).
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4.4 Stable limit cycle

The complicated character of nonlinearity in (4.1) requires the use of computational tools
(Maple package) for estimating the Lipschitz constant K(k, q) and analyzing the instability
of ps. As an example, we take two pairs of parameters k > q and estimate the norms for the
points p ∈ D. The square numerical matrices B satisfy the inequality ‖B‖2 ≤

√
‖B‖∞ · ‖B‖1,

where ‖B‖∞ and ‖B‖1 are the norms of the linear operators corresponding to B in Rn
∞ and

Rn
1 .

For k = 3 and q = 0.1, we have:

y1 ≈ 186, xs ≈ 0.117, ys ≈ 49.653, zs ≈ 1.167, b− kq ≈ 0.480, a2 ≈ −0.05,∥∥∥(F′1 C−1)(p)
∥∥∥

∞
≤ 1.209,

∥∥∥(F′1 C−1)(p)
∥∥∥

1
≤ 1.166,

∥∥∥(F′1 C−1)(p)
∥∥∥

2
≤ K = 1.187.

For k = 2.5 and q = 0.1, we have:

y1 ≈ 204, xs ≈ 0.123, ys ≈ 49.558, zs ≈ 1.230, b− kq ≈ 0.438, a2 ≈ −0.01,∥∥∥(F′1 C−1)(p)
∥∥∥

∞
≤ 1.209,

∥∥∥(F′1 C−1)(p)
∥∥∥

1
≤ 1.166,

∥∥∥(F′1 C−1)(p)
∥∥∥

2
≤ K = 1.187.

The vector field of system (4.4) is real analytic in the strictly positive invariant domain
C−1D, and this domain contains a unique singular point. In both cases a2 < 0, det f

′
(ps) =

c(b− kq) 6= 0, and k− q > 2K, so that by Theorem 2.6, system (4.4) admits a stable limit cycle
Γ ∈ C−1D for the chosen values of k and q. It is easy to trace the continuous dependence of the
quantities K = K(k, q), b = b(k, q), and a2 = a2(k, q) on their arguments, and thus, the system
admits stable periodic regimes for the parameters (k, q) in sufficiently small neighborhoods of
the points (3, 0.1) and (2.5, 0.1). This implies that, for the same values of (k, q), the original
system (4.1) has a stable limit cycle localized in the domain D.

5 Conclusion

The spectral gap method is based on the presence of a natural self-adjoint linear compo-
nent −A of the vector field of ODE with dominating third eigenvalue, λ3(A) > λ2(A), which
somewhat restricts the range of applications. The advantages of the method are the trans-
parency of statements and the relative simplicity of its use. The problems solved by this
method are technically reduced to careful estimation of the Lipschitz constant in the nonlin-
ear component of the equations and determination of a strictly positive invariant domain in
the phase space that contains a unique (asymptotically unstable) singular point. In general,
the proposed method can well complement the list of well-known approaches to the problem
of determining stable limit cycles of ordinary differential equations in Rn, lying on invariant
2D-manifolds of the Cartesian structure.

Existence of an inertial manifold of dimension greater than 2 is also of interest. For ex-
ample, the presence of such manifolds of dimension 3 guarantees, that all invariant tori (if
any) of the dynamical system lie on the invariant three-dimensional C1-manifold of the form
(2.1). In the most common spectral gap condition (2.4) allows us to state that the union of all
bounded invariant sets lies on the smooth invariant m-dimensional manifold of the Cartesian
structure.
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